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ABSTRACT

The National Institute of Standards and Technology (NIST) has developed a new release of a standard refer-
ence form-based handprint recognition system for evaluating optical character recognition. As with the first release, 
NIST is making the new recognition system freely available to the general public on CD-ROM. This source code test-
bed, written entirely in C, contains both the original and the new recognition systems. New utilities are provided for 
conducting generalized form registration, intelligent form removal with character stroke preservation, robust text-line 
isolation in handprinted paragraphs, adaptive character segmentation based on writing style, and sophisticated Multi-
Layer Perceptron (MLP) neural network classification. A software implementation of the machine learning algorithm 
used to train the new MLP is included in the test-bed, enabling recipients to train the neural network for pattern rec-
ognition applications other than character classification. A host of data structures and low-level utilities are also pro-
vided. These include the application of spatial histograms, affine image transformations, simple image morphology, 
skew correction, connected components, Karhunen Loève feature extraction, dictionary matching, and many more. 
The software test-bed has been successfully compiled and tested on a host of UNIX workstations including computers 
manufactured by Digital Equipment Corporation, Hewlett Packard, IBM, Silicon Graphics Incorporated, and Sun 
Microsystems.1 Approximately 25 person-years have been invested in this software test-bed, and it can be obtained 
free of charge on CD-ROM by sending a letter of request via postal mail or FAX to NIST. This report documents the 
new recognition software test-bed in terms of its installation, organization, and functionality.

1. INTRODUCTION

In August of 1994, the National Institute of Standards and Technology (NIST) released to the public a stan-
dard reference form-based handprint recognition system for evaluating optical character recognition (OCR) [1]. The 
system served as a vehicle for transferring recognition and performance assessment technology from our government 
laboratory to system developers and researchers in the private sector. As of August 1996, over 700 copies of the tech-
nology had been distributed to more than 40 countries around the world. This was NIST’s first large-scale public 
domain OCR technology transfer, and by all accounts it has been a tremendous success.

Since 1994, NIST has continued to conduct research in form-based handprint recognition. This research is 
critical to the continued advancement of the technology. This is especially true with regards to system integration. 
Form-based OCR has the potential of solving many economically important problems using state-of-the-art technol-
ogy, but currently there is no universal off-the-shelf solution available for large-scale, centralized forms processing 
applications. These applications are comprised of many tasks or functional components, and the literature contains a 
plethora of algorithms and techniques for accomplishing these various tasks [2]. Even so, one cannot expect to be able 
to arbitrarily pick and choose techniques available as off-the-shelf products, organize them into a standard work flow, 
and proceed to universally solve applications. The fact is, interactions between components are often nonlinear and 

1. Specific hardware and software products identified in this paper were used in order to adequately support the development of the tech-
nology described in this document. In no case does such identification imply recommendation or endorsement by the National Institute 
of Standards and Technology, nor does it imply that the equipment identified is necessarily the best available for the purpose.
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non-additive [2]. The economically useful systems being deployed today are successful because they are constructed 
from components that have been customized to capitalize on all the constraints afforded by a particular application. 
The more constraints available and incorporated, the higher the probability of success. Therefore, these systems are 
defined more by their intended application than by available general purpose technology.

The interactions between recognition system components are complex and difficult to model, therefore it is 
not possible with conventional knowledge to measure the performance of a component in isolation and to predict a 
component’s impact on overall system performance. The only meaningful way to compare alternative components for 
use in an application is by integrating each alternative into an end-to-end system and comparing their impact on overall 
system performance. This has been the focus of much of our research, as effective performance assessment facilitates 
the comparison of technical alternatives and more importantly helps insure successful deployment of technology to 
specific applications. To support this research, NIST has developed numerous algorithms and techniques, and to study 
their impact on recognition performance, these components have been integrated into a prototype (or test-bed) system. 
This software test-bed is what comprises this new release of the NIST form-based handprint recognition system.

Using the software test-bed, a component of the system may be easily replaced by an alternative algorithm. 
The same set of input data can be run through the augmented system, and performances between the original and aug-
mented system can be compared. Also, by retraining and testing the recognition system in a controlled fashion, training 
sets can be collected and evaluated that improve system robustness. Developers may find that the techniques provided 
in the standard reference test-bed provide complementary results to their own systems. If this is the case, then combin-
ing their recognition results with those from NIST may improve overall recognition performance.

A CD-ROM distribution of this software can be obtained free of charge by sending a letter of request via 
postal mail or FAX to Michael D. Garris at the address above. Requests made by electronic mail will not be accepted, 
however electronic mail is encouraged for handling technical questions. The letter, preferably on company letterhead, 
should identify the requesting organization or individuals. Any portion of this software test-bed may be used without 
restrictions because it was created with U.S. government funding. This software test-bed was produced by NIST, an 
agency of the U.S. government, and by statute is not subject to copyright in the United States. Redistribution of this 
standard reference software is strongly discouraged as any subsequent corrections or updates will be sent to registered 
recipients only. Recipients of this software assume all responsibilities associated with its operation, modification, and 
maintenance.

1.1 First System Release

This new software release contains the latest technology from our laboratory. Due to the factors described 
above, there is no best algorithm for a specific system component, and there is no best suite of components to comprise 
a universal system. The question should not be which component algorithm is best, but rather which combination of 
algorithms performs best for a particular application. What works best for one application may not work as well for 
another. Therefore, this new technology does not necessarily replace or make the technology distributed in the first 
release obsolete. As a result, the new software distribution contains both the new and the original recognition systems. 
The new system is an embellishment to the old one.

The software provided with the first release remains mostly intact. We are happy to say that, among the more 
than 700 recipients over that last two years, there were only a handful of bugs reported from the 19,000 lines of code 
distributed. These included a couple of syntax errors and a few memory inefficiencies and leaks. None of these prob-
lems were reported to cause fatal errors at run-time. By correcting one memory inefficiency, the time required by the 
dictionary matching process was cut by more than 25%. Other inefficiencies removed include changing system calls 
from calloc() to malloc() wherever possible, thus avoiding the overhead of unnecessarily zeroing out memory. By mak-
ing implementation changes to the existing algorithms, the first system’s execution time was reduced by more than 
40%, and memory allocation requirements were reduced by 35%. The file doc/changes.txt lists the changes made to 
the source code between its first and second release.
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1.2 Second System Release

As already mentioned, the new release contains the latest improved technology from our laboratory. Alterna-
tives to system components are provided that are more general, more robust, and statistically more adaptive. With the 
new recognition system, the application remains the same. Both the new and the old systems are designed to read hand-
written responses on Handwriting Sample Forms (HSF) like those distributed in NIST Special Database 19 (SD19) 
[3]. An example of one of these completed forms is shown in Figure 1. The new system incorporates new methods for 
form registration [4], form removal [5], text line isolation in handprinted paragraphs [6], character segmentation [7], 
and new pattern classification [8]. The only component remaining virtually the same from the original system is the 
dictionary-based spelling correction [9].

1.3 Document Organization

This document provides installation instructions, describes the organization of the software test-bed including 
its compilation and invocation, and presents a high-level description of each of the major algorithms utilized in the 
new recognition system. Section 2 contains instructions for installing the test-bed from CD-ROM. This includes a 
description of the test-bed’s organization, the size of various parts of the distribution, and instructions on compiling 
the provided software. Section 3 documents how each of the provided programs (excluding classifier training) were 
used to generate the supporting files provided in the distribution and how these programs can be invoked on new sets 
of data. Section 4 describes the major algorithms designed and integrated into the new NIST recognition system. Sec-
tion 5 contains comprehensive performance evaluation results. This section compares three recognition systems: the 
original system as it was distributed in the first release, an updated version of the original system as it is distributed in 
this release, and the new NIST recognition system containing the latest technology developed in our laboratory. Results 
are reported from running these systems across all of SD19. Statistics and comparisons are reported on character, word, 
and field-level accuracies, error versus reject performances, system timings, and memory usages. To conduct this eval-
uation, a total of 3669 writers, 109,200 words, and 667,758 characters were used in the tests. Improvements to the soft-
ware test-bed are discussed in Section 6 along with a short description of how the new recognition system can be set 
up to process new and different types of forms. A few final comments and concluding remarks are provided in Section 
7, and references are listed in Section 8. Note that all NIST publications referenced in this document are provided in 
PostScript format on the CD-ROM.

The NIST recognition software test-bed not only contains pre-trained classifiers, but it provides extensive 
training data along with the machine learning algorithms implemented in software for retraining the classifiers. In fact 
it is possible for recipients of this test-bed to train the provided classifiers on other pattern recognition applications, in 
addition to character classification. The new NIST recognition system utilizes a sophisticated Multi-Layer Perception 
(MLP) neural network-based classifier, the training program for which is documented in Appendix A.
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Figure 1. An example of a completed HSF form from SD19.
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2. INSTALLATION INSTRUCTIONS

The public domain recognition system software is designed to run on UNIX workstations and has been suc-
cessfully compiled and tested on a Digital Equipment Corporation (DEC) Alpha, Hewlett Packard (HP) 9000, IBM 
RS6000, Silicon Graphics Incorporated (SGI) Indy and Challenge, and Sun Microsystems (Sun) SPARCstation 10 and 
SPARCstation 2. Porting the software to smaller Personal Computer (PC) platforms is left entirely to the recipient as 
NIST does not have resources allocated to support such efforts at this time.

As mentioned in the introduction, this distribution contains two different recognition systems. An updated 
version of the original system, hsfsys1, is provided along with a new and improved system, hsfsys2. Unlike the first 
release which contained some isolated FORTRAN, the new software release is written completely in C (traditional 
Kernighan & Ritchie, not ANSI) and is organized into 15 libraries. In all, there are approximately 39,000 lines of code 
supporting more than 725 subroutines. Source code is provided for tasks such as form registration, form removal, field 
isolation, field segmentation, character normalization, feature extraction, character classification, and dictionary-based 
postprocessing. A host of data structures and low-level utilities are also provided. These utilities include the applica-
tion of CCITT Group 4 decompression [10][11], IHead file manipulation [1], spatial histograms, Least-Squares fitting 
[12], affine image transformations, skew correction, simple morphology [13], connected components, Karhunen Loève 
(KL) feature extraction [14], Probabilistic Neural Network (PNN) classification [15], Multi-Layer Perceptron (MLP) 
classification [16], and Levenstein distance dynamic string alignment [17].

Several other programs are provided that generate data files used by the two recognition systems. The first 
program, mis2evt, computes a covariance matrix and generates eigenvectors from a sample of segmented character 
images. The next program, mis2pat1, produces prototype feature vectors for use with the PNN classifier in hsfsys1, 
while mis2pat2 produces prototype feature vectors for use with the new MLP classifier in hsfsys2. The program mlp 
trains an MLP neural network on the feature vectors produced by mis2pat2 and stores the resulting weight matrices to 
file for later use in classification. These feature vectors are computed using segmented character images and the eigen-
vectors produced by mis2evt. To support these programs, a training set of 1499 writers contributing 252,124 segmented 
and labeled character images is provided in the distribution. These writers correspond to partitions hsf_4, hsf_6, & 
hsf_7 in SD19.

2.1 Installing from CD-ROM

The NIST recognition software is distributed on CD-ROM in the ISO-9660 data format [18]. This format is 
widely supported on UNIX workstations, DOS or Windows-based personal computers, and VMS computers. There-
fore, the distribution can be read and downloaded onto these various platforms. Keep in mind that the source code has 
been developed to compile and run on UNIX workstations. If necessary, it is the responsibility of the recipient to mod-
ify the distribution source code so that it will execute on their particular computer architectures and operating systems.

Upon receiving the CD-ROM, load it onto your computer using a CD-ROM drive equipped with a device 
driver that supports the ISO-9660 data format. You may need to be assisted by your system administrator as mounting 
a file system usually requires root permission. Then, recursively copy its contents into a read-writable file system. 
Table 1 lists the size (in kilobytes) of the directories on the CD-ROM before and after compilation. The entire distri-
bution requires approximately 360 Megabytes (Mb) to copy. The top-level distribution directory doc contains just over 
105Mb of PostScript reference documents, and the directory train about 27.5Mb of training data. These files are not 
necessary to compile and run the recognition systems, so they do not have to be copied from the CD-ROM if disk space 
is limited on your computer. However, the segmented characters within train are required if you wish to retrain any of 
the neural network classifiers. The entire distribution requires approximately 365Mb upon compilation.
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Table 1. Sizes (in 1024 byte blocks) of distribution directories before and after compilation.

The CD-ROM can be mounted and the entire distribution copied with the following UNIX commands on a 
Sun SPARCstation:

# mount -v -t hsfs -o ro /dev/sr0 /cdrom
# mkdir /usr/local/hsfsys2
# cp -r /cdrom /usr/local/hsfsys2
# umount -v /cdrom

where /dev/sr0 is the device file associated with the CD-ROM drive, /cdrom represents the directory to which the CD-
ROM is mounted, and /usr/local/hsfsys2 is the directory into which the distribution is copied. If the distribution is 
installed by the root user, it may be desirable to change ownership of the installation directory using the chown com-
mand. CD-ROM is a read-only medium, so copied directories and files are likely to retain read-only permissions. The 
file permissions should be changed using the chmod command so that directories and scripts within the copied distri-
bution are readable, writable, and executable. All catalog files should be changed to be read-writable. In general, source 
code files can remain read-only. Section 2.2 identifies the location of these various file types within the distribution. 
Specifically, the file bin/catalog.csh must be assigned executable permission, and files with the name catalog.txt under 
the top-level src directory must be assigned read-writable permission.

By default, the distribution assumes the installation directory to be /usr/local/hsfsys2. If this directory is used, 
the software can be compiled directly without any path name modifications. To minimize installation complexity, the 
directory /usr/local/hsfsys2 should be used if at all possible. If insufficient space exists in your /usr/local file system, 
the installation can be copied elsewhere and referenced through a symbolic link.

If you decide to install this distribution in some other directory, then editing a number of source code files will 
be necessary prior to compiling the programs. Edit the line “PROJDIR = /usr/local/hsfsys2” in the file makefile.mak in 
the top-level installation directory, replacing /usr/local/hsfsys2 with the full path name of the installation directory you 
have chosen. Likewise replace all references to /usr/local/hsfsys2 in the files hsfsys.h and hsfsys2.h found in the top-
level directory include. Remember, to make these file modifications, the permission of these files will have to be 
changed first. Once these edits are made, follow the instructions in Section 2.4 for compilation.

./bin

./data

./dict

./doc

./include

./lib

./src

./tmplt

./train

./weights
./weights/pnn

./weights/mlp

1
637

1
105276

99
0

2232
97

27493
224110

55145

168964

1146
637

1
105276

99
796

5310
97

27493
224110

55145

168964

Total 360000 365019

./man 54 54

Directory Pre-Comp Post-Comp
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2.2 Organization of Software Distribution

Figure 2. The top-level directory structure in the software distribution.

The top-level directories in this distribution are shown in Figure 2. The first directory, bin, holds all distributed 
shell scripts and locally compiled programs that support the recognition system. The full path name to this directory 
should be added to your environment’s search path prior to compilation. Upon successful compilation, the programs 
mis2evt, mis2pat1, hsfsys1, mis2pat2, trainreg, mlp, and hsfsys2 are installed in the top-level bin directory. Instructions 
on running these programs are provided in Section 3 with the exception of mlp which is discussed in Appendix A. The 
directory bin also contains the file catalog.csh that must be assigned executable permission. This file is a C-shell script 
that is used to automatically catalog programs and library routines.

The directory data contains 10 subdirectories, f0000_14 through f0009_06, containing completed HSF forms 
from SD19. Each subdirectory holds a form image in an IHead format file with extension pct, a reference file with 
extension ref (listing the values the writer was instructed to enter in each field), three system output files generated by 
hsfsys1, and two system output files generated by hsfsys2. The hypothesis file with extension hy1 lists all the field val-
ues recognized on the form by hsfsys1, while the file with extension hy2 lists all those recognized by hsfsys2. The con-
fidence file with extension co1 lists the corresponding confidence values for each character classification reported by 
hsfsys1, while the file with extension co2 lists confidence values for hsfsys2. A timing file with extension ti1, generated 
by hsfsys1, is also provided in each form directory. A single timing report, hsfsys2.ti2, generated by hsfsys2 running 
across all 10 forms, is stored in the top-level directory data. All of these system output files were generated at NIST 
on a Sun SPARCstation 2 with a Weitek CPU upgrade.

The directory dict contains the dictionary file const.mfs listing in alphabetical order all the words present in 
the Preamble to the U.S. Constitution. The directory include holds all the header files that contain constants and data 
structure definitions required by the recognition system source code. The directory lib holds all locally compiled object 
code libraries used in compiling the distribution programs. The directory src contains all the source code files (exclud-
ing header files in the top-level directory include) provided with the recognition system distribution. The organization 
of src subdirectories is discussed in Section 2.3.

Documentation on this software test-bed is provided in the top-level directory doc. The file changes.txt lists 
all the source code modifications made to the software between the first and second releases. A significant number of 
PostScript reference documents are also contained in this directory. The PostScript file for this specific document is 
hsfsys2.ps. The remaining files in this directory form a bibliography of papers and reports published by NIST that are 
relevant to this software release. For example, the user’s guide for the first release of the software, NISTIR 5469 [1], 
is contained in the file bib_15.ps. NISTIR 5469 should be referenced for its algorithmic description of the original rec-
ognition system which in the new release is renamed hsfsys1 and contains only minor modifications. The installation 
and organizational notes included in bib_15.ps are made obsolete by the notes provided in this (the new release) user’s 
guide. The bibliography files are assigned file names according to the order of their publication date. The text file bib_-
lis.txt cross-references all the bibliography file names to their associated publication titles and full references. All but 
three of the bibliography files are PostScript documents ending with the extension ps. The files bib_05.tar and 
bib_13.tar were created with the UNIX tar command, and they contain multiple PostScript files. For example, the 
PostScript files contained in the file bib_05.tar can be extracted into the current working directory using the following 
command:

% tar xvf bib_05.tar

<installation directory>

bin data dict include lib src tmplt weightstraindoc man



8

The files bib_14.ps and bib_14.z contain the Second Census Optical Character Recognition Systems Conference report 
[19]. The first part is a PostScript file, whereas the second part is a UNIX compressed tar file. To extract the PostScript 
files archived in bib_14.z, use the following command. Warning, extracting these files requires a large amount of disk 
space.

% zcat < bib_14.z | tar xvf -

On-line documentation is also provided in the top-level directory man in the form of UNIX-style manual 
pages. These manual entries give instructions on running each of the programs provided in the test-bed. For example, 
assuming the installation directory is /usr/local/hsfsys2, one can bring up a manual page on the screen for the program 
mis2evt by typing the following command on a Sun workstation. Command options may vary on your particular sys-
tem.

% man -M /usr/local/hsfsys2/man mis2evt

The directory tmplt contains files pertaining to the processing of HSF forms. A blank HSF form is provided 
in both Latex and PostScript formats. The Latex file hsf_0.tex or the PostScript file hsf_0.ps can be printed, filled in, 
scanned at 12 pixels per millimeter (300 dpi), and then recognized by both recognition systems. The points used to 
register an HSF form in hsfsys1 are stored in the file hsfreg.pts. The coordinates used to register forms in hsfsys2 are 
stored in the file hsfgreg.pts. Hsfsys2 uses a generalized method of form registration that is automatically trained with 
the program trainreg. Points defining the location of each HSF entry field are stored in the file hsftmplt.pts. A registered 
blank HSF form image is stored in the file hsftmplt.pct, and a dilated version of this form used for form removal in 
hsfsys1 is stored in the file hsftmplt.d4.

A large sample of training data is provided in the top-level directory train. As mentioned earlier, there are 
252,124 segmented and labeled handprint characters contained in this directory. In all there are 179,829 images of 
handprint digits, 35,783 lowercase letters, and 36,512 uppercase letters. The handprint from 1499 different writers are 
represented in this set of character images, which is divided among three subdirectories hsf_4, hsf_6, and hsf_7. These 
subdirectories correspond directly to those distributed in SD19. The images of segmented characters are stored in the 
Multiple Image Set (MIS) file format [1]. Each MIS file ends with the extension mis. Those files beginning with d con-
tain data related to handprint digits, files beginning with l correspond to lowercase letters, and files beginning with u 
correspond to uppercase letters. The four digit number embedded in each file name is an index identifying the writer. 
For each MIS file in the training set, there is an associated classification file containing the identity of each character 
contained in the MIS file. These classification files end with the extension cls. The first line in a classification file con-
tains the number of character images contained in the corresponding MIS file. All subsequent lines store the identity 
(in hexadecimal ASCII representation) of each successive character image. MIS files containing images of lowercase 
letters have a second classification file associated with them that ends with the extension cus. These files store the iden-
tity of each lowercase letter as their corresponding uppercase equivalent. For example, an image of the lowercase char-
acter ‘k’ is stored in a cls file as 6b, whereas it is stored in a cus file as 4b (the hexadecimal ASCII representation for 
the uppercase character K). The labelling of lowercase letters as uppercase is used when classifying characters in the 
Preamble box.

The last top-level directory weights holds the files associated with feature extraction and character classifica-
tion. This directory is divided into two subdirectories. Subdirectory pnn contains files that support the PNN classifier 
used in hsfsys1, whereas the subdirectory mlp contains files that support the MLP classifier used in hsfsys2. The files 
under each of these two subdirectories are organized according to the types of fields found on an HSF form. Digit con-
tains files for numeric recognition, lower for lowercase recognition, upper for uppercase recognition, and const for Pre-
amble recognition. Within the weights/pnn subdirectories, files with the extension evt were generated by the program 
mis2evt and contain eigenvector basis functions used to compute Karhunen Loève (KL) coefficients. The pattern (or 
prototype) files with the extension pat contain training sets of KL prototype vectors and a search tree [20] used by the 
PNN classifier. Files with extension med in this subdirectory contain class-based median vectors computed from the 
prototypes stored in the corresponding pat file. Pattern and median vector files stored under pnn were computed by the 
program mis2pat1.
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The files in weights/pnn/digit: h6_d.evt, h6_d.pat, and h6_d.med were computed from 61,094 images of digits 
in train/hsf_6 and are used by hsfsys1 to compute features and classify segmented images of digits. The files in weights/
pnn/lower: h46_l.evt, h46_l.pat, and h46_l.med were computed from 24,205 lowercase images in both train/hsf_4 and 
train/hsf_6 and are used by hsfsys1 to compute features and classify lowercase characters. The files in weights/pnn/
upper: h46_u.evt, h46_u.pat, and h46_u.med were computed from 24,420 uppercase images in both train/hsf_4 and 
train/hsf_6 and are used by hsfsys1 to compute features and classify uppercase characters. The files in weights/pnn/
const: h46_ul.evt, h46_ul.pat, and h46_ul.med were computed from 48,625 images of both lower and uppercase in 
train/hsf_4 and train/hsf_6 and are used by hsfsys1 to compute features and classify characters for lower and uppercase 
combined. Two additional pairs of evt, pat, and med files are provided so that computers with limited memory of at 
least 8 Megabytes are able to execute all options of hsfsys1. The files in weights/pnn/const: h6_ul_s.evt, h6_ul_s.pat, 
and h6_ul_s.med were computed from 24,684 images of both lower and uppercase only in train/hsf_6, whereas in 
weights/pnn/digit: h6_d_s.evt, h6_d_s.pat, and h6_d_s.med were computed from 21,293 images of digits in train/
hsf_6. In general, the recognition accuracy of the PNN classifier decreases as the number of prototypes is decreased. 
Therefore, the larger pattern files should be used when possible.

Unlike the PNN classifier, the MLP classifier requires extensive off-line training, and this is performed by the 
program mlp. The MLP classifier also uses KL feature vectors, but in a different file format than is used by PNN. The 
program mis2evt is used to compute eigenvector basis functions, and mis2pat2 is used to generate pattern files for use 
with the program mlp. Within the weights/mlp subdirectories, eigenvectors are stored in files with extension evt, pattern 
files with extension pat, and output weights files from the program mlp are stored with extension wts. The same set of 
writers and characters was used to train the MLP classifier (on digits, lowercase, uppercase, and mixed case for the 
Preamble box) that were used to generate the patterns files for the PNN. An additional set of 500 writers contained in 
train/hsf_7 was used as an evaluation set during the off-line training of the MLP. Appendix A describes how the pro-
gram mlp was used to generate the provided weights files.

2.3 Source Code Subdirectory

The organization of subdirectories under the top-level directory src is illustrated in Figure 3. The subdirectory 
src/bin contains all program main routines. Included in this directory is a catalog.txt file providing a short description 
of each program provided in the test-bed. In this distribution there are seven programs and therefore seven subdirec-
tories in src/bin: mis2evt, mis2pat1, hsfsys1, mis2pat2, mlp, trainreg, and hsfsys2. The program mis2evt takes MIS files 
of segmented character images and computes eigenvectors from the collection; mis2pat1 generates a patterns file and 
median vector file for use with the PNN classifier; hsfsys1 is an updated version of the recognition system distributed 
in the first software release; mis2pat2 generates patterns files to be used in training the MLP classifier; mlp is the off-
line training program that computes weights for the new MLP classifier; trainreg trains the generalized form registra-
tion module (used in the new recognition system) on new types of forms; and the last program, hsfsys2, is the new 
recognition system that contains the latest technology from our laboratory and performs significantly better than its 
older counterpart. Each of these program directories contains a C source code file containing the program’s main rou-
tine (designated with the extension c) and a number of different architecture-dependent compilation scripts used by the 
UNIX make utility (designated with the root file name makefile). The use of the make utility is discussed in Section 
2.4. Upon successful compilation, the directories under src/bin will contain compiled object files and a development 
copy of each program’s executable file. Production copies of these programs are automatically installed in the top-level 
directory bin.
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Figure 3. Directory hierarchy under the top-level directory src.

The subdirectory src/lib contains the source code for all the recognition system’s supporting libraries. This 
distribution has 15 libraries each represented as a subdirectory under src/lib. Each library contains a suite of C source 
code files designated with the extension c and a set of different architecture-dependent compilation scripts designated 
with the root file name makefile. Also included in each library subdirectory is a catalog.txt file providing a short 
description of each routine contained in that specific library. Upon successful compilation, each library subdirectory 
under src/lib will contain compiled object files (with file extension o) and a development copy of each library’s archive 
file (with file extension a). Production copies of the library archive files are automatically installed in the top-level 
directory lib.

The adseg subdirectory contains routines that support the adaptive segmentation method [7] used by hsfsys2; 
dict contains routines responsible for dictionary manipulation and matching [17], fet is responsible for manipulating 
Feature (FET) structures and files; and hblas contains several basic linear algebra subroutines (blas). If the user’s com-
puter system already has a “real” blas library installed, it may be more efficient to compile the test-bed programs by 
linking the system’s library in place of the one provided. The hsf library is responsible for form processing with respect 
to HSF forms, ihead contains routines for manipulating IHead structures and files, image contains general image 
manipulation and processing routines; the mfs library is responsible for manipulating Multiple Feature Set (MFS) 
structures and files; mis library is responsible for manipulating Multiple Image Set (MIS) structures and files; the mlp 
library holds all the supporting routines for the new MLP classifier [8]; nn contains general feature extraction [14] and 
neural network routines including the PNN classifier [1]; phrase holds routines responsible for processing the seg-
mented text from paragraph fields like the Preamble box on HSF forms [6]; rmline holds routines that conduct intelli-
gent line removal from forms while preserving character stroke information [5]; the stats subdirectory contains general 
statistics routines; and lastly, util contains a collection of miscellaneous routines.

2.4 Automated Compilation Utility

Before compiling the standard reference software test-bed, the full path name to the top-level directory bin in 
the installation directory must be added to your shell’s executable search path. For example, if the distribution is 
installed in /usr/local/hsfsys2, your search path should be augmented to include /usr/local/hsfsys2/bin. It may also be 
necessary to edit the path names contained in a number of files as discussed in Section 2.1.

Compilation of the software in the test-bed is controlled through a system of hierarchical compilation scripts 
used by the UNIX make utility. Each one of these scripts is contained in a file with the root name makefile. This auto-
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mated compilation system is responsible for installing all architecture-dependent source code files and compilation 
scripts, removing all compiled object files and development copies of libraries and programs, automatically generating 
source code dependency lists, and installing production versions of libraries and programs. One makefile.mak file 
exists in the top-level installation directory, and one makefile.mak file exists in each of the src, src/bin, and src/lib sub-
directories. These compilation scripts are architecture independent and contain Bourne shell commands.

This standard reference software test-bed has been successfully ported and tested on the various UNIX com-
puters listed in Table 2. There are numerous differences between these different computers and their operating systems. 
Common discrepancies include differences in the syntax of compilation scripts and their built-in macro definitions; 
some operating systems require manually building the symbol table in archived library files, while other systems 
update these symbol tables automatically; every one of these operating systems has an install command, but each 
requires its own special set of arguments; each manufacturer’s compilers has different options and switches for con-
trolling language syntax and optimization; and so on. To account for these variations, there are architecture-dependent 
compilation scripts provided for each program and library in the distribution. These compilation scripts have the root 
file name makefile and end with an extension identifying their corresponding architecture. The right column in Table 
2 lists the set of extensions used to identity architecture groups for the computers and operating systems tested.

Table 2. Machines tested and their identifying file extensions.

There are also a number of architecture-dependent source code files provided in the distribution. These files 
share the same root file name and end with an architecture-identifying extension consistent with those used for com-
pilation scripts. There are architecture-dependent source code files provided to support DEC-like machines that use an 
Intel-based byte order to represent unformatted binary data. All unformatted binary data files provided in this distribu-
tion were created on machines using the Motorola-based byte order. When these files are read by a machine using a 
different byte order, the bytes must be swapped before the data can be used. The overhead of swapping the bytes in 
these data files can be avoided by regenerating them with locally compiled versions of mis2evt, mis2pat1, and mis2pat2 
on your computer. The libraries in src/lib contain the following architecture-dependent source code files: image/byte2-
bit.{osf, sun}, nn/basis_io.{osf,sun}, nn/pat_io.{osf,sun}, nn/kd_io.{osf,sun}, util/ticks.{osf,sun}, mlp/getpat.{osf,sun}, 
and mlp/rd_words.{osf,sun}.

 It was stated earlier that the automated compilation system is responsible for installing all architecture-depen-
dent source code files and compilation scripts, removing all compiled object files and development copies of libraries 
and programs, automatically generating source code dependency lists, and installing production versions of libraries 
and programs. These tasks are initiated by invoking the make command at the top-level installation directory. All sub-
sequent lower-level makefile.mak scripts are invoked automatically in a prescribed order, and the 39,000 lines of source 
code are automatically maintained and object files and executables are kept up to date. The make command can be 
invoked from the location of any lower-level makefile.mak file to isolate specific portions of the source code for recom-
pilation. However, the details of doing this are slightly involved and left to the installer to pursue on his own.

The NIST recognition software test-bed is entirely coded in C. Assuming the installation directory is /usr/
local/hsfsys2, the following steps are required to compile the distribution for the first time on your UNIX computer:
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% cd /usr/local/hsfsys2
% make -f makefile.mak instarch INSTARCH=<arch>
% make -f makefile.mak bare
% make -f makefile.mak depend
% make -f makefile.mak install

The first make invocation uses the instarch option to install architecture-dependent files required to support 
the compilation and execution of the distribution’s programs and libraries. The actual architecture is defined by replac-
ing the argument <arch> with one of the extensions listed in Table 2. For example, “INSTARCH=sun” must be used 
to compile the distribution on computers running SunOS 4.1.X. If you are installing this software on a machine not 
listed in Table 2, you first need to determine which set of architecture-dependent files is most similar to those required 
by your particular computer. Invoke make using the instarch option with INSTARCH set to the closest known archi-
tecture. Then, edit the resulting makefile.mak files in the subdirectories under src/bin and src/lib according to the 
requirements of your machine. One other hint, if you are compiling on a Solaris (SunOS 5.X) machine using the par-
allel make utility, you may have to add a “-R” option prior to the “-f” option for each of the make invocations.

The bare option causes the compilation scripts to remove all temporary, backup, core, and object files from 
the program directories in src/bin and the library directories in src/lib. The depend option causes the compilation 
scripts to automatically generate source code dependency lists and modify the makefile.mak files within the program 
and library directories. Your C compiler may not have this capability, in which case you may want to generate the 
dependency lists by hand. The install option builds source code dependency lists as needed, compiles all program and 
library source code files, and installs compiled libraries and programs into their corresponding production directories. 
Compiled libraries are installed in the top-level directory lib, while compiled programs are installed in the top-level 
directory bin.

One other capability, the automatic generation of catalog files, has been incorporated into the hierarchical 
compilation scripts. A formatted comment header is included at the top of every program and library source code file 
in the software test-bed. When the install option is used, the low-level makefile.mak files invoke the C-shell script bin/
catalog.csh. The script catalog.csh extracts all source code headers associated with all the programs or a specific 
library in the distribution and compiles a catalog.txt file. A catalog.txt file exists in the subdirectory src/bin, and one 
catalog.txt file exists in each of the library directories in src/lib. This provides a convenient and quick reference to the 
source code provided in the distribution.
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3. INVOKING TEST-BED PROGRAMS

This section describes how the programs distributed with this software release (with the exception of mlp) are 
invoked and how they were used to generate the supporting data files provided in the test-bed. The invocation of the 
off-line neural network training program mlp is much more involved, and it can be used for pattern recognition prob-
lems other than character classification. Therefore, its description is provided separately in Appendix A. On-line doc-
umentation is provided for each of these programs in the form of UNIX-style manual pages under the top-level 
directory man.

3.1 mis2evt - computing eigenvector basis functions

Both of the NIST standard reference recognition systems, hsfsys1 and hsfsys2, use the Karhunen Loève (KL) 
transform to extract features for classifying segmented character images. This transform is obtained by projecting a 
character image onto eigenvectors of the covariance computed from a set of training images. The mathematical details 
of the KL transform are provided in Reference [14].

The eigenvectors are computed off-line and stored in a basis function file because computing them from a 
large covariance matrix is very expensive. The recognition systems read the basis function file during their initializa-
tion, and then reuse the eigenvectors across all the character images segmented from fields of a specified type (digit, 
lowercase, uppercase, or Preamble box). The program mis2evt compiles a covariance matrix and then computes its 
eigenvectors from a set of segmented character images and generates a basis function file. The program’s main routine 
is located in the distribution directory src/bin/mis2evt. The command line usage of mis2evt is as follows:

% mis2evt
Usage: mis2evt:

-n for 128×128 input, write normed+sheared 32×32 intermediate MIS files
-v be verbose - notify completion of each misfile
<nrequiredevts> <evtfile> <mfs_of_misfiles>

Arguments:

• The first argument nrequiredevts specifies the number of eigenvectors to be written to the output file. It is 
also the number of KL features that will ultimately be extracted from each binary image using the associated 
utilities mis2pat1 and mis2pat2. This integer determines the dimensionality of the feature vectors that are 
produced for classification. Its upper bound is the image dimensionality (which is 32×32 = 1024). Typically, 
this argument is specified to be much smaller than 1024 because the KL transform optimally compacts the 
representation of the image data into its first few coefficients (features). Hsfsys1 uses a value of 64, while 
hsfsys2 uses 128. Reference [22] documents an investigation of the dependency of classification error on 
feature vector dimensionality.

• The second argument evtfile specifies the name of the output basis function file. The format of this file is 
documented by the routine write_basis() found in src/lib/nn/basis_io.c.

• The third argument mfs_of_misfiles specifies a text file that lists the names of all the MIS files containing 
images that will be used to calculate the covariance matrix. This argument is an MFS file with the first line 
containing an integer indicating the number of MIS files that follow. The remaining lines in the MFS file 
contain MIS file names, one name per line. The format of an MFS file is documented by the routine write-
mfsfile() found in src/lib/mfs/writemfs.c.

Options:

• The option “-n” specifies the storing of intermediate normalized character images. Mis2evt can process 
binary images that are either (128×128) or (32×32). In the case of the former, the program invokes a size 
normalization utility to produce 32×32 images and then applies a shear transformation to reduce slant vari-
ations. If the input images are already 32×32, this flag has no effect. If normalization does occur, the result-
ing normalized images are stored to MIS files having the same name as those listed in the MFS file, with the 
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additional extension 32 appended. These intermediate files offer computational gains because usually the 
same images are used with mis2pat1 and mis2pat2.

• The option “-v” produces messages to standard output signifying the completion of each MIS file and other 
computation steps.

This program is computationally expensive and may require as long as 60 minutes to compute the eigenvec-
tors for a large set (50,000 characters) of images. The program mis2evt was used to generate the basis function files 
provided with this distribution in the top-level directory weights and ending with the extension evt. These files contain 
eigenvectors computed from the images provided in the top-level directory train. The MFS files used as arguments to 
mis2evt are also provided in weights and end with the extension ml. For example, the basis function file weights/pnn/
lower/h46_l.evt was generated with the following command:

% mis2evt -v 64 h46_l.evt h46_l.ml

The basis function file weights/mlp/digit/h6_d.evt was generated with the following command:

% mis2evt -v 128 h6_d.evt h6_d.ml
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3.2 mis2pat1 - generating patterns for the PNN classifier

Mis2pat1 is algorithmically equivalent to the program mis2pat distributed with the first software release. It 
takes a set of training images along with the eigenvectors generated by mis2evt and computes feature vectors using the 
KL transform that can be used as prototypes for training the PNN classifier used in hsfsys1. Typically, the same images 
used to compute the eigenvectors are used here to generate prototype vectors. The program mis2pat1 also builds a kd-
tree as described in Reference [20]. The prototypes along with their class assignments and kd-tree are stored in one 
patterns file, while median vectors computed from the prototype vectors are stored in a separate median vector file. 
Note that all FORTRAN dependencies have been removed from this release. In doing so, the format of the patterns file 
generated by mis2pat1 has changed from that generated by the original program mis2pat. The main routine for mis2-
pat1 is located in src/bin/mis2pat1. The command line usage of mis2pat1 is as follows:

% mis2pat1
Usage: mis2pat1:

-h accept hexadecimal class files
-n with 128×128 images, write normed+sheared 32×32 intermediate MIS files
-v be verbose - notify completion of each misfile
<classset> <evtfile> <outroot> <mfs_of_clsfiles> <mfs_of_misfiles>

Arguments:

• The first argument classset specifies the name of a text file (MFS file) containing the labels assigned to each 
class. The integer on the first line of the file indicates the number of classes following, and the remaining 
lines contains one class label per line. For example, a digit classifier uses ten classes labeled 0 through 9. 
The format of an MFS file is documented by the routine writemfsfile() found in src/lib/mfs/writemfs.c.

• The second argument evtfile specifies the basis function file containing eigenvectors computed by mis2evt. 
The number of features in each output vector is determined by the number of eigenvectors in this file. The 
format of this file is documented by the routine write_basis() found in src/lib/nn/basis_io.c.

• The third argument outroot specifies the root file name of the output pattern and median vector files. The 
name of the output pattern file has extension pat while the median vector file has extension med. The format 
of the patterns/kd_tree file is documented by the routine kdtreewrite() in src/lib/nn/kd_io.c whereas the 
median vector file format is documented by the routine writemedianfile() in src/lib/nn/med_io.c.

• The final arguments are the names of text files (MFS files) that contain listings of file names. The argument 
mfs_of_clsfiles lists file names containing class assignments corresponding to the images in the MIS files 
listed in the argument mfs_of_misfiles. Each class assignment file must have the same number of class 
assignments as there are images in its corresponding MIS file, and the classes assigned must be consistent 
with those listed in the argument classset.

Options:

• The option “-h” specifies that the class labels listed in the classset file are to be converted to ASCII charac-
ters values represented in hexadecimal. All the class assignments in the files listed in the argument mfs_of_-
clsfiles use the convention where [30-39] represent digits, [41-5a] represent uppercase, and [61-7a] 
represent lowercase. If the classset file contains alphabetic representations such as [0-9], [A-Z], and [a-z], 
then this flag must be used to effect conversion of these labels to their hexadecimal equivalents.

• The option “-n” specifies the storing of intermediate normalized character images. Mis2pat1 can process 
binary images that are either (128×128) or (32×32). In the case of the former, the program invokes size and 
slant normalization utilities to produce 32×32 images. If the input images are already 32×32, this flag has 
no effect. If normalization does occur, the resulting normalized images are stored to MIS files having the 
same name as those listed in mfs_of_misfiles, with the extension 32 appended.

• The option “-v” produces messages to standard output signifying the completion of each MIS file.
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This program was used to generate the patterns files provided with this distribution in the directory weights/
pnn and ending with the extension pat and median vector files ending with extension med. The patterns files contain 
KL feature vectors, their associated classes, and a kd-tree in its new format as documented by the routine kdtreewrite() 
found in src/lib/nn/kd_io.c. The feature vectors were computed using the eigenvectors found in the same directory and 
from the images provided in the top-level directory train. The MFS files used as arguments to mis2pat1 are also pro-
vided in the weights/pnn subdirectories, as are the classset files which end with the extension set. The class assignment 
files are listed in files ending with the extension cl, whereas the MIS files are listed in files ending with the extension 
ml. For example, the patterns file weights/pnn/lower/h46_l.pat and median vector file weights/pnn/lower/h46_l.med 
were generated with the following command:

% mis2pat1 -vh l.set h46_l.evt h46_l h46_l.cl h46_l.ml
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3.3 hsfsys1 - running the updated version of the original NIST system

Hsfsys1 is an updated version of the NIST recognition system distributed in the first release of the software. 
This system is designed to read the handwriting entered on HSF forms like those included in the top-level directory 
data. The most significant changes to this system include more efficient memory usage (improving recognition speed), 
and all dependencies on FORTRAN-coded subroutines have been removed. A detailed description of the algorithms 
used in this system is provided in the original user’s guide (NISTIR 5469) [1].

 The recognition system is run in batch mode with image file inputs and ASCII text file outputs, and the system 
contains no Graphical User Interface. The command line usage of hsfsys1 is as follows:

% hsfsys1
Usage:

hsfsys1 [options] <hsf file> <output root>
-d process digit fields
-l process lowercase fields
-u process uppercase fields
-c nodict process Constitution field without dictionary
-c dict process Constitution field using dictionary
-m small memory mode
-s silent mode
-v verbose mode
-t compute and report timings

The command line arguments for hsfsys1 are organized into option specifications, followed by an input file 
name specification, and an output (root) file name specification. The options can be subgrouped into three categories 
(field type options, memory control options, and message control options).

Field type options:

-d designates the processing of the digit fields on an HSF form.

-l designates the processing of the lowercase field on an HSF form.

-u designates the processing of the uppercase field on an HSF form.

-c designates the processing of the Constitution field on an HSF form. This option requires an argument. 
If the argument nodict is specified, then no dictionary-based postprocessing is performed and the raw 
character classifications and associated confidence values are reported. If the argument dict is speci-
fied, then dictionary-based postprocessing is performed and matched words from the dictionary are 
reported without any confidence values.

The options -dluc can be used in any combination. For example, use only the -l option to process the lower-
case field, or use only the -d option to process all of the digit fields. If processing both lowercase and upper-
case fields, then specify both options -l and -u (or an equivalent syntax -lu). The system processes all of the 
fields on the form if no field type options are specified, and dictionary-based postprocessing is performed on 
the Constitution field by default.

Memory control options:

-m specifies the use of alternative prototype files for classification that have fewer training patterns, so that 
machines with limited main memory may be able to completely process all the fields on an HSF form. 
In general, decreasing the number of training prototypes reduces the accuracy of the recognition sys-
tem’s classifier. It is recommended that this option be used only if necessary.

Message control options:
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-s specifies that the silent mode is to be used and all messages sent to standard output and standard error 
are suppressed except upon the detection of a fatal internal error. Silent mode facilitates silent batch 
processing and overrides the verbose mode option. By default, the system posts its recognition results 
to standard output as each field is processed.

-v specifies that the verbose mode is to be used so that messages providing a functional trace through the 
system are printed to standard error.

-t specifies that timing data is to be collected on system functions and reported to a timing file upon sys-
tem completion.

File name specifications:

<hsf file> specifies the binary HSF image in IHead format that is to be read by the system. The IHead 
file format is documented by the routine ReadBinaryRaster() found in src/lib/image/rea-
drast.c.

<output root> the root file name that is to be appended to the front of each output file generated by the 
system. Upon completion, the system will create a hypothesis file with the extension hyp 
and a confidence file with the extension con. If the -t option is specified, a timing file with 
the extension tim will also be created. These text files can be manipulated as FET files, the 
format of which is documented by the routine writefetfile() in src/lib/fet/writefet.c.

For example, to run the system in verbose mode on all the HSF fields on the form in data/f0000_14 and store 
the system results in the same location with the same root name as the form, the following commands are equivalent 
(assuming the installation directory is /usr/local/hsfsys2). In each case, the files f0000_14.hyp and f0000_14.con will 
be created by the system in the directory /usr/local/hsfsys2/data/f0000_14.

% hsfsys1 -v /usr/local/hsfsys2/data/f0000_14/f0000_14.pct /usr/local/hsfsys2/data/f0000_14/f0000_14
% hsfsys1 -v /usr/local/hsfsys2/data/f0000_14/f0000_14{.pct,}
% (cd /usr/local/hsfsys2/data/f0000_14; hsfsys1 -v f0000_14.pct f0000_14)

To run the system in silent mode on only the digit and uppercase fields on the same form with results including 
timing data all stored in /tmp with the root name foo, the following command can be used.

% hsfsys1 -stdu /usr/local/hsfsys2/data/f0000_14/f0000_14.pct /tmp/foo

 In this example, the files created by the system will be /tmp/foo.hyp, /tmp/foo.con, and /tmp/foo.tim.

The program hsfsys1 was used to generate the files with extension hy1, co1, and ti1 located within the form 
subdirectories under the top-level directory data.
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3.4 mis2pat2 - generating patterns for training the MLP classifier

Mis2pat2 takes a set of training images along with the eigenvectors generated by mis2evt and computes fea-
ture vectors using the KL transform that can be used as prototypes for training the MLP classifier used in hsfsys2. Typ-
ically, the same images used to compute the eigenvectors are used here to generate prototype vectors. The prototypes 
along with their class assignments are stored in a patterns file that is of a different format than those generated by mis2-
pat1. The format of the patterns file created by mis2pat2 is documented in the routine write_bin_patterns() found in 
src/lib/nn/pat_io.c. The program’s main routine is located in src/bin/mis2pat2. The command line usage of mis2pat2 
is as follows:

% mis2pat2
Usage: mis2pat2:

-h accept hexadecimal class files
-n with 128×128 images write normed+sheared 32×32 intermediate MIS files
-v be verbose - notify completion of each misfile
<classset> <evtfile> <outfile> <mfs_of_clsfiles> <mfs_of_misfiles>

Arguments:

• The first argument classset specifies the name of a text file (MFS file) containing the labels assigned to each 
class. The integer on the first line of the file indicates the number of classes following, and the remaining 
lines contains one class label per line. For example, a digit classifier uses ten classes labeled 0 through 9. 
The format of an MFS file is documented by the routine writemfsfile() found in src/lib/mfs/writemfs.c.

• The second argument evtfile specifies the basis function file containing eigenvectors computed by mis2evt. 
The number of features in each output vector is determined by the number of eigenvectors in this file. The 
format of this file is documented by the routine write_basis() found in src/lib/nn/basis_io.c.

• The third argument outfile specifies the file name of the output patterns file. The format of this patterns file 
is documented by the routine write_bin_patterns() in src/lib/nn/pat_io.c.

• The final arguments are the names of text files (MFS files) that contain listings of file names. The argument 
mfs_of_clsfiles lists file names containing class assignments corresponding to the images in the MIS files 
listed in the argument mfs_of_misfiles. Each class assignment file must have the same number of class 
assignments as there are images in its corresponding MIS file, and the classes assigned must be consistent 
with those listed in the argument classset.

Options:

• The option “-h” specifies that the class labels listed in the classset file are to be converted to ASCII charac-
ters values represented in hexadecimal. All the class assignments in the files listed in the argument mfs_of_-
clsfiles use the convention where [30-39] represent digits, [41-5a] represent uppercase, and [61-7a] 
represent lowercase. If the classset file contains alphabetic representations such as [0-9], [A-Z], and [a-z], 
then this flag must be used to effect conversion of these labels to their hexadecimal equivalents.

• The option “-n” specifies the storing of intermediate normalized character images. Mis2pat2 can process 
binary images that are either (128×128) or (32×32). In the case of the former, the program invokes size and 
slant normalization utilities to produce 32×32 images. If the input images are already 32×32, this flag has 
no effect. If normalization does occur, the resulting normalized images are stored to MIS files having the 
same name as those listed in mfs_of_misfiles, with the extension 32 appended.

• The option “-v” produces messages to standard output signifying the completion of each MIS file.

This program was used to generate the patterns files provided with this distribution in the directory weights/
mlp and ending with the extension pat. These patterns files contain KL feature vectors along with their associated 
classes. The feature vectors were computed using the eigenvectors found in the same directory and from the images 
provided in the top-level directory train. The MFS files used as arguments to mis2pat2 are also provided in the weights/
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mlp subdirectories, as are the classset files which end with the extension set. The class assignment files are listed in 
files ending with the extension cl, whereas the MIS files are listed in files ending with the extension ml. For example, 
the patterns file weights/mlp/lower/h46_l.pat was generated with the following command:

% mis2pat2 -vh l.set h46_l.evt h46_l.pat h46_l.cl h46_l.ml
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3.5 trainreg - training to register a new form

The new recognition system, hsfsys2, uses a generalized method of form registration described in Reference 
[4]. The technique locates the most dominant left and right, top and bottom lines on the form image and then transforms 
the image so that these form structures are positioned at registered coordinates. To accomplish this, dominant lines on 
a new form must be determined and the coordinates of their registered position must be measured and stored. The pro-
gram trainreg does this automatically, storing the resulting x-coordinates of the left and right-most dominant lines on 
the form and the y-coordinates of the top and bottom-most dominant lines on the form. The program’s main routine is 
located in the distribution directory src/bin/trainreg, and its main supporting subroutine is found in src/lib/hsf/reg-
form.c. The command line usage of trainreg is as follows:

% trainreg <form_image> <out_points>

• The first argument form_image specifies the name of the input file containing the image of the new form. 
This image must be in the binary (black and white) IHead file format which is documented in Reference [1] 
and by the routine ReadBinaryRaster() found in src/lib/image/readrast.c.

• The second argument out_points specifies the name of the output file to hold the coordinate positions of the 
detected dominant lines in the image. This is an MFS file, the format of which is documented by the routine 
writemfsfile() found in src/lib/mfs/writemfs.c.

This program was used to generate the file tmplt/hsfgreg.pts, which is used by hsfsys2 to register input HSF 
forms. This file was created with the following command:

% trainreg hsftmplt.pct hsfgreg.pts



22

3.6 hsfsys2 - running the new NIST recognition system

The new recognition system, hsfsys2, contains significant technical improvements over its predecessor, hsf-
sys1. It uses new methods of generalized form registration [4], intelligent form removal [5], line isolation within hand-
printed paragraphs [6], adaptive character segmentation [7], a new robust MLP-based classifier [8], among other 
improved techniques which are described in Section 4. Hsfsys2 is designed to read the handwriting entered on HSF 
forms like those included in the top-level installation directory data, and it is capable of reading every HSF form 
included in SD19.

 The recognition system is run in batch mode with image file inputs and ASCII text file outputs, and the system 
contains no Graphical User Interface. The command line usage of hsfsys2 is as follows:

% hsfsys2
Usage:

hsfsys2 [options] <list file>
-d process digit fields
-l process lowercase fields
-u process uppercase fields
-c nodict process Constitution field without dictionary
-c dict process Constitution field using dictionary
-s silent mode
-v verbose mode
-t <time file> compute and report timings

The command line arguments for hsfsys2 are organized into option specifications and a file containing multi-
ple pairs of input file name and output (root) file name specifications. The options can be subgrouped into two general 
types (field type options and message control options).

Field type options:

-d designates the processing of the digit fields on an HSF form.

-l designates the processing of the lowercase field on an HSF form.

-u designates the processing of the uppercase field on an HSF form.

-c designates the processing of the Constitution field on an HSF form. This option requires an argument. 
If the argument nodict is specified, then no dictionary-based postprocessing is performed and the raw 
character classifications and associated confidence values are reported. If the argument dict is speci-
fied, then dictionary-based postprocessing is performed and matched words from the dictionary are 
reported without any confidence values.

The options -dluc can be used in any combination. For example, use only the -l option to process the lower-
case field, or use only the -d option to process all of the digit fields. If processing both lowercase and upper-
case fields, then specify both options -l and -u (or an equivalent syntax -lu). The system processes all of the 
fields on the form if no field type options are specified, and dictionary-based postprocessing is performed on 
the Constitution field by default.

Message control options:

-s specifies that the silent mode is to be used and all messages sent to standard output and standard error 
are suppressed except upon the detection of a fatal internal error. Silent mode facilitates silent batch 
processing and overrides the verbose mode option. By default, the system posts its recognition results 
to standard output as each field is processed.
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-v specifies that the verbose mode is to be used so that messages providing a functional trace through the 
system are printed to standard error.

-t <time file> specifies that timing data is to be collected on system functions and reported to the specified 
timing file upon system completion.

File name specification:

<list file> is a two column ASCII file. The first column lists all the binary HSF images in IHead format 
that are to be read by the system in the current batch. The IHead file format is documented 
by the routine ReadBinaryRaster() found in src/lib/image/readrast.c. Along with each 
input image file is a second argument that specifies the root file name to be appended to the 
front of each output file generated by the system when processing the corresponding form 
image. An example of a list file is found in data/hsfsys2.lis. Upon completion of each form, 
the system will create a hypothesis file with extension hyp and a confidence file with exten-
sion con. These output text files can be manipulated as FET files, the format of which is 
documented by the routine writefetfile() in src/lib/fet/writefet.c.

Assuming the installation directory is /usr/local/hsfsys2, the following commands can be used to run the new 
system in verbose mode on all the fields on all the HSF forms in data.

% cd /usr/local/hsfsys2/data
% hsfsys2 -v -t hsfsys2.tim hsfsys2.lis

The program hsfsys2 was used to generate the timing file hsfsys2.ti2 and the output files with extension hy2 
and co2 located under the top-level directory data.
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4. ALGORITHMIC OVERVIEW OF NEW SYSTEM HSFSYS2

Reference [2] describes the complexities of integrating various technology components into a successful 
OCR system. Very little can be found in the literature published on the internal workings of complete systems. Granted, 
many of the technologies required for successful OCR have been researched and results have been published, but these 
components are typically tested in isolation and their impact on overall recognition is not measured. Also, many of the 
algorithms implemented in an end-to-end system are proprietary. Companies disclose research results on pieces of their 
recognition systems, but no current publications can be found that disclose the details of a completely operational sys-
tem.

In contrast, NIST has developed a completely open recognition software test-bed for which the components 
are fully disclosed, and in fact, the source code is publicly available. This software provides a baseline of performance 
with which new and promising technologies can be compared and evaluated. This section describes the application for 
which the new system, hsfsys2, was designed and provides a high-level description of the algorithms used in each of 
the system’s major components. An algorithmic overview of the updated original recognition system, hsfsys1, can be 
found in Reference [1].

4.1 The Application

It was already noted that the successful application of OCR technology requires more than off-the-shelf sys-
tem integration. State-of-the-art solutions require customization and tuning to the problem at hand. This being true, an 
operational system is largely defined by the details of the application it is to solve.

The NIST system is designed to read the handprinted characters written on Handwriting Sample Forms 
(HSF). An example image of a completed HSF form is displayed in Figure 1 on page 4. This form was designed to 
collect a large sample of handwriting to support handprint recognition research. A CD-ROM named NIST Special 
Database 19 (SD19), containing 3669 completed forms, each filled in by a unique writer, and scanned binary at 11.8 
pixels per millimeter (300 pixels per inch), is publicly available [3]. This data set also contains over 800,000 segmented 
and labeled characters images from these forms. There are 10 completed HSF forms provided with this software test-
bed. In addition, there is one blank form provided both in Latex and PostScript formats that can be printed, filled in, 
scanned, and then recognized. For additional HSF forms, SD19 may be purchased by contacting:

Standard Reference Data Program
National Institute of Standards and Technology
NIST North (820), Room 113
Gaithersburg, MD 20899
voice: (301) 975-2208
FAX: (301) 926-0416
email: srdata@enh.nist.gov

The new NIST system is designed to read all but the top line of fields on the form. The system processes the 
28 digit fields and the randomly ordered lowercase and uppercase alphabet fields along with the handprinted paragraph 
of the Preamble to the U.S. Constitution at the bottom of the form.

4.2 System Components

Figure 4 contains a diagram that illustrates the organization of the functional components within the new sys-
tem hsfsys2. Generally speaking, each one of these components has many possible algorithmic solutions. Therefore, 
the new system is designed in a modular fashion so that different methods can be evaluated and compared within the 
context of an end-to-end system. This section provides a brief description of the most recent techniques developed by 
NIST for each of these tasks. Listed with each component subheading is a path name followed by a subroutine 
name.These listings are provided to guide the reader to specific areas of the software test-bed for further study and 
investigation.
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Figure 4. Organization of the functional components within the new recognition system.

4.2.1 Batch Initialization; src/lib/hsf/run.c; init_run()

The new system is a non-interactive batch processing system designed to process one or more images of com-
pleted HSF forms with each invocation. The first step loads all the precomputed items required to process a particular 
type of form (in this case HSF forms). These items include a list of the image files to be processed in a batch, proto-
typical coordinate locations of dominant form structures used for form registration, a spatial template containing the 
prototypical coordinate location of each field on the form, basis functions used for feature extraction, neural network 
weights for classification, and dictionaries for spelling correction. There are four types of fields on the HSF form: 
numeric, lowercase, uppercase, and the Preamble paragraph. Each type of field requires a separate set of basis func-
tions and neural network weights. Only the Preamble paragraph has a dictionary available. The use of these items will 
be explained in more detail later.
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Because the new system only processes HSF forms, form identification is not utilized. Form identification can 
be avoided for any application when it is economically feasible to sort forms (whether automatically or manually) into 
homogeneous batches. Unfortunately, this is not practical for all applications.

4.2.2 Load Form Image; src/lib/image/readrast.c; ReadBinaryRaster()

The new system is strictly an off-line recognition system, meaning that the time at which images are scanned 
is independent from when recognition takes place. This is typical of large-scale OCR applications where operators 
work in shifts running high-speed scanners that archive images of forms to mass-storage devices for later batch con-
version. For each form in the batch, the new system reads a CCITT Group 4 compressed binary raster image from a 
file on disk, decompresses the image in software, and passes the bitmap along with its attributes on to subsequent com-
ponents.

4.2.3 Register Form Image; src/lib/hsf/regform.c; genregform8()

A considerable amount of image processing must take place in order to reliably isolate the handprint on a 
form. The form must be registered or aligned so that fields in the image correspond with the prototypical template of 
fields (or zones). The new system uses a generalized method of form registration that automatically estimates the 
amount of rotation and translation in the image without any detailed knowledge of the form [4].

To measure rotational distortion, a technique similar to the one invented by Postl is used [21]. This technique 
traces parallel rays across the image accumulating the number of black pixels along each ray using a non-linear func-
tion. A range of ray angles are sampled, and the angle producing the maximum response is used to estimate the rota-
tional skew. The image is rotated based on this estimate, and it is then analyzed to detect any translational distortion. 
This step capitalizes on the fact that most forms contain a fixed configuration of vertical and horizontal lines. Once the 
rotational skew is removed, these lines correspond well with the raster grid of the image. A run-based histogram is 
computed to detect the top and bottom, left and right, dominant lines in the image.

For example, to locate the top and bottom-most dominant lines, the horizontal runs in the image are computed. 
The n-longest runs (in the new system, n=3) on each scanline of the image are accumulated into a histogram bin. These 
bins are then analyzed for relative maxima as described in Reference [4]. The accumulation of the n-longest runs effec-
tively suppresses regions of the form containing handwriting and noise, and accentuates the lines on the form. The 
same analysis is conducted on vertically-oriented runs to locate the left and right-most dominant lines. Given the loca-
tions of these lines, translation estimates in x and y are computed with respect to the coordinates of prototypical lines, 
and the image is translated accordingly. At this point, fields in the image correspond to the coordinates of the proto-
typical spatial template.

By using this general registration technique, new form types can be trained automatically. A prototypical form 
is scanned, its rotational distortion is automatically measured and removed, and the position of the detected dominant 
lines are stored for future registrations. The results of registering 500 HSF forms is shown in Figure 5. The image dis-
played is the result of logically ORing corresponding pixels across a set of 500 registered images. Notice the tight cor-
respondence of the boxes and the printed instructions.
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Figure 5. Composite image of 500 registered HSF forms logically ORed together.

4.2.4 Remove Form Box; src/lib/rmline/remove.c; rm_long_hori_line()

Upon registration, a spatial template is used to extract a subimage of each field on the form. Fields are 
extracted and processed one at a time. Given a field subimage, black pixels corresponding to the handwriting must be 
separated from the black pixels corresponding to the form. This is a difficult task because a black pixel can represent 
handwriting, the form, or an overlap of both. As all the fields on the HSF form are represented by boxes, the new sys-
tem uses a general algorithm that locates the box within the field subimage, and intelligently removes the sides so as 
to preserve overlapping characters [5]. The sides of the box are detected using a run-based technique that tracks the 
longest runs across the subimage. Then, by carefully analyzing the width of the sides of the box, overlapping character 
stokes are identified using spatial cues, and only pixels that are distinctly part of the form’s box are removed. This way, 
descenders of lowercase characters, for example, are not unnecessarily truncated. Figure 6 shows two fields before and 
after form removal.
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Figure 6. Results of form box removal.

4.2.5 Isolate Line(s) of Handprint; src/lib/phrase/phrasmap.c; phrases_from_map()

The numeric and alphabetic fields on an HSF form are written as single-line responses. After the box is 
removed, the handprint contained in a field is isolated (or lifted out) by simply extracting all the connected components 
that overlap the interior region of the detected box. A connected component is defined as the largest set of black pixels 
where each pixel is a direct neighbor of at least one other black pixel in the component. Single isolated black pixels 
are also considered components.

Line isolation is much more difficult for multiple-line responses such as the handprinted paragraph of the Pre-
amble at the bottom of the HSF form. There are no lines provided within this paragraph box to guide a writer, nor are 
there any instructions of how many words should be written on a line. The handwriting is relatively unconstrained, and 
as a result, the baselines of the writing at times significantly fluctuate. This, along with the fact that the paragraph con-
tains handprinted punctuation marks, makes tracking the lines of handprint difficult. Histogram projections (used 
extensively for isolating lines of machine printed characters) are rendered unreliable in this case.

The new system uses a bottom-up approach to isolate the lines of handprint within a paragraph. This tech-
nique starts by decomposing a paragraph into a set of connected components. Each component is represented by its 
geometric center. To reconstruct the handprinted lines of text, a nearest neighbor search is performed left-to-right and 
top-to-bottom through the system of 2-dimensional points [9]. The search is horizontally biased and links sequences 
of points into piecewise-linear segments. Simple statistics are used to sort components into categories of too small, too 
tall, problematic, and normal. Only those components determined to be normal are linked together by the search.

Given these piecewise-linear trajectories, the tops and bottoms of linked components are interpolated and 
smoothed forming line bands. An example of these bands is shown in Figure 7. These bands form a spatial map, and 
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all the components in the image are sorted into their respective lines in correct reading order according to their overlap 
and/or proximity to these bands [6]. At this point, the handwriting in the paragraph is isolated into individual text lines.

Figure 7. Line-bands computed from the paragraph image above.

4.2.6 Segment Text Line(s); src/lib/adseg/segchars.c; blobs2chars8()

Connected components are used as first-order approximations to single and complete characters. Connected 
components frequently represent single characters and are computed very quickly. On the other hand, their direct use 
as character segments is prone to error. Errors occur when characters touch one another and when characters are written 
with disconnected strokes (naturally occurring with dotted letters). The new system was initially designed to process 
the numeric fields on HSF forms. Numeric fields typically do not have any linguistic context; therefore, the utility of 
oversegmentation schemes is severely compromised in this case.

Building upon the utility of connected components, the new system utilizes a method of handprint character 
segmentation that uses a simple adaptive model of writing style [7]. Using this model, fragmented characters are recon-
structed, multiple characters are split, and noise components are identified and discarded. Visual features are measured 
(the width of the pen stroke and the height of the characters) and used by fuzzy rules, making the method robust. Exam-
ples of segmentation results are illustrated in Figure 8 and Figure 9. The segmentor performs best when applied to sin-
gle-line responses, and then even better when the fields are numeric.



30

With minor modification, the same method is used to segment the isolated lines extracted from paragraphs of 
handprinted text as described in Reference [6].

Figure 8. Segmentor results of merging components together.

Broken Characters

Detached Strokes

Dotted Characters
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Figure 9. Segmentor results of splitting components apart.

4.2.7 Normalize Characters; src/lib/hsf/norm8.c; norm_2nd_gen_blobls8()

The recognition technique used by the new system falls under the category of feature-based pattern classifi-
cation. The segmented character images vary greatly in size, slant, and shape. Image normalization is performed to 
deal with the size and slant of writing, leaving the recognition process primarily the task of differentiating characters 
by variation in shape.

Uppercase Characters Touching

Two Characters Touching

More Than Two Characters Touching
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The segmented character images are size-normalized by scaling the image either up or down so that the char-
acter tightly fits within a 20×32 pixel region. The stroke width is also normalized using simple morphology: if the pixel 
content of the character image is too high, it is eroded (strokes are thinned), and if too low, it is dilated (strokes are 
widened).

Slant is removed by interpolating a line between the top left-most black pixel in the scaled image and the bot-
tom left-most black pixel. The line (centered on the image) is used as a horizontal shear function. The slant of the char-
acter is removed as horizontal rows of pixels in the image are increasingly shifted (left or right) outwards from the 
center of the image. Upon normalization, each character is centered in a 32×32 pixel image. Size and slant normaliza-
tion are discussed in greater detail in Reference [1].

4.2.8 Extract Feature Vectors; src/lib/nn/kl.c; kl_transform()

At this point, characters are represented by 1024 binary pixel values. The Karhunen Loève (KL) transform is 
applied to these binary pixel vectors in order to reduce dimensionality, suppress noise, and produce optimally compact 
features (in terms of variance) for classification [14].

A training set of normalized character images is used to compute a covariance matrix which is diagonalized 
using standard linear algebra routines, producing eigenvalues and corresponding eigenvectors. This computation is rel-
atively expensive, but is done once off-line, and the top-n ranked eigenvectors are stored as basis functions and used 
subsequently for feature extraction. Feature vectors of length 128 are used in the new system, and each coefficient in 
the vector is the dot product of a subsequent eigenvector with the 1024 pixel vector of the character being classified.

4.2.9 Classify Characters; src/lib/mlp/runmlp.c; mlphypscons()

Once segmented characters are represented as feature vectors, a whole host of different pattern classification 
techniques can be applied. NIST has conducted extensive research on classification methods that utilize machine learn-
ing, and most of these have been various types of neural networks. In previous work, the Probabilistic Neural Network 
(PNN) was shown to provide better zero-reject error performance on character classification problems than Radial 
Basis Function (RBF) and Multi-Layer Perceptron (MLP) neural network methods [22]. Later work demonstrated that 
various combined neural networks could provide performance equal to PNN and substantially better error-reject per-
formance. However, these systems were very expensive to train and were much slower and less memory efficient than 
MLP-based systems [23]. 

NIST has developed a robust training method that produces MLP networks with performance equal to or bet-
ter than PNN for character recognition [8]. This is achieved with a single three-layer network by integrating funda-
mental changes in the network optimization strategy. These changes are: 1) Sinusoidal neuron activation functions are 
used which reduce the probability of singular Jacobians; 2) Successive regularization is used to constrain the volume 
of the weight space; 3) Boltzmann pruning is used to constrain the dimension of the weight space [24]. All three of 
these changes are made in the inner loop of a conjugate gradient optimization iteration [25] and are intended to simplify 
the training dynamics of the optimization. On handprinted digit classification problems, these modifications improve 
error-reject performance by factors between 2 and 4 and reduce network size by 40% to 60%.

To classify a character, the appropriate eigenvectors (or basis functions) and MLP weight matrices must be 
loaded into memory. As mentioned earlier, this is accomplished during batch initialization. Using the eigenvectors, the 
normalized image is transformed into a feature vector. The feature vector is then presented to the MLP network. The 
result is an assigned classification along with a confidence value.

4.2.10 Spell-Correct Text Line(s); src/lib/phrase/spellphr.c; spell_phrases_Rel2()

The only field on the HSF form that has any linguistic information that can be applied is the Preamble field. 
The Preamble is comprised of 38 unique words which are used to form a field-specific dictionary.
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The dictionary-based processing conducted by the new system is somewhat different than other correction 
techniques [26][27]. Up to this point, segmented character images have been extracted from the handprinted para-
graph, sorted into reading order line by line, and classified. This results in one long contiguous character stream for 
each line in the paragraph. The MLP weights used to process the Preamble paragraph were trained to map lowercase 
and uppercase instances of the same letter into the same class, making the output of the classifier case-invariant. There 
are also no interword gaps identified by the system at this point. Figure 10 shows an example of these raw classifica-
tions.

Words are parsed from each line of raw classifications by applying the preloaded dictionary as described in 
reference [9]. This process identifies words within the character stream while simultaneously compensating for errors 
due to wrong segmentations and classifications. The limited size of the dictionary helps offset the burden placed on 
this process.

Figure 10. Results from processing the top paragraph image.

Hypothesized words are constructed from sequences of the classifier output and then matched to the dictio-
nary. When there is a sufficiently good match, the dictionary word is output, the process resynchronizes itself in the 

WEJTHEPEOPIEOPTHEUNITEASTATFSJLNORDERTO
AMOREPQRFKTUNIONJEBTAEIBHJUSTICEJINSURE
DOMDLCITRONGUIIJTYIPROVIDEFPRTHFCOMMQN
DEFENBELPROMOTETHEGENEMIWELNRELAND
SECURETHEBLCSSINPOFLIBBHYTOOURSELUES
ANDOURPOSTERLTYIDOORBINANDQDADLISH
THISCONETITUTIBNFORTHEUNIFEDSBTES
OFAMERICA 

WE THE PEOPLE THE UNITED A STATES ORDER TO
A MORE UNION THE JUSTICE INSURE
DO TRANQUILITY PROVIDE FOR THE COMMON
DEFENSE PROMOTE THE GENERAL WELFARE AND
SECURE THE BLESSINGS OF LIBERTY TO OURSELVES
AND OUR POSTERITY DO FOR IN AND A
THIS CONSTITUTION FOR THE UNITED STATES
OF AMERICA 

Raw Classifications

Spell-Corrected Words
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character stream, and parsing resumes. The matching criterion takes into account the number of errors in the word rel-
ative to the length of the word. This way longer words are permitted to tolerate more errors.

4.2.11 Store Results; src/lib/fet/writefet.c; writefetfile()

 When processing the Preamble paragraph, the system produces a sequence of spell-corrected words as out-
put. Results of spell-correcting the paragraph image in Figure 10 are listed at the bottom of the figure. Shorter words 
such as articles and prepositions tend to be frequently deleted and in other places inserted, while the system does a 
reasonable job of recognizing longer words. This type of dictionary processing is better suited to word-spotting than 
to full OCR transcription.

For the numeric and randomly ordered alphabet fields, the new system outputs for each segmented character 
an assigned class and its associated confidence as determined by the MLP classifier. Example output files from the rec-
ognition system can be found under the top-level directory data.
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5. PERFORMANCE EVALUATION AND COMPARISONS

This section evaluates and compares the performances of three recognition systems.The first release of the 
recognition system (based on the PNN classifier) is named HSFSYS, the updated version of the original system distrib-
uted with this (the second) release is named HSFSYS1, and the new system (based on the MLP classifier) is HSFSYS2. 
Each of these systems was designed to process the HSF forms distributed in NIST Special Database 19 (SD19) [3]. 
HSFSYS and HSFSYS1 are capable of processing the forms in SD19 partitions hsf_0, 1, 2, & 3, whereas the new sys-
tem, HSFSYS2, is capable of processing every one of the 3669 forms in the database. This section presents compre-
hensive results primarily for HSFSYS1 and HSFSYS2 across SD19. Statistics are provided on accuracy, error versus 
reject performance, timings, and memory usage.

5.1 Accuracies and Error Rates

In order to compile statistics on accuracy and error rates, each system was run across the forms in SD19 and 
recognition results were stored to file. Recognition system classifications were stored to hypothesis files, and their asso-
ciated confidence values were stored to confidence files. Once generated, these files were processed using the NIST 
Scoring Package [28], and performance statistics were compiled at the character, word, and field levels.

Table 3 lists the digit recognition results of running HSFSYS1 on the first 2,100 forms (partitions hsf_0 to 
hsf_3) in SD19. The forms in the remaining partitions differ enough that the method of form registration used in HSF-
SYS1 fails. The top portion of the table reports character-level statistics, and the bottom reports field-level accuracies. 
33 of the 2,100 forms were rejected due to form registration failures and their characters are not included in the table. 
It was determined that a majority of these failures occurred due to writing outside the provided boxes with continued 
responses or annotations. A small number (about 5) failed registration due to spurious noise in critical areas on the 
form. HSFSYS1 is an implementation improvement over the originally released system, HSFSYS. The same methods 
are applied in both, only HSFSYS1 has been improved in terms of its memory usage, more efficient execution, and 
there is no longer any dependence on FORTRAN subroutines. Both systems use the PNN classifier. As was expected, 
the results in Table 3 are very similar to those reported for the original system in Reference [1].

The performance statistics in Table 3 can be compared to those listed in Table 4. The second table reports the 
digit recognition results from the new MLP-based system, HSFSYS2. These two systems use significantly different 
algorithms for more than just classification, and as can be seen, HSFSYS2 performs significantly better than HSF-
SYS1. In terms of digit accuracy, HSFSYS2 is 3.2% more accurate at 96.3% and it recognizes 86% of the digit fields 
entirely correctly (6% more than HSFSYS1). This difference in accuracy is primarily attributed to the different seg-
mentation methods used in the systems, not to the different classifiers. Studies have shown that at zero-rejection, PNN 
and the new MLP classifier have similar accuracy [8]. Looking at deletion errors, HSFSYS2 cuts them by 80% which 
confirms the improved performance of the system’s statistically adaptive segmentor [7]. In addition, HSFSYS2 is capa-
ble of registering every form in SD19, with only 10 fields (6 digit fields, 1 lowercase field, and 3 Preamble fields) 
rejected due to poor image quality. The characters from these 10 fields have been tallied into the reported statistics as 
deletions.
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Table 3. HSFSYS1 accuracies and error rates for digit fields across the first part of SD19.

Table 4. HSFSYS2 accuracies and error rates for digit fields across SD19.
(* Segmented character images from the writers in this partition were used to train the neural network classifiers.)
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The results of uppercase recognition can be compared between Table 5 and Table 6. HSFSYS2 recognizes 
uppercase characters at nearly 90% (4.6% higher than HSFSYS1). Again, the difference in performance can be prima-
rily attributed to the segmentation methods used. With HSFSYS2, insertion errors are reduced by 46% and deletion 
errors by 58%.

Table 5. HSFSYS1 accuracy and error rates for uppercase fields across the first part of SD19.

Table 6. HSFSYS2 accuracy and error rates for uppercase fields across SD19.
(* Segmented character images from the writers in this partition were used to train the neural network classifiers.)
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Lowercase statistics are listed in Table 7 and Table 8. HSFSYS2 correctly recognizes not quite 80% of the 
lowercase characters in SD19. Not only does the new system employ a new segmentor, it also conducts intelligent line 
removal that preserves character stroke data that overlaps with the form and extends beyond the immediate limits of 
the field. An independent study [5] shown that one can expect up to a 3% improvement in lowercase accuracy when 
using this method of line removal. The difference between HSFSYS1 and HSFSYS2 is 2.8%, some of which can be 
directly attributed to the line removal. Adaptive character segmentation is also contributing, as insertion errors are 
reduced by 70%. This demonstrates the segmentor’s ability to compose characters from multiple connected compo-
nents, as unattached fragments contribute to insertion errors. On the other hand, the number of deletion errors increases 
with HSFSYS2. This leads one to conclude that the adaptive segmentor may be over-aggressive in merging compo-
nents, and not aggressive enough when it comes to splitting touching characters. An independent study has shown that 
the general segmentation method used in HSFSYS2 can benefit from further refinement for lowercase characters [6].

Table 7. HSFSYS1 accuracy and error rates for lowercase fields across the first part of SD19.

Table 8. HSFSYS2 accuracy and error rates for lowercase fields across SD19.
(* Segmented character images from the writers in this partition were used to train the neural network classifiers.)
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The last pair of tables (Table 9 and Table 10) lists the results of recognizing words across SD19’s Preamble 
fields. SD19 has completed Preamble paragraphs only in its first 4 partitions. These word-level statistics were com-
puted by tokenizing each word in the system output. The NIST Scoring Package [28] was used to align the word tokens 
with the known Preamble text, and statistics were accumulated. Much effort was spent in improving the line isolation 
algorithm used in HSFSYS2 [6]. Even so, overall word accuracy only improved 2.3% (61.6% to 63.9%). Considerable 
work still remains in improving the segmentation of vertically and horizontally touching characters, the detection of 
punctuation marks, and dictionary-based spelling correction.

Table 9. HSFSYS1 accuracy and error rates for Preamble fields across SD19.

Table 10. HSFSYS2 accuracy and error rates for Preamble fields across SD19.

As a final note on these accuracy statistics, realize that results are reported with HSFSYS2 having processed 
the entire set of forms in SD19. This is one of the largest published experiments of its kind, and it is reproducible by 
purchasing the SD19 database from NIST. In all, sample handwriting from 3669 writers was tested and a total of 
109,200 words and 667,758 characters were recognized and scored. As SD19 is our only handprint database, training 
samples were extracted from specific writer partitions and used to train the PNN and MLP character classifiers off-line. 
From the 667,758 characters, 109,719 were used in training. In the case of digits, the writers in hsf_6 (61,094 charac-
ters) were used in the training set, and in the case of upper and lowercase, writers in both hsf_4 and hsf_6 (totalling 
24,420 uppercase characters and 24,205 lowercase characters) were used. It is worth pointing out that the machine pro-
cesses used to isolate the character training samples were different, as they predate the technology used in HSFSYS2.
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Comparing the HSFSYS2 results on hsf_6 to other partitions, it is interesting to see that the inclusion of hsf_6 
in the classifier training does have some influence, however the influence is small. With digits, HSFSYS2 is 97.3% 
correct on hsf_6 whereas the results on hsf_3 are almost as good at 97.2%, and the other partitions (with the exception 
of hsf_4) range between 96% and 97%. The writers in hsf_4 are from a different population and are known to be sta-
tistically more difficult to recognize [29]. The influence of training is a bit more pronounced with the results on upper 
and lowercase fields. On uppercase, HSFSYS2 is 93% correct on hsf_6, and the other partitions range between 89% 
to 90%. For lowercase, HSFSYS2 is 83% correct on hsf_6, and other partitions range between 77% to 80%. These 
small differences (particularly for the digits) demonstrate that the MLP character classifier is doing a reasonably good 
job at generalizing on writers it hasn’t seen during its off-line training. The MLP-based system doesn’t generalize as 
well on upper and lowercase recognition in part because fewer training samples were used than for digits.

5.2 Error versus Rejection Rate

The advantages of using a machine for OCR in many ways complement the performance of humans [2]. 
Machines are very efficient in doing tasks that are primarily repetitive and reflexive, whereas humans quickly fatigue 
under these conditions. Humans, on the other hand, are very adept at performing tasks requiring higher-level reasoning, 
and as a result, provide more robust but much slower solutions to complex problems. Accounting for these differences, 
successful recognition systems allow a machine to perform the bulk of the work, and on an exception basis, humans 
can be used to resolve ambiguities and potential errors. This is accomplished through rejection mechanisms that auto-
matically route low-confidence machine decisions to humans for verification. This section compares the ability of the 
NIST recognition systems to effectively reject low-confidence character classifications.

The graph in Figure 11 plots error versus rejection rates with error plotted on a logarithmic scale. The results 
plotted were computed from the first 500 writers (partition hsf_0) in SD19. Results are shown for both HSFSYS1 and 
the new system HSFSYS2, and they are broken out by digit, upper, and lowercase recognition. In general, as the num-
ber of rejected character classifications increases, the error rate on the remaining accepted (or non-rejected) classifica-
tions decreases, and accuracy improves. Also, the impact of rejection on accuracy tapers off as more and more 
characters are rejected. In the figure, the bottom two curves represent the performance of the new and old systems on 
recognizing characters in the numeric fields on the HSF forms. With no rejection, HSFSYS2 has an error rate near 4%, 
and HSFSYS1 has an error rate over 7.5%. As the number of rejected digit classifications is increased, the error rate 
proceeds to drop, only HSFSYS2 falls at a significantly faster rate than does HSFSYS1. The difference in the slope of 
the two digit curves confirms the robustness of the MLP classifier used in HSFYS2 over the PNN classifier used in 
HSFSYS1. The digit error rate of HSFSYS2 continues to drop to nearly 1.2% at 15% rejection. One concludes from 
these results, that in terms of recognizing numeric fields, the new NIST recognition system is more than twice as good 
as the original system.

The differences between the two systems are less dramatic with upper and lowercase recognition. The middle 
two curves in Figure 11 correspond to the results of recognizing the uppercase alphabet fields on the HSF forms. The 
HSFSYS2 curve does fall off slightly faster than does HSFSYS1’s, but the distance between the curves is not as large 
as that of the digit curves. With no rejection, HSFSYS2 has an error rate of almost 13% and HSFSYS1 is just over 
19%. The two lowercase curves are even closer to each other, and their distance only slightly increases across the range 
of rejections plotted. This emphasizes that lowercase recognition is still the most difficult for the NIST systems. The 
minimal increase in separation between these two curves can be attributed to a combination of two factors. First, the 
decision surfaces trained within the MLP classifier for lowercase are much more complex than those of uppercase, and 
the decision surfaces for uppercase are more complex than those of digits [8]. Second, the challenges remaining in the 
system that are impacting accuracy lie primarily in components other than the classifier. Otherwise, the relative slopes 
in the upper and lowercase curves would more closely resemble those of the digit classifications.
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Figure 11. Error versus rejection rates for digit, upper, and lowercase recognition between HSFSYS1 and HSFSYS2.

5.3 Timing and Memory Statistics

Over the two years following the first system’s release, a number of significant improvements were made to 
the existing source code so that a modified version of the old system now runs faster and uses memory more efficiently. 
As new methods were developed to improve the NIST system, the focus was primarily on improving system accuracy, 
although considerable effort was made to ensure that the resulting implementations were time-efficient. This section 
first compares the timing results between the original system (HSFSYS) as it was distributed in the first release, the 
augmented original system (HSFSYS1) as it is distributed in this release, and the new system (HSFSYS2).

Table 11 lists timing statistics (in seconds) for each of the major components in the original and augmented 
versions of the old recognition system. The timings reported in Table 11 and Table 12 were generated on a Sun Micro-
systems SPARCstation 2 with a Weitek CPU upgrade, and the reported user times are an average over the 10 HSF 
forms included in the test-bed. The first pair of data columns in Table 11 lists results from the implementation distrib-
uted in the first release, and the second pair of columns lists results from the augmented version distributed with this 
release. Virtually the same algorithms are used throughout, only memory usage has been made more efficient, and in 
several places, the source code was modified to execute more quickly. The most significant change is in spelling cor-
rection, where in the development of the new release, it was discovered that memory was being allocated and then 
deallocated every time a word was being matched to the dictionary. By simply allocating a matrix only once, the aver-
age time required to spell-correct a handprinted Preamble paragraph dropped by almost a factor of 9. Another time 
improvement to note is that the PNN character classifier was modified to use new internal data structures and now runs 
24% faster. This is slightly offset by field initialization taking 2 seconds longer due to a new PNN-supporting file for-
mat. Also note that the time required to compute the KL transform (within character feature extraction) has been cut 
in half. As a result of implementation changes, the component taking the most time in HSFSYS1 is now the PNN clas-
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sifier, requiring nearly a quarter of the time. Form registration, field initialization, then segmentation also require sig-
nificant amounts of time.

Table 11. Timing statistics in seconds between original and augmented versions of old system.

Table 12. Timing statistics in seconds for new version of recognition system.

Table 12 reports the average user times required to run the new system, HSFSYS2, across the same set of 10 
HSF forms. First, notice that the overall time required has decreased by nearly 28% when compared to HSFSYS1. The 
speed increase can be explained in part by using the new MLP classifier in place of the PNN. The MLP character clas-
sifier is a factor of 2.6 faster, and using the MLP does not require field initialization. All the MLP weights for all the 
types of fields on the HSF form can be held in memory simultaneously, so they are read from file once during batch 
initialization. The time for this initialization is factored across the number of forms processed within the batch. As the 
number of forms increases, the percentage of time required for the reading of the weights becomes negligible. The 
PNN classifier requires much more memory, and it becomes infeasible to hold all of its weights (training prototypes) 
in memory at once. Every time the PNN-based system begins processing a new type of field, a large number of new 
field-specific prototypes must be read from file.

In order to analyze memory usage, the SunOS/UNIX routine mallinfo() was used to measure the maximum 
arena size of the various NIST recognition systems. During the execution of the original system, HSFSYS grew to 

Task HSFSYS HSFSYS1
form init  1.1  1.4%  0.9  2.0%

form register  9.8 12.3%  9.4 20.6%

form remove  1.0  1.3%  0.8  1.8%

field init  5.5  7.0%  7.7 16.8%

field isolate  1.0  1.3%  1.0  2.3%

field segment  7.0  8.8%  6.8 14.9%

chr normalize  0.9  1.2%  0.9  1.9%

chr shear  0.3  0.4%  0.3  0.6%

chr feature  5.6  7.0%  2.7  6.0%

chr classify 13.8 17.4% 10.5 23.1%

chr sort  0.2  0.3%  0.2  0.5%

field spell 33.2 41.7%  3.8  8.3%

total 79.6 100.0% 45.6 100.0%

Task HSFSYS2
batch init  1.7  5.1%

form load  1.5  4.6%

form register  5.6 17.1%

field isolate  8.9 27.2%

field segment  1.1  3.2%

chr normalize  0.9  2.7%

chr feature  5.4 16.4%

chr classify  4.0 12.2%

field spell  3.8 11.4%

total 32.9 100.0%
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require a total arena size of 33.7Mb; the more efficient implementation (HSFSYS1) required only 21.9Mb; and the new 
MLP-based HSFSYS2 required 25.1 Mb. The number of floating point values required by the PNN in HSFSYS1 to 
classify digits is over 4 million (61,094 prototypes × 64 KL coefficients), whereas the MLP digit weights in HSFSYS2 
contain about 18,000 floating point values (a 128×128×10 network). One would expect this dramatic difference in the 
required weight size to be reflected in the overall arena sizes between the two systems, but instead, HSFSYS2 actually 
uses more memory than HSFSYS1.

This is primarily due to the internal representation of image used in the two systems. While HSFSYS1 
attempts to maintain a general binary image representation with eight pixels packed in one byte, HSFSYS2 expands 
images to be one pixel per byte. This makes arbitrary pixel addressing less expensive, but it does utilize 8 times more 
memory. A full page 11.8 pixel/millimeter (300 pixels/inch) binary image requires about 1Mb of memory when pixels 
are packed 8 per byte. Expanded, the same image with one pixel per byte requires over 8 Mb. In general, an image 
transformation on the expanded image will result in two images in memory (the source image and the resulting image). 
These two images now require a total of 16Mb, whereas the 8 pixels per byte representation would require only 2Mb. 
In effect, the 16Mb of PNN weights (4 million floats × 4 bytes/float) replaced by the 18,000 MLP weights is offset (and 
then some) by the 16Mb of additional image representation. Thus the new MLP-based system uses slightly more mem-
ory than the PNN-based one.

As part of the testing of the second release, the software was installed and executed, and results were analyzed 
on a number of different UNIX platforms. These systems included computers manufactured by Digital Equipment Cor-
poration, Hewlett Packard, IBM, Silicon Graphics Incorporated, and Sun Microsystems. Times are listed in Table 13 
for both the augmented original system (HSFSYS1) and for the new system (HSFSYS2). The times reported are the 
average user times required to process an HSF form, and the statistics were computed across the 10 HSF forms pro-
vided with this distribution. On all the machines, HSFSYS2 processed the 10 forms faster than did HSFSYS1. Two 
computers, the SGI Challenge and the Sun SPARCstation 10, have multiple processors. However, the recognition sys-
tems were compiled serially on these machines and run on single processors, so no parallel processing was employed. 
The range of user times varies by a factor of 3 to 4 over the set of machines tested. On the faster machines, HSF forms 
are processed 10 to 15 seconds a page.

Table 13. Table of timings in seconds from the different UNIX computers tested.
(*Those computers with multiple processors were compiled and tested serially.)

DEC

SGI

IBM

SGI

HP

Sun

Sun

Alpha 3000/400

Indy (IP22)

RS6000 Model 370

Challenge (8-IP19’s)*

9000/735

SPARCstation 10

SPARCstation 2

OSF/1 V1.3

IRIX 5.3

AIX 4.1

IRIX 5.3

HP-UX A.09.05

SunOS 5.4 (Solaris)

SunOS 4.1.3

32 Mb

128 Mb

128 Mb

512 Mb

32 Mb

128 Mb

64 Mb

10.4

13.2

17.1

17.5

18.2

34.3

45.6

10.0

10.3

15.4

14.3

14.1

24.4

32.9

Man. Model O.S. RAM HSFSYS1 HSFSYS2

(Weitek 80MHz CPU)

(2-CPU’s)*
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6. IMPROVEMENTS TO THE TEST-BED

With the new technologies released in this distribution, the NIST recognition software test-bed is much closer 
to being a usable product than its first release. There should be significantly less effort commercializing the new tech-
nology within the framework provided. Nonetheless, the new system is a technology transfer rather than a shrink-
wrapped product. One item missing from the test-bed, which may be required for its commercialization, is a forms 
identification component so that the system can process more than one type of form within a batch. Also missing is an 
integrated work flow for routing and correcting rejected classifications with human key operators. The modular system 
architecture does however provide handles to support this work flow. Finally, a formalized form definition utility is 
needed, supported by an interactive interface that sets up the recognition system to process new types of forms.

6.1 Processing New Forms with the HSFSYS2

To set up the new recognition system, hsfsys2, to process a new type of form, trainreg must be run on a pro-
totypical form and the output coordinates stored. In addition, the fields or zones on a registered version of the new form 
must be measured manually with an interactive image display tool (not provided with this distribution), and the coor-
dinates of each field must be stored to an MFS file. The file tmplt/hsfsmplt.pts contains the field coordinates for a reg-
istered HSF form. The source code must be modified to load these two new files (the registration coordinate file and 
the field coordinate file).

If a new form contains fields different than those on an HSF form, then the MLP classifier will need to be 
retrained and the resulting weights files will need to be loaded into the system. For example, if a new form contains 
money fields that include dollar signs, commas, and decimal points, then it will be desirable to train the MLP network 
to classify these three new characters in addition to the ten numeric characters. A future improvement to hsfsys2 would 
be to develop and incorporate a forms definition tool that locates the zones on a new form (preferably automatically) 
and then systematically prompts an operator to identify the types of each field on the form so that the appropriate clas-
sifier weights, form removal, syntax checking, and field-specific dictionaries can be automatically applied by the sys-
tem. Currently, this must all be done manually through the coding of a new application-specific main program.
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7. FINAL COMMENTS

A number of NIST Internal Reports (NISTIR’s) have been referenced in this document. These reports are pro-
vided in PostScript format in the top-level directory doc. The file doc/hsfsys2.ps contains this specific document. These 
reports along with many other NIST Visual Image Processing Group publications are available in PostScript format 
over the Internet via anonymous FTP on sequoyah.nist.gov or via the World Wide Web at http://www.nist.gov/itl/
div894/894.03. To request a paper copy of any of these NISTIRs, please contact:

ITL Publications
National Institute of Standards and Technology
Building 225, Room B216
Gaithersburg, MD 20899
voice: (301) 975-2832

This report documents the second release of the NIST standard reference recognition software test-bed in 
terms of its installation, organization, and functionality. The software has been successfully compiled and tested on a 
number of different vendors’ UNIX workstations. If necessary, it is the responsibility of the distribution recipient to 
port the software to their specific computer architecture. The source code is written entirely in C and is organized into 
15 libraries. In all, there are approximately 39,000 lines of code supporting more than 725 subroutines. Source code is 
provided for a wide variety of utilities that have application to many other types of problems.

Approximately 25 person-years have been invested by NIST in the development of this software test-bed, and 
it can be obtained free of charge on CD-ROM by sending a letter of request via postal mail or FAX to the primary 
author. Requests for distribution made by electronic mail will not be accepted; however, electronic mail is encouraged 
for technical questions once the distribution has been received. Any portion of this test-bed may be used without 
restrictions because it was created with U.S. government funding. Redistribution of this standard reference software is 
strongly discouraged as any subsequent corrections or updates will be sent to registered recipients only. This software 
was produced by NIST, an agency of the U.S. government, and by statute is not subject to copyright in the United 
States. Recipients of this software test-bed assume all responsibilities associated with its operation, modification, and 
maintenance.
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Appendix A. TRAINING THE MULTI-LAYER PERCEPTRON (MLP) CLASSIFIER OFF-LINE

The program mlp trains a 3-layer feed-forward linear perceptron [16] using novel methods of machine learn-
ing that help control the learning dynamics of the network. As a result, the derived minima are superior, the decision 
surfaces of the trained network are well-formed, the information content of confidence values is increased, and gener-
alization is enhanced. Trained MLP networks are used in the new recognition system, hsfsys2. As a classifier, this new 
MLP is superior to the PNN classifier used in hsfsys1 in terms of its memory requirements, classification speed, and 
superior confidence values for rejecting confusions. The theory behind the machine learning techniques used in this 
program is discussed in Reference [8]. The main routine for this program is found in src/bin/mlp/mlp.c and the majority 
of its supporting subroutines is located in the library src/lib/mlp.

Machine learning is controlled through a batch-oriented iterative process of training the MLP on a set of pro-
totype feature vectors, and then evaluating the progress made by running the MLP (in its current state) on a separate 
set of feature vectors. Training on the first set of patterns then resumes for a predetermined number of passes through 
the training data, and then the MLP is tested again on the evaluation set. This process of training and then testing con-
tinues until the MLP has been determined to have satisfactorily converged. The command line invocation of mlp is as 
follows:

% mlp [-c] [specfile]

• The first optional argument -c performs checking of the specfile only: scan it; write any applicable warnings 
or error messages to the standard error output; then exit.

• The second optional argument specfile is the name of the specification file to be processed by mlp. If this 
argument is omitted, the specfile is assumed to be the file spec in the current working directory. The format 
of the specfile is documented in the routine scanspec() found in src/lib/mlp/scanspec.c.

This command trains or tests an MLP neural network suitable for use as a classifier or as a function-approx-
imator. The network has an input layer, a hidden layer, and an output layer, each layer comprising a set of nodes. The 
input nodes are feed-forwardly connected to the hidden nodes, and the hidden nodes to the output nodes, by connec-
tions whose weights (strengths) are trainable. The activation function used for the hidden nodes can be chosen to be 
sinusoid, sigmoid (logistic), or linear, as can the activation function for the output nodes. Training (optimization) of 
the weights is done using either a Scaled Conjugate Gradient (SCG) algorithm [25], or by starting out with SCG and 
then switching to a Limited Memory Broyden Fletcher Goldfarb Shanno (LBFGS) algorithm [30]. Boltzmann pruning 
[24], i.e. dynamic removal of connections, can be performed during training if desired. Prior weights can be attached 
to the patterns (feature vectors) in various ways.

A.1 Training and Testing Runs

When mlp is invoked, it performs a sequence of runs. Each run does either training, or testing:

training run: A set of patterns is used to train (optimize) the weights of the network. Each pattern consists 
of a feature vector, along with either a class or a target vector. A feature vector is a tuple of floating-point numbers, 
which typically has been extracted from some natural object such as a handwritten character. A class denotes the actual 
class to which the object belongs, for example the character which a handwritten mark is an instance of. The network 
can be trained to become a classifier: it trains using a set of feature vectors extracted from objects of known classes. 
Or, more generally, the network can be trained to learn, again from example input-output pairs, a function whose output 
is a vector of floating-point numbers, rather than a class; if this is done, the network is a sort of interpolator or function-
fitter. A training run finishes by writing the final values of the network weights as a file. It also produces a summary 
file showing various information about the run, and optionally produces a longer file that shows the results the final 
(trained) network produced for each individual pattern.

testing run: A set of patterns is sent through a network, after the network weights are read from a file. The 
output values, i.e. the hypothetical classes (for a classifier network) or the produced output vectors (for a fitter net-
work), are compared with target classes or vectors, and the resulting error rate is computed. The program can produce 
a table showing the correct classification rate as a function of the rejection rate.
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A.2 Specification (Spec) File

This is a file produced by the user, which sets the parameters (henceforth “parms”) of the run(s) that mlp is to 
perform. It consists of one or more blocks, each of which sets the parms for one run. Each block is separated from the 
next one by the word “newrun” or “NEWRUN”. Parms are set using name-value pairs, with the name and value sep-
arated by non-newline white space characters (blanks or tabs). Each name-value pair is separated from the next pair 
by newline(s) or semicolon(s). Since each parm value is labeled by its parm name, the name-value pairs can occur in 
any order. Comments are allowed; they are delimited the same way as in C language programs, with /* and */. Extra-
neous white space characters are ignored. The specfiles used to train the MLP in hsfsys2 are provided in the weights/
mlp subdirectories and end with the extension spc.

When mlp is run, it first scans the entire specfile, to find and report any (fatal) errors (e.g. omitting to set a 
necessary parm, or using an illegal parm name or value) and also any conditions in the specfile which, although not 
fatally erroneous, are worthy of warnings (e.g. setting a superfluous parm). Mlp writes any applicable warning or error 
messages; then, if there are no errors in the specfile, it starts to perform the first run. Warnings do not prevent mlp from 
starting to run. (The motivation for having mlp check the entire specfile before it starts to perform even the first run, is 
that this will prevent an mlp instance that runs a multi-run specfile from failing, perhaps many hours, or days, after it 
was started, because of an error in a block far into the specfile: such errors will be detected up front and presumably 
fixed by the user, because that is the only way to cause mlp to get past its checking phase.) To cause mlp only to check 
the specfile without running it, use the -c option.

The following listing describes all the parms that can be set in a specfile. There are four types of parms: string 
(value is a filename), integer, floating-point, and switch (value must be one of a set of defined names, or may be spec-
ified as a code number). A block of the specfile, which sets the parms for one run, often can omit to set the values of 
several of the parms, either because the parm is unneeded (e.g., a training “stopping condition” when the run is a test 
run; or, temperature when boltzmann is no_prune), or because it is an architecture parm (purpose, ninps, nhids, 
nouts, acfunc_hids, or acfunc_outs), whose value will be read from wts_infile. The descriptions below indicate 
which of the parms are needed only for training runs (in particular, those described as stopping conditions). Architec-
ture parms should be set in a specfile block only if its run is to be a training run that generates random initial network 
weights: a training run that reads initial weights from a file (typically, final weights produced by a previous training 
session), or a test run (must read the network weights from a file), does not need to set any of the architecture parms 
in its specfile block, because their values are stored in the weights file that it will read. (Architecture parms are ones 
whose values it would not make sense to change between training runs of a single network that together comprise a 
training “meta-run”, nor between a training run for a network and a test run of the finished network.) Setting unneeded 
parms in a specfile block will result in warning messages when mlp is run, but not fatal errors; the unneeded values 
will be ignored.

If a parm-name/parm-value pair occurring in a specfile has just its value deleted, i.e. leaving just a parm name, 
then the name is ignored by mlp; this is a way to temporarily unset a parm while leaving its name visible for possible 
future use.

A.2.1 String (Filename) Parms

short_outfile: This file will contain summary information about the run, including a history of the training process if 
a training run. The set of information to be written is controlled, to some extent, by the switch parms do_con-
fuse and do_cvr. See Section A.4.

long_outfile: This optionally produced file will have two lines of header information followed by a line for each pat-
tern. The line will show: the sequence number of the pattern; the correct class of the pattern (as a number in 
the range 1 through nouts); whether the hypothetical class the network produced for this pattern was right (R) 
or wrong (W); the hypothetical class (number); and the nouts output-node activations the network produced 
for the pattern. (See the switch parm show_acs_times_1000 below, which controls the formatting of the acti-
vations.) In a testing run, mlp produces this file for the result of running the patterns through the network 
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whose weights are read from wts_infile; in a training run, mlp produces this file only for the final network 
weights resulting from the training session. This is often a large file; to save disk space by not producing it, 
just leave the parm unset.

patterns_infile: This file contains patterns upon which mlp is to train or test a network. A pattern is either a feature-
vector and an associated class, or a feature-vector and an associated target-vector. The file must be in one of 
the two supported patterns-file formats, i.e. ASCII and (FORTRAN-style) binary; the switch parm pats-
file_ascii_or_binary must be set to tell mlp which of these formats is being used.

wts_infile: This optional file contains a set of network weights. Mlp can read such a file at the start of a training run -
- e.g., final weights from a preceding training run, if one is training a network using a sequence of runs with 
different parameter settings (e.g., decreasing values of regfac) - or, in a testing run, it can read the final 
weights resulting from a training run. This parm should be left unset if random initial weights are to be gen-
erated for a training run (see the integer parm seed).

wts_outfile: This file is produced only for a training run; it contains the final network weights resulting from the run.

lcn_scn_infile: Each line of this optional file should consist of a long class-name (as shown at the top of patterns_in-
file) and a corresponding short class-name (1 or 2 characters), with the two names separated by white space; 
the lines can be in any order. This file is required only for a run that requires short class-names, i.e. only if 
purpose is classifier and (1) priors is class or both (these settings of priors require class-weights to be read 
from class_wts_infile, and that type of file can be read only if the short class-names are known) or (2) 
do_confuse is true (proper output of confusion matrices requires the short class-names, which are used as 
labels).

class_wts_infile: This optional file contains class-weights, i.e. a “prior weight” for each class. (See switch parm priors 
to find out how mlp can use these weights.) Each line should consist of a short class-name (as shown in lcn_-
scn_infile) and the weight for the class, separated by white space; the order of the lines does not matter.

pattern_wts_infile: This optional file contains pattern-weights, i.e. a “prior weight” for each pattern. (See switch parm 
priors to find out how mlp can use these weights.) The file should be just a sequence of floating-point numbers 
(ascii) separated from each other by white space, with the numbers in the same order as the patterns they are 
to be associated with.

A.2.2 Integer Parms

npats: Number of (first) patterns from patterns_infile to use.

ninps, nhids, nouts: Specify the number of input, hidden, and output nodes in the network. If ninps is smaller than the 
number of components in the feature-vectors of the patterns, then the first ninps components of each feature-
vector are used. If the network is a classifier (see purpose), then nouts is the number of classes, since there 
is one output node for each class. If the network is a fitter, then ninps and nouts are the dimensionalities of 
the input and output real vector spaces. These are architecture parms, so they should be left unset for a run 
that is to read a network weights file.

seed: For the UNI random number generator, if initial weights for a training run are to be randomly generated. Its val-
ues must be positive. Random weights are generated only if wts_infile is not set. (Of course, the seed value 
can be reused to generate identical initial weights in different training runs; or, it can be varied in order to do 
several training runs using the same values for the other parameters. It is often advisable to try several seeds, 
since any particular seed may produce atypically bad results (training may fail). However, the effect of vary-
ing the seed is minimal if Boltzmann pruning is used.)

niter_max: A stopping condition: maximum number of iterations a training run will be allowed to use.



51

nfreq: At every nfreq’th iteration during a training run, the errdel and nokdel stopping conditions are checked and a 
pair of status lines is written to the standard error output and to short_outfile.

nokdel: A stopping condition: stop if the number of iterations used so far is at least kmin and, for each of the most 
recent NNOT (defined in src/lib/mlp/optchk.c) sequences of nfreq iterations, the number right and the num-
ber right minus number wrong have both failed to increase by at least nokdel during the sequence.

lbfgs_mem: This value is used for the m argument of the LBFGS optimizer (if that optimizer is used, i.e. only if there 
is no Boltzmann pruning). This is the number of corrections used in the bfgs update. Values less than 3 are 
not recommended; large values will result in excessive computing time, as well as increased memory usage. 
Values in the range 3 through 7 are recommended; value must be positive.

A.2.3 Floating-Point Parms

regfac: Regularization factor. The error value that a training run attempts to minimize, contains a term consisting of 
regfac times half the average of the squares of the network weights. (The use of a regularization factor often 
improves the generalization performance of a neural network, by keeping the size of the weights under con-
trol.) This parm must always be set, even for test runs (since they also compute the error value, which always 
uses regfac); however, its effect can be nullified by just setting it to 0.

alpha: A parm required by the type_1 error function: see Section A.4.2.2.2.

temperature: For Boltzmann pruning: see the switch parm boltzmann. A higher temperature causes more severe 
pruning.

egoal: A stopping condition: stop when error becomes less than or equal to egoal.

gwgoal: A stopping condition: stop when | g | / | w | becomes less than or equal to gwgoal, where w is the vector of 
network weights and g is the gradient vector of the error with respect to w.

errdel: A stopping condition: stop if the number of iterations used so far is at least kmin and the error has not decreased 
by at least a factor of errdel over the most recent block of nfreq iterations.

oklvl: The value of the highest network output activation produced when the network is run on a pattern (the position 
of this highest activation among the output nodes is the hypothetical class) can be thought of as a measure of 
confidence. This confidence value is compared with the threshold oklvl, in order to decide whether to classify 
the pattern as belonging to the hypothetical class, or to reject it, i.e. to consider its class to be unknown 
because of insufficient confidence that the hypothetical class is the correct class. The numbers and percent-
ages of the patterns that mlp reports as correct, wrong, and unknown, are affected by oklvl: a high value of 
oklvl generally increases the number of unknowns (a bad thing) but also increases the percentage of the 
accepted patterns that are classified correctly (a good thing). If no rejection is desired, set oklvl to 0. (Mlp uses 
the single oklvl value specified for a run; but if the switch parm do_cvr is set to true, then mlp also makes a 
full correct vs. rejected table for the network (for the finished network if a training run). This table shows the 
(number correct) / (number accepted) and (number unknown) / (total number) percentages for each of several 
standard oklvl values.)

trgoff: This number sets how mildly the target values for network output activations vary between their “low” and 
“high” values. If trgoff is 0 (least mild, i.e. most extreme, effect), then the low target value is 0 and the high, 
1; if trgoff is 1 (most mild effect), then low and high targets are both (1 / nouts); if trgoff has an intermediate 
value between 0 and 1, then the low and high targets have intermediately mild values accordingly.

scg_earlystop_pct: This is a percentage that controls how soon a hybrid SCG/LBFGS training run (hybrid training 
can be used only if there is to be no Boltzmann pruning) switches from SCG to LBFGS. The switch is done 
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the first time a check (checking every nfreq’th iteration) of the network results finds that every class-subset 
of the patterns has at least scg_earlystop_pct percent of its patterns classified correctly. A suggested value for 
this parm is 60.0.

lbfgs_gtol: This value is used for the gtol argument of the LBFGS optimizer. It controls the accuracy of the line search 
routine mcsrch. If the function and gradient evaluations are inexpensive with respect to the cost of the itera-
tion (which is sometimes the case when solving very large problems) it may be advantageous to set lbfgs_gtol 
to a small value. A typical small value is 0.1. Lbfgs_gtol must be greater than 1.e-04.

A.2.4 Switch Parms

Each of these parms has a small set of allowed values; the value is specified as a string, or less verbosely, as 
a code number (shown in parentheses after string form):

train_or_test:
train (0): Train a network, i.e. optimize its weights in the sense of minimizing an error function, using a train-
ing set of patterns.

test (1): Test a network, i.e. read in its weights and other parms from a file, run it on a test set of patterns, and 
measure the quality of the resulting performance.

purpose:
Which of two possible kinds of engine the network is to be. This is an architecture parm, so it should be left 
unset for a run that is to read a network weights file. The allowed values are:

classifier (0): The network is to be trained to map any feature vector to one of a small number of classes. It 
is to be trained using a set of feature vectors and their associated correct classes.

fitter (1): The network is to be trained to approximate an unknown function that maps any input real vector 
to an output real vector. It is to be trained using a set of input-vector/output-vector pairs of the function. 
NOTE: this is not currently supported.

errfunc:
Type of error function to use (always with the addition of a regularization term, consisting of regfac times 
half the average of the squares of the network weights). See the formulas under “Err, Ep, Ew” in Section 
A.4.2.2.2 for the definitions of these error functions.

mse (0): Mean-squared-error between output activations and target values, or its equivalent computed using 
classes instead of target vectors. This is the recommended error function.

type_1 (1): Type 1 error function; requires floating-point parm alpha be set. (Not recommended.)

pos_sum (2): Positive sum error function. (Not recommended.)

boltzmann:
Controls whether Boltzmann pruning of network weights is to be done and, if so, the type of threshold to use:

no_prune (0): Do no Boltzmann pruning.

abs_prune (2): Do Boltzmann pruning using threshold exp(- |w| / T), where w is a network weight being con-
sidered for possible pruning and T is the Boltzmann temperature.

square_prune (3): Do Boltzmann pruning using threshold exp(- w2 / T), where w and T are as above.
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acfunc_hids, acfunc_outs:
The types of activation functions to be used on the hidden nodes and on the output nodes (separately settable 
for each layer). These are architecture parms, so they should be left unset for a run that is to read a network 
weights file. The allowed values are:

sinusoid (0): f(x) = .5 * (1 + sin(.5 * x))

sigmoid (1): f(x) = 1 / (1 + exp(-x)) (Also called logistic function.)

linear (2): f(x) = .25 * x

priors:
What kind of prior weighting to use to set the final pattern-weights, which control the relative amounts of 
impact the various patterns have when doing the computations. These final pattern-weights remain fixed for 
the duration of a training run, but of course they can be changed between training runs.

allsame (0): Set each final pattern-weight to (1 / npats). (The simplest thing to do; appropriate if the set of 
patterns has a natural distribution.)

class (1): Set each final pattern-weight to the class-weight of the class of the pattern concerned divided by 
npats; read the class-weights from class_wts_infile. (Appropriate if the frequencies of the several classes, in 
the set of patterns, are not approximately equal to the natural frequencies (prior probabilities), so as to com-
pensate for that situation.)

pattern (2): Set the final pattern-weights to values read from pattern_wts_infile divided by npats. (Appro-
priate if none of the other settings of priors does satisfactory calculations (one can do whatever calculations 
one desires), or if one wants to dynamically change these weights between sessions of training.)

both (3): Set each final pattern-weight to the class-weight of the class of the pattern concerned, times the pro-
vided pattern-weight, and divided by npats; read the class-weights and pattern-weights from files class_-
wts_infile and pattern_wts_infile. (Appropriate if one wants to both adjust for unnatural frequencies, and 
dynamically change the pattern weights.)

patsfile_ascii_or_binary:
Tells mlp which of two supported formats to expect for the patterns file that it will read at the start of a run. 
(If much compute time is being spent reading ascii patsfiles, it may be worthwhile to convert them to binary 
format: that causes faster reading, and the binary-format files are considerably smaller.)

ascii (0): patterns_infile is in ascii format.

binary (1): patterns_infile is in binary (FORTRAN-style binary) format.

do_confuse:
true (1): Compute the confusion matrices and miscellaneous information as described in Section A.4.2.3, and 
include them in short_outfile.

false (0): Do not compute the confusion matrices and miscellaneous information.

show_acs_times_1000:
This parm need be set only if the run is to produce a long_outfile.

true (1): Before recording the network output activations in long_outfile, multiply them by 1000 and round 
to integers.
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false (0): Record the activations as their original floating-point values.

do_cvr: (See the notes on oklvl.)
true (1): Produce a correct-vs.-rejected table and include it in short_outfile.

false (0): Do not produce a correct-vs.-rejected table.
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A.3 Training the MLP in hsfsys2

Output files generated from mlp are provided in 4 subdirectories under weights/mlp: digit (containing output 
files from training on segmented numeric character images), lower (output files from training on lowercase characters), 
upper (output files from training on uppercase characters), and const (output files from training on both lower and 
uppercase characters). For example, the digit directory contains the input file (h6_d.ml) and output file (h6_d.evt) from 
running mis2evt, the input files (d.set, h6_d.evt, h6_d.cl, and h6_d.ml) and the output file (h6_d.pat) from mis2pat2, a 
second set of input files (d.set, h6_d.evt, h7_d.cl, and h7_d.ml) and the output file (h7_d.pat) from mis2pat2, and input 
and output files from running the program mlp.

The specfile used by mlp to train the classifier on digit images is d.spc. This specfile requires the input files 
d.scn, the training set h6_d.pat, and the testing set h7_d.pat, and it invokes 7 sequential pairs of mlp training/testing 
sessions. Three files are generated from each training/testing session. The following files are created from the first ses-
sion: trn_0.err (a report of the progressive error rates achieved on the training set), trn_0.wts (the resulting weights 
trained in the session), and tst_0.err (a report of the error rate achieved on the testing set using the most recent set of 
weights from training). For the next training/testing session, training resumes with the MLP network initialized to the 
weights contained in trn_0.wts. The output files from this session are trn_1.err, trn_1.wts, and tst_1.err. The weights 
file trn_1.wts is then used as input to the next session and so on until the final session is complete. The files trn_6.err 
and trn_6.wts contain the final results of training and tst_6.err contains the error rate achieved by using the final set of 
weights to classify the testing set contained in h7_d.pat.

As can be seen from the lists above, there are numerous parameters to be specified in the specfile for running 
the program mlp. A good strategy for training the MLP on a new classification problem is to first work with a single 
training/testing session, surveying different combinations of parameter settings until a reasonable amount of training 
is achieved within the first 50 iterations, for example. This typically involves using a relatively high value for regular-
ization (such as 2.0 with handprint character recognition); varying the number of hidden nodes in the network; and 
trying different levels of temperature, typically incrementing or decrementing by powers of 10. For handprint character 
classification, the number of hidden neurodes should be set to equal or greater than the number of input KL features, 
and a temperature of 1.0e-4 works well.

Once reasonable training is achieved, these parameters should remain fixed, and successive sessions of train-
ing/testing are performed according to a schedule of decreasing regularization. For handprint character classification 
it works well to specify about 50 iterations for each training session, and to use a regularization factor schedule starting 
at 2.0 and decreasing to 1.0, 0.5, 0.2, 0.1, 0.01, and 0.001 for each successive training session. This process of multiple 
training/testing sessions initiates MLP training within a reasonable solution space, and then enables the machine learn-
ing to refine its solution so that convergence is achieved while maintaining a high level of generalization by controlling 
the dynamics of constructing well behaved decision surfaces. The intermediate testing sessions allow one to evaluate 
the progress made on an independent testing set, so that a judgment can be made as to whether incremental gains in 
training have reached diminishing returns. The theory behind the control of dynamical changes within the MLP learn-
ing process is discussed in Reference [8].

Training the MLP in this fashion generates superior decision surfaces thus providing more robust activations 
for use as confidence values when rejecting confusing classification. This improvement in accuracy does however 
come with a cost. The program mlp is computationally intense. For example, the training of the weights in weights/
mlp/digits required approximately 5.5 days of continuous CPU time on a Sun SPARCstation 2 with a Weitek CPU 
upgrade. This process is of course done once off-line, and then the resulting weight files are reused over and over by 
the actual recognition system.
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A.4 Explanation of the output produced during MLP training

When the program mlp does a training run, it writes output to the standard error and writes the same output 
to the short_outfile specified in the specfile. The purpose of this section is to explain the meaning of this output. (Mlp 
produces similar output for a testing run except that the “training progress” part is missing.)

A.4.1 Pattern-Weights

As a preliminary, it will be helpful to discuss the “pattern-weights” which mlp uses, since they are used in the 
calculations of many of the values shown in the output. The pattern-weights are “prior” weights, one for each pattern;2 
they remain constant during a training (or testing) run, although it is possible to do a training “meta-run” that is a 
sequence of training runs and to change the pattern-weights between the runs. The setting of the pattern-weights is 
controlled by the priors value set in the specfile and may be affected by provided data files, as follows (in all cases, 
the division by N is merely a normalization that slightly reduces the amount of calculation needed later):

allsame: if priors is allsame then each pattern-weight is set to (1/N), where N is the number of patterns.

class: if this is the priors value, then a file of class-weights must be supplied; each pattern-weight is set to the class-
weight of the class of the corresponding pattern, divided by N.

pattern: a file of (original) pattern-weights must be supplied; each of them is divided by N to produce the correspond-
ing pattern-weight.

both: files of class-weights and (original) pattern-weights must both be supplied; each pattern-weight is then set to the 
class-weight of the class of the corresponding pattern, times the corresponding (original) pattern-weight, 
divided by N.

The pattern-weights are used in the calculation of the error value that mlp attempts to minimize during train-
ing: when the training patterns are sent through the network, each pattern produces an error contribution, which gets 
multiplied by the pattern-weight for that pattern before being added to an error accumulator (Section A.4.2.2.2). The 
pattern-weights are also involved in the calculations of several other quantities besides the error value; all these uses 
are described below. Reference [8] discusses the use of class-based prior weights (Section 5.4, pages 10-11), which 
correspond to the class setting of priors.

A.4.2 Explanation of Output

A.4.2.1 Header

The first part of the output is a “header” showing the specfile parameter values. Here is the header of the short 
outfile weights/mlp/digit/trn_0.err produced by the first training run of a sequence of runs used to train the digits clas-
sifier:

2. A pattern is a feature-vector/class or feature-vector/target-vector pair.
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A.4.2.2 Training Progress

The next part of the output lists a running update on the training progress. The first few lines of training 
progress reported are:

The line

comprises column headers that pertain to those subsequent lines that begin with an integer (“first progress lines”); each 
first progress line is followed by a “second progress line”, and there are “pruning lines” if Boltzmann pruning is used. 
These three types of lines are discussed below, second progress lines first because some of the calculations used to 
produce them are later used to make the first progress lines.

 Classifier MLP
 Training run
 Patterns file: h6_d.pat; using all 61094 patterns
 Final pattern-wts: set all equal,
  no files read
 Error function: sum of squares
 Reg. factor: 2.000e+00
 Activation fns. on hidden, output nodes: sinusoid, sinusoid
 Nos. of input, hidden, output nodes: 128, 128, 10
 Boltzmann pruning, thresh. exp(-w^2/T), T 1.000e-04
 Will use SCG
 Initial network weights: random, seed 12347
 Final network weights will be written as file trn.wts.0
 Stopping criteria (max. no. of iterations 50):
  (RMS err) <= 0.000e+00 OR
  (RMS g) <= 0.000e+00 * (RMS w) OR
  (RMS err) > 9.900e-01 * (RMS err 10 iters ago) OR
  (OK - NG count) < (count 10 iters ago) + 1.  (OK level: 0.000)
 Long outfile not made

 SCG: doing <= 50 iterations; 17802 variables.

 pruned   282    28   310   C  1.46372e+05  H  2.33407e+04  R  84.05  M   0.00  T  0.0851
     Iter   Err (   Ep    Ew)     OK    UNK     NG      OK   UNK    NG
        0 0.691 (0.557 0.289)   5999      0  55095 =   9.8   0.0  90.2 %
   0.0    0  5 19  0  0 66 11  0  0  1
 pruned   363    25   388   C  1.51345e+05  H  2.63755e+04  R  82.57  M  -0.01  T  0.0853
 pruned   419    27   446   C  1.46145e+05  H  2.63513e+04  R  81.97  M  -0.01  T  0.0853
 pruned   449    28   477   C  1.64731e+05  H  2.68884e+04  R  83.68  M  -0.01  T  0.0849
 pruned   472    32   504   C  1.72004e+05  H  2.71783e+04  R  84.20  M  -0.01  T  0.0846
 pruned   490    32   522   C  1.39698e+05  H  2.70099e+04  R  80.67  M  -0.01  T  0.0845
 pruned   514    37   551   C  1.88008e+05  H  2.73029e+04  R  85.48  M  -0.01  T  0.0844
 pruned   534    38   572   C  1.49777e+05  H  2.70401e+04  R  81.95  M  -0.01  T  0.0838
 pruned   540    40   580   C  1.93717e+05  H  2.72770e+04  R  85.92  M  -0.01  T  0.0814
 pruned   539    38   577   C  1.66433e+05  H  2.56886e+04  R  84.57  M  -0.01  T  0.0774
 pruned   548    37   585   C  2.07274e+05  H  2.71835e+04  R  86.89  M  -0.01  T  0.0741
       10 0.488 (0.307 0.268)  10906      0  50188 =  17.9   0.0  82.1 %
   5.2   15 93  5  6  5  6  8  9  6 16

     Iter   Err (   Ep    Ew)     OK    UNK     NG      OK   UNK    NG
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A.4.2.2.1 Second progress lines

These are the lines that begin with fractional numbers; the first of them in the above example is

Ignoring for a moment the first value in such a line, the remaining values are the “percentages” right by class, which 
mlp calculates as follows. It maintains three pattern-weight-accumulators for each class:

When mlp sends a training pattern through the network the result is an output activation for each class; the 
hypothetical class is, of course, whichever class receives the highest activation. If the highest activation equals or 
exceeds the rejection threshold oklvl set in the specfile, then mlp accepts its result for this pattern, and adds its pattern-
weight (Section A.4.1) either to  or to  - where i is the correct class of the pattern - according to whether the 
network classified the pattern rightly or wrongly. Otherwise, i.e. if the highest activation is less then oklvl, mlp adds 
the pattern-weight to . These accumulators reach their final values as a result of the sending of all the training pat-
terns through the network. Mlp then defines the right “percentage” of correct class i to be

It shows these values, rounded to integers, in the second progress lines, as the values after the first one. For example, 
the second progress line above shows that the right “percentages” of correct classes 0 and 1 are 0 and 5.3

If priors is allsame then the pattern-weights are all equal and so , etc. are the numbers classified rightly, 
etc. times this single pattern-weight; the pattern-weight cancels out between the numerator and denominator of the 
above formula, so that the resulting value really is the percentage of the patterns of class i that the network classified 
rightly. If priors has a value other than allsame - i.e. class, pattern, or both - then the right “percentages” of the classes 
are not the simple percentages but rather are weighted quantities, which may make more sense than the simple per-
centages if some patterns should have more impact than others, as indicated by their larger weights.4

As for the first value of a second progress line, this is merely the minimum of the right “percentages” of the 
classes, but shown rounded to the nearest tenth rather than to the nearest integer. This minimum value shows how the 
network is doing on its “worst” class.5

3. In this case the classes whose “index numbers” are 0 through 9 happen to be the digits 0 through 9, but that is entirely coincidental. 
The classes could be letters, fingerprint classes, phonemes, or who knows what. In this discussion, “class i” merely means the class whose 
index number, numbering starting at 0, is i. Note also that although the software uses class index numbers that start at 0, the class index 
numbers it writes to long_outfile start at 1.
4. In particular, if the training patterns set is such that the proportions of the patterns belonging to the various classes are not approxi-
mately equal to the natural frequencies of the classes, then it may be a good idea to use class-weights (priors set to class, and class-
weights provided in a file) to compensate for the erroneous distribution. See [8].
5. When mlp uses hybrid SCG/LBFGS training rather than only SCG - it does this only if pruning is not specified - it switches from SCG 
to LBFGS when the minimum reaches or exceeds a specified threshold, scg_earlystop_pct.

   0.0    0  5 19  0  0 66 11  0  0  1

 = right pattern-weight-accumulator for correct class i

 = wrong pattern-weight-accumulator for correct class i

 = unknown (rejected) pattern-weight-accumulator for correct class i
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A.4.2.2.2 First progress lines

These are the lines that begin with an integer. The column headings -- which pertain to these lines -- and the 
first of these lines in the example, are:

The values in a first progress line have the following meanings:

Iter: Training iteration number, numbering starting at 0. A first progress line (and second progress line) are produced 
every nfreq’th iteration (set in the specfile).

Err, Ep, Ew: The calculations leading to these values are as follows.

     Iter   Err (   Ep    Ew)     OK    UNK     NG      OK   UNK    NG
        0 0.691 (0.557 0.289)   5999      0  55095 =   9.8   0.0  90.2 %

N = number of patterns

n = number of classes

= activation produced by pattern i at output node j (i.e. class j)

= target value for 

= pattern-weight of pattern i (Section A.4.1)

=

= error contribution for pattern i if errfunc is mse

=

= , where k is correct class of pattern i

= error contribution for pattern i if errfunc is type_1 (α is alpha)

=

=

= error contribution for pattern i if errfunc is pos_sum

=

E1 = , , or , according to errfunc

Ep = E1 if errfunc is pos_sum,  otherwise
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Mlp prints the Err, Ep and Ew values as defined above. Note that the value mlp attempts to minimize is E, 
but presumably the same effect would be had by attempting to minimize Err, since it is an increasing function 
of E.

OK, UNK, NG, OK, UNK, NG: “Numbers” of patterns OK (classified correctly), UNKnown (rejected), and wroNG 
or No Good (classified incorrectly), then the corresponding “percentages”. Mlp calculates these values as fol-
lows. It adds up the by-class accumulators , , and  defined earlier to make overall accumulators, 
where n is the number of classes:

It computes “numbers” right, wrong, and unknown -- the first OK, NG, and UNK values of a first progress 
line -- as follows, where N is the number of patterns and square brackets denote rounding to an integer:

From these “numbers”, mlp computes corresponding “percentages” -- the second OK, NG, and UNK values 
-- as follows:

If priors is allsame then since the pattern-weights are all equal, cancellation of the single pattern-weight 
occurs between the numerators and denominators of the formulas above for  and , so that they really 
are the numbers of patterns classified rightly and wrongly, and then it is obvious that  really is the number 
unknown and that , etc. really are the percentages classified rightly, etc.

A.4.2.2.3 Pruning lines (optional)

These lines, which begin with “pruned”, appear if Boltzmann pruning is specified (boltzmann set to abs_-
prune or square_prune in specfile, and a temperature set). The first pruning line of the example is

Regardless of nfreq, mlp writes a pruning line every time it performs pruning. The first three values of a pruning line 
are the numbers of network weights that mlp pruned (temporarily set to zero) in the first weights layer, in the second 
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 pruned   282    28   310   C  1.46372e+05  H  2.33407e+04  R  84.05  M   0.00  T  0.0851
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layer, and in both layers together. The remaining values announced by the letters C, H, R, and M, are calculated as 
follows (the value announced by T actually is not calculated correctly, and should be ignored):

A.4.2.3 Confusion Matrices and Miscellaneous Information (Optional)

If do_confuse is set to true in the specfile, the next part of the output consists of two “confusion matrices” 
and some miscellaneous information:

= number of network weights (both layers)

= number of weights pruned

=

= maximum & minimum absolute values of unpruned weights

C = =  capacity

= sum of logarithms of absolute values of unpruned weights

=

H = = entropy

R = = redundancy

M = mean of unpruned weights
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 oklvl 0.00
 # Highest two outputs (mean) 0.856 0.126; mean diff 0.730
   key  name
    0   0
    1   1
    2   2
    3   3
    4   4
    5   5
    6   6
    7   7
    8   8
    9   9
 #  key:      0   1   2   3   4   5   6   7   8   9
 #  row: correct, column: actual
 #       0: 5754  43   6  11  65   6  33   3  10   8
 #       1:   0 6547  36  20  14  31  31  12  17   2
 #       2:  28  26 5826  66  23   7  26  29  47   8
 #       3:   9  10  76 5827   8  50   1  44  39  21
 #       4:  14  14  22   2 5828   0  23   4  35  68
 #       5:  34  15   5 125  21 5502  55   4  52  25
 #       6:  18  23  14   0   7  18 5970   0   1   0
 #       7:   3  12  11   6  30   1   0 6186  18  67
 #       8:  17 129  56 136  65  81  14  17 5393  58
 #       9:  10  11   1  16  58   7   0  79  37 5856
 #  unknown
 #    *    0   0   0   0   0   0   0   0   0   0

 percent of true IDs correctly identified (rows)
          97  98  96  96  97  94  99  98  90  96
percent of predicted IDs correctly identified (cols)
          98  96  96  94  95  96  97  97  95  96
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The first line of this optional section of the output shows the value of the rejection threshold oklvl set in the 
specfile (this was already shown in the header). The next line shows the mean values, over the training patterns as sent 
through the network at the end of training, of the highest and second-highest output node values, and the mean differ-
ence of these values. Next is a table showing the short classname (“key”) and long classname (“name”) of each class. 
In this example the keys and names are the same, but in general the names can be quite long whereas the keys must be 
no longer than two characters in length: the short keys are used to label the confusion matrices.

Next are the confusion matrices of “numbers” and of “mean highest activation level”. Mlp has the following 
accumulators:

If a pattern sent through the network produces a highest activation that meets or exceeds oklvl -- so that mlp accepts 
its result for this pattern -- then mlp adds its pattern-weight to  and adds the highest activation to  
where i and j are the correct class and hypothetical class of the pattern. Otherwise, i.e. if mlp finds the pattern to be 
unknown (rejects the result), it adds its pattern-weight to  (Section A.4.2.2.1) and adds the highest activation to 

, where i is the correct class of the pattern. After it has processed all the patterns, mlp calculates the confu-
sion matrix of “numbers” and its “unknown” line; some additional information concerning the rows and columns of 
that matrix; and the confusion matrix of “mean highest activation level” and its “unknown” line, as follows.

First define some notation:

 #  mean highest activation level
 #  row: correct, column: actual
 #  key:      0   1   2   3   4   5   6   7   8   9
 #       0:  91  51  39  44  45  35  43  30  36  33
 #       1:   0  90  40  43  48  42  37  41  47  29
 #       2:  44  41  86  46  37  42  47  46  43  25
 #       3:  53  45  45  88  32  52  27  50  48  43
 #       4:  35  45  52  41  82   0  44  38  44  56
 #       5:  46  37  47  53  38  85  49  32  44  51
 #       6:  35  50  35   0  42  48  91   0  14   0
 #       7:  39  39  47  32  45  22   0  89  36  49
 #       8:  40  56  36  44  41  47  38  35  81  40
 #       9:  40  36  16  50  50  46   0  66  50  87
 #  unknown
 #    *    0   0   0   0   0   0   0   0   0   0

 Histogram of errors, from 2^(-10) to 1
  82893  33517  46509  62676  80193  94688  90535  64963  34608  14910   5448
   13.6    5.5    7.6   10.3   13.1   15.5   14.8   10.6    5.7    2.4    0.9%

= pattern-weight accumulator for correct class i and hypothetical class j

= high-activation accumulator for correct class i and hypothetical class j

= high-activation unknown accumulator for correct class i
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Mlp calculates the values as follows, where , , and  are as defined in Section A.4.2.2.1 and square brackets 
again denote rounding to an integer:6

If priors is allsame, then since the pattern-weights are all equal, cancellation of the single pattern-weight 
between numerator and denominator causes  above to be really the number of patterns of correct class i and 
hypothetical class j; similarly,  really is the number of patterns of correct class i that were unknown; 

 and  really are the percentages that the on-diagonal -- correctly classified -- numbers in the matrix com-
prise of their rows and columns respectively;  really is the mean highest activation level (multiplied by 100 
and rounded to an integer) of the patterns of correct class i and hypothetical class j; and  really is the mean 
highest activation level of the patterns of correct class i that were unknown. If priors has one of its other values, the 
printed values are weighted versions of these quantities.

The final part of this optional section of the output is a histogram of errors. This pertains to the absolute errors 
between output activations and target activations, across all output nodes (10 nodes in this example) and all training 
patterns (61,094 patterns in this example), when the patterns are sent through the trained network. Of the resulting set 
of absolute error values (610,940 values in this example), this histogram shows the number (first line) and percentage 
(second line) of these values that fall into each of the 11 intervals (-∞, 2-10], (2-10, 2-9], …, (2-1, 1].

A.4.2.4 Final Progress Lines

The next part of the output consists of a repeat of the column-headers line, final first-progress-line, and final 
second-progress-line of the training progress part of the output, but with an F prepended to the final first-progress-line:

6. The denominators of the expressions shown here for  and  are equal, but these expressions show what the 
software actually calculates, rather than what it would have calculated if it had been more efficient.
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A.4.2.5 Correct-vs.-Rejected Table (Optional)

If do_cvr is set to true in the specfile, the next part of the output is a correct-vs.-rejected table; the first and 
last few lines of this table, from the example output, are:

Mlp produces this table values as follows. It has a fixed array of rejection-threshold values, which have been set in an 
unequally-spaced pattern that works well, and it uses three pattern-weight-accumulators for each threshold:

As mlp sends each pattern through the finished network,7 it loops over the thresholds : for each k, it com-
pares the highest network activation produced for the pattern with  to decide whether the pattern would be accepted 
or rejected if  were used. If accepted, it adds the pattern-weight of that pattern either to  or to  accord-
ing to whether it classified the pattern rightly or wrongly; if rejected, it adds the pattern-weight to . After all 
the patterns have been through the network, mlp finishes the table as follows. For each threshold  it calculates the 
following values:

Mlp then writes a line of the table. The values of the line are the threshold index k plus 1 with “tr”8 appended, 
 (“thresh”),  (“right”),  (“unknown”),  (“wrong”),  (“correct”), and  

(“rejected”). If priors is allsame then, since all pattern-weights are the same, cancellation of the single pattern-weight 
occurs between numerator and denominator in the above expressions for  and , so they really are the 
number of patterns classified rightly and wrongly if threshold  is used; and then it is obvious that  really is 
the number of patterns unknown for this threshold,  really is the percentage of the patterns accepted at this 

7. If do_cvr is true then mlp calculates a correct-vs.-rejected table, but only for the final state of the network in the training run, of course: 
if it produced such a table for each training iteration, its output would be extremely verbose.
8. for “training”’; the correct-vs.rejected table for a test run uses “ts”

          thresh     right   unknown     wrong   correct  rejected
 1tr    0.000000     58690         0      2404     96.07      0.00
 2tr    0.050000     58690         0      2404     96.07      0.00
 3tr    0.100000     58690         2      2402     96.07      0.00
 4tr    0.150000     58689        12      2393     96.08      0.02
 5tr    0.200000     58672        73      2349     96.15      0.12

 . . .

48tr    0.975000     15760     45333         1     99.99     74.20
49tr    0.980000     13687     47406         1     99.99     77.60
50tr    0.985000     11519     49574         1     99.99     81.14
51tr    0.990000      8969     52124         1     99.99     85.32
52tr    0.995000      5971     55122         1     99.98     90.22

= kth threshold

= right pattern-weight-accumulator for kth threshold

= wrong pattern-weight-accumulator for kth threshold

= unknown pattern-weight-accumulator for kth threshold
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threshold that were classified correctly, and  really is the percentage of the N patterns that were rejected at 
this threshold. If priors has one of its other values, then the tabulated values are weighted versions of these quantities.

A.4.2.6 Final Information

The final part of the output shows miscellaneous information:

The first line here shows what iteration the training run ended on, and the value and meaning of the return 
code ierr, which indicates why mlp stopped its training run: in the example, the specified maximum number of itera-
tions (niter_max), 50, had been used. (This training run was actually the first run of a sequence that were used; its 
initial network weights were random, but each subsequent run used the final weights of the preceding run as its initial 
weights. The only parameter varied from one run to the next was the regularization factor regfac, which was decreased 
at each step: successive regularization. Each run was limited to 50 iterations, and it was assumed that this small itera-
tion limit would be reached before any of the other stopping conditions were satisfied. When sinusoid activation func-
tions are used, as in this case, best training requires that successive regularization be used. If sigmoid functions are 
used, it is just as well to do only one training run, and in that case one should probably set the iteration limit to a large 
number so that training will be stopped by one of the other conditions, such as an error goal (egoal).)

The next line shows: how many iterations mlp used (counting the 0’th iteration; yes, this is stupid after it 
already said what iteration it stopped on); how many calls of the error function it made; the final error value; and the 
final size of the error gradient vector (square root of sum of squares), normalized by dividing it by the final size of the 
weights. The next line shows the root-mean-square of the change in weights, between their initial values and their final 
values. The next line shows the combined user and system time used by the training run.9 The final line merely reports 
the name of the file to which mlp wrote the final weights.

9. Setting the initial network weights, reading the patterns file, and other (minor) setup work, are not timed.

p
cvr rej,( )

 Iter 50; ierr 1 : iteration limit
 Used 51 iterations; 155 function calls; Err 0.156; |g|/|w| 2.444e-04
 Rms change in weights  0.241

 User+system time used:  71087.7 (s)  19:44:47.7 (h:m:s)
 Wrote weights as file trn.wts.0


