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Abstract

Statistical models of neural networks predict that the difference in training and testing
error will be luear in network complexity and quadratic in the feature noise of the training
set. Models of this kind have been applied to the Boltzmann pruning of a large MLDP (3786
weights) trained on 10.000 aud tested on 10.000 Karhunen-Loove {IK-L) features sets derived
frow images of handprinted characters and to a fingerprint classification problem which has
17.157 weights anud is trained and tested on 2.000 K-L feature sets. Using the information
content to optimize network size.the pruned networks have achieved high rates of recoguition
and at the same time been reduced in size by up to 90%. In this pruning process the
product of the network capacity and the recognition error can be used effectively to select
an optimum pruned network. If. in addition to conventional Boltzimnann weight reduction. a
weight reduction method which takes the variance content of the K-L hy weighing the features
using the K-L ecigenvalues is used. networks with optimal size and information conteut can
be constructed.

1 Introduction

The focus of most neural network applications lias been on error minimization, A standard
method of error minimization for real world problems is backpropagation [1] although more
powerful methods of optimization have also been used [2].[3]. In addition to the problem
of error reduction. effective generalization also requires that the information content of the
network he reduced to some minimum value [4]. [5].[6]. The resulting reduced network has
the advantage of increased speed achieved by using fewer connections and is more effective in
terms of the use of information capacity to aclhieve a specified pattern recoguition accuracy.

The optimization strategy nsed in this research focuses on information content and the
efficiency of information transferred to the network from the training set. This results in a
smaller network with a very high information content that allows the use of a reasonably small
training set. We have used the Boltzmann method as a secondary method of optimization
to prune the networks used here [4]. [5]. The method can be used in conjunction with a
primary method of optimization such as Scaled Conjugate Gradient scheme [3]. The resulting
optimized Multi-Layer Perceptron {MLP) network has been used for botl fingerprint pattern
level classification (PCA) and handwritten character recognition (OCR). Each recognition
problem is briefly described in section 2. The method used in the statistical characterization



is discussed in section 3. The results of this size optimization for Boltzmann pruned networks
is discussed in section 4. The results of the Eigen weighted pruning are discussed in section
[
3.

2 Pattern Recognition Experiments

The smaller of the two systens is a MLDP based character recogunition system. When isolated
characters are used. recognition rates of 10,000 characters/second have been achieved and
recoguition accuracy of 98.9% with 10% rejection has also been achieved using a nassively
parallel computer. This speed contrasts sharply with the integrated system speed of 30
seconds/page. recognizing 130 characters/page. or 4.33 characters/second for total systems
recognition time. The recognition time. using neural networks, is 0.34% of the total time in
this systeni. At the same time. the module which loads image data into the parallel processor
uses 309 of the time and segmentation nses 58% of the total time. Details of this system are
given in [7].

The larger. wore complex system. is a system for pattern classification of fingerprints.
The system uses ridge-valley direction to convert the fingerprint image into alignment and
classification features. alignment of fingerprint cores from ridge-valley directions as the image
alignment method. K-L transforms of ridge-valley directions as a feature extraction method
and a MLP as a classification method. The ridge-valley direction detection takes 0.4 s/image,
the alignment (0.1 s/image, the K-L transform 20 ms/image. and the classification 1ms/image
ol a massively parallel computer. A classification accuracy of 93% is aclieved with 10%
rejects. The image processing prior to classification takes more than 99% of total processing
tite: the classification time is 0.03% of the total system time. Details of this system are
given in [8].

The K-L metlod is used [9] for feature extraction. This method is a self-organizing method
[10] that maximizes the variance in a feature set by using the principal eigenfunctions of the
covariance matrix of the feature set. In the fingerprint system. local ridge directions are
extracted from the image and used in subsequent processing. In the character recoguition
system. character images are used directly as input to the K-L transform. A similar technique
Lias also heew used with wavelets for face recoguition [11] and for Kanji character recoguition
[12]. For characters. the 1024 bit image is converted to 48 features. For finger prints. G40
ridge valley direction components are couverted to 128 features,

In this work K-L features were used to train MLP's using different methods of statistical
size reduction. Quly the training and recognition parts of the system were involved in the
test, For the OCR problem 10.000 K-L feature from characters taken from NIST special data
base 3 [13] were used. For the PCA problem 2.000 K-L features taken from fingerprints from
NIST special data base 4 [14] were used.

3 Statistical Pruning of Networks

The SCG wethod is used as a starting network for the Boltzmann weight pruning algorithm.
For the OCR problem the network has an input layer with 48 nodes, a hidden layer with 64
nodes, and an output layer with 10 nodes. For the fingerprint problem. the network has an
input layer with 128 input nodes. a hidden layer witl 128 nodes and an output layer wirh five
nodes. In both cases the initial network is a fully connected network. The pruning using the



Boltzmanu method was carried out by selecting a normalized temperature. T, and removing
weights based on a probability of removal:

P; = exp(—uw?/T).

The values of P, are compared to a set of nuiformly distributed random numbers. B;. ou the
interval [0.1]. If the probability P, is greater than R, then the weight is set to zero. The
process is carried out for cach iteration of the SCG optimization process and is dynamic.
If a weight is removed it may subsequently be restored by the SCG algorithm: the restored
weight may survive if it has sufficient magnitude in subsequent iterations.

This method can be modified to include information about the strength of the input
features so that:

P = le)(—/\Jlt'f/T].

where A, is the eigenvalue associated with the jth K-L feature for weights connected to these
features in the iuput layer and A; = 1 for weights connecting the hidden and output layers.
This method of pruning is referred to as eigenvalue-weighted pruning.

During this optimization process two important measures of information content are
calculated [15]. The information capacity of the network, C. is given hy:

C = —Vu'fs((]-ogz(lwm(u'l - logz(lwminl) + 1)

where N, is the number of non-zero weights. w4, is the weight with the largest magnitude.
and iy, ;, is the weight with the smallest magnitude. The entropy is given by:

:\'u ta

H=C- { Z lng [“.il + 4\'-u'ls(1 - 10?;2( u'min)))

i=1

The effect ou the information content of the network can be evaluated by examining the
distribution of weights in the network as a function of temperature or by evaluation of the
information capacity of the network.

4 Statistical Characterization of Network Pruning

The results of nsing Boltzmann and eigenvalue weighted pruning during the training of a
network for the solution of the OCR problem is shown in table 1. The results of using
Boltzmann aud eigenvalue weighted pruning during the training of a network for the solution
of the PCA problem is shown in table 2. The statistical evaluation of each network were
carried out using the equations provided in the previous section. Examination of these results
shows two distinet results. The OCR problem is easier to solve than the PCA problem and
the efficiency of information transfer in both cases is improved by the eigenvalue weighting
of the pruning.

In every statistical measure of network capacity and accuracy the QCR network pruned
with the cigenvalue weighted pruaning function is superior to the Boltzmaun pruned network.
Recoguition accuracy is higher at all temperatures for both testing and training as shown in
figures 1 and 2. At the two critical temperatures accuracy is 93.5% for the Boltzinann case
and 93.6% for the eigenvalue case. The nmmber of weights used is 1186 in the Boltzmann
case and 10065 for the eigenvalue weighted case. The capacity-error product is lower in the



eigenvalue case and the bits per weight are higher. This indicated that the informarion
transfer during training is more efficient for ecigenvalue weighted training. The reduction in
network capacity and entropy are much more gradual in the eigenvalue weighted case as can
be seem by comparing figures 3 and 4. This capacity reduction results in a clear minimum
in the capacity-error product as shown in figure 5 for Boltzmann pruning but results in a
gradual reduction in the capacity-error product for the eigenweighted case as shown in figure
G. This makes selection of the critical temperature by minimization of the capacity-error
product more difficult but much less critical for the eigenvalue weighted case.

“ Parameter l Boltzmaun | Eigen H
i 0.07 0.77
Weights 1186 1065 |
Max. Weights 3786 3786 |
Capacity(bits) 11146 10281 |
Max. Capacity(bits) 41646 41646
Accuracy(%) 93.5 93.6
Max. Accuracy(%) 04.8 094.8
Minimum Error x Capacity | 6538 560
Bits per weight 8.00 ‘ 9.79 _J|

Table 1: Parameters of the pruned network for the OCR problemn using Boltzmaun pruning and
Eigenvalue weighted Boltzmann pruning,.

” Parameter Boltzinann ‘ Eigen H

i 0.404 0.737
Weights i 1046
Max. Weights 17157 17157
Capacity(hits) 4120 6632
Max. Capacitv(bits) 171570 171570
Accuracy(%) 71.8 78.1
Max. Accuracv(%) 84.3 34.3
Minimum Errorx Capacity | 1177 1447
Bits per weiglht 6.34 7.14

Table 2: Parameters of the pruned network for the PCA problem using Boltzinann pruning and
Eigenvalue weighted Boltzmann pruning.

The result for the PCA problem are more complex. Some statistical measures of network
capacity and accuracy for the PCA network pruned with the eigenvalue weighted pruning
function are superior to the Boltzmaun pruned network and sowme are not. Recognition accu-
racy is lugler at all temperatures for botl testing and training as can be seen by comparing
figures 7 and 10. At the two eritical temperatures accuracy is 71.8% for the Boltzmann case
and 78.1% for the eigenvalue case. The number of weights used is 667 in the Boltzinann case



and 1046 for the cigenvalue weighted case. The Boltzmaun pruned network is smaller but
less accurate. The capacity-error product is high in the eigenvalue case both because there
are more weights and because the number of hits per weight is higher. This indicates that
the information transfer during training is more efficient for eigenvalue weighted training and
that more information is retained. The reduction in network capacity and entropy are much
more rapid in the eigenvalue weighted case as can be seem by comparing figures 8 and 11.
This is a significant difference from the OCR problem. This capacity reduction results in
a very gradual minimum in the capacity-error product as shown in 9 for Boltzmann prun-
ing. No clear minimum is seem in the capacity-error product for the eigenweighted case as
shown in figure 12. This makes sclection of the critical temperature by minimization of the
capacity-error product more difficult for the cigenvalue weighted case. The sharp drop in
accuracy seew in figure 10 is used to obtain T.

5 Conclusions

Statistical evaluations of error and efficicucy of information storage in pruned MLDP networks
for OCR and PCA have been made for Boltzmann pruning and cigenvalue weighted praning.
Botl methods remove weights from the network in a self-organized way desigued to optimize
information content in the network. This optimization is carried out without knowledge
of the effect of these size reductions. The cigenvalue weighted method is shown to he more
effective in redncing network size without corresponding reductions in classification accuracy.
We also show that the transfer of information from the training set using these methods is
more efficient for the eigenvalue weighted method.

In addition to evaluating the statistical efficiency of the pruning methods. some compar-
isons of the difficulty of the OCR and PCA problems can be made. The OCR problem is
reasonably well specified by the set of 10,000 K-L image features. This training set is adequate
to allow the coustruction of a high accuracy, well minimized network, The PCA problem
is still not adequately specificd by the ridge direction features of 2000 finger prints. This
suggests that solution of the PCA problem will require a larger training set, hetter features.
and more efficient transfer of information from the training set to the neural network.
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Figure 1: Network testing and training accuracy as a function of temperature for the OCR problem
using Boltzmanun pruning.
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Figure 2: Network testing and training accuracy as a function of temperature for the OCR problem
using Eigenvalue weighted pruning,
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Figure 3: Network capacity and entropy as a function of temperature for the OCR problem using
Boltziann pruning,
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Figure 4: Network capacity and entropy as a function of temperature for the OCR problem using
Eigenvalue weighted pruning.
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Figure 5: The prodnet of capacity and error as a function of temperature for the QCR problem
using Boltzmmaun pruning.
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Figure 6: The product of capacity and error as a function of temperature for the OCR problem
using Eigenvalue weighted pruning,.
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Figure 7: Network testing and training accuracy as a function of temperature for the PCA problem
using Boltzmann pruning.
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Figure 8: Network capacity and entropy as a function of temperature for the PCA problem using
Boltzmann pruning.
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Figure 9: The product of capacity and error as a function of temperature for the PCA problem
using Boltzmann pruning.

10
~ L W
DASHED TESTING
20—
SOLID TRAINING
a® "o
o= T R e A
o -~ ol
s 80— P "‘“'ww.-.m-\“-n-'--'w'r-'-_
§ :ﬂ'w.af' it ey 4"',\1;‘
T,
it
a0 T | T T T T T T T T T T T T T
o 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8

TEMPERATURE

Figure 10: Network testing and training accuracy as a function of temperature for the PCA
problem using Eigenvalue weighted pruning.
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Figure 11: Network capacity and entropy as a function of temperature for the PCA problem using
Eigenvalue weighted pruning.
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Figure 12: The product of capacity and error as a function of temperature for the PCA problem
using Eigenvalue weighted pruuing.
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