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Abstract

The guoality of reference dalabases [or Optlical Characler Recognition is vital to the meaningful
assessment of classification algorithms. The National Institute of Standards and Technology (NIST)
has produced (wo databases of segmented handprinted characters oblained [rom socially distinet
writer populations. Two approaches to the comparison of the databases are deseribed. The first uses
the eigenvalue spectrum ol the covariance malrix as an a priori measure of Lhe variance intrinsic 1o
the data. The secand eross validates the datasets using classification error (o quantify the difficuliy
of OCR.

The cigenvalue speeira from {he (raining partitions of Lhe datasets are generated during the pro-
duction of the Karhunen Loive (KL) Transforms, the leading components of which are used as
prototype features for a classifier. The eigenspeetra are used 1o quantify diversity of the character
scts and the Bhattacharrya dislance is used to measure class separability.

The digits. upper and lower case lellers from the two populations of 500 writers are partitioned
into N disjoint sets. The KL transforms of each such set are used for testing., while Lhe remaining
N — 1 sets form the (raining prototypes for a Probabalistic Neural Network (PNXN) neighbour
classifier. Recognition error rates and their variances are caleulated over the .V partitions for both
databases independently, This quantifies intra-database diversity, The inter-database results, or
“cross” terms, oblained by (raining and lesting on different databases, indicate the generality of
the training set.

The results for digits suggest that the second NIST database [used nominally for testing) is signif-
icantly harder than the first (training) set: the testing images are 11% more variable, The NIST
training data classifies partitions of itsell with 1.9 error, and the test set with $.8% error. Con-
versely Lhe tesl set generalizes 1o both isell and the training data with 3.5% crror. This efleel has
also been reported using non-NIST classifiers.

1 Introduction

In the spring of 1992 the National Institute of Standards and Technology hosted the First Census
Optical Character Recognition (COCR) Conference [1]. One aim of the conference was Lo ascerlain the
state-ol-the-art industrio-academic performance on the recognition of NIST segmented numerice, upper
and lower case letiers.

Participants in the conlerence agreed to classify unlabelled images using their proprietary and/or public
domain recognition systems and submit their classifieations to NIST for seoring. NIST provided two
databases to all entrants. The firs(, termed NIST Special Dalabase 3 (SD3) [2]. contained the segmented
characters of 2100 writers and the “known” class files. This constituted an optional training set. The
second database, termed NIST Test Data 1 (T} contained unlabelled characlers from 500 writers.
and constituted the lest malerials.



One result of the Conference was that those recognition syslems trained solely on the XIST SD3
database generally displayed inferior T recognition (o those trained on a superset of this data, i.e,
one including S1D3 as a subset or other, possibly proprietary, datasets. The notion that the SI1¥ was
*clean™ or “constrained” relative to the TD! dataset was suggested by the writer profiles: SD3 was
obtained from motivated permanent census field personnel whereas TD1 was obtained from variously
motivaied, more diverse and cosmopolitan high school students. An example is that the European
crossed seven is far more abundant in ‘TD] than SD3.

This study was initiated to formally investigaile the relative differences between the databases. The
intent was to obtain some classifier independent measures of the relative database difficulty - 1o obtain
results that pertain (o the properties of the data, and not the particular recognition algorithm. (ross
validation [3] [1] has long been used as a method of obtaining more “mileage™ from a data set: by
partitioning the data intoe disjeint subsets, one for parameter estimation (ie training) and the other for
performance measurement (ie testing). more robust estimates of performance statislics are available.
An allernative approach aveids classificalion altogther. instead favouring statistical deseription of the
patteris sets.

2 Theory

Whereas Moody [5] expressed cross validation in terms of the mapping error associated between inputs
and largets to a multilayer pereepiron, the concepl of cross validation is in no way restricted to neural
network classifiers or [unction approximators. (ross validation ix a method for accumulation of a
statistic which. in the case reported liere. is the classification error as obtained using a nearest neighbour
classifier.

A problem associated with Multi Layer Perceptron (MLP) networks is thal patlerns (for example.
crossed sevens) preseit in a training set only in small mumbers are only weakly represented by the
estimated weights. such that generalization is poor. Non-parametric melhods do not model the training
data and are thus not vsuvally prone to this problem. Sucli a method is the ubiquitous K-nearest
neighhour algorithm [6]). The distances of an unknown pattern to elements of a prototype sel are
calculated using a suilable. often cuclidean. metric. Voting between the classes of the K elosest implies
the class of the unknown. Numerous extensions to the scheme have been used effectively including
an elaboration, termed “Probabilistic Neural Network™ (PNN). due to Donald Spect [7]. in which all
protolypes are included in a Gaussian distance weighted metrie thereby emulating the Parzen density
approach. The advantage of the methad is that an a peste riori probabilily is attached to each possible
class: the unknown is classed as that with the highest probability. NIST has used nearest neighbour
classifiers that significantly outperform the ML networks given identical [eatures.

3 Classification

The first stage of classification used e Karhunen Loéve expansion of the iinages as a reduced dimen-
sionality oplimally compact representation. The use of sueh features in OC'R has heen described in. for
example [8] [9]. The handwritten binary characters are isolated and represenied as the £1 elements of
a column vector by some consistent ordering of the square image. The mean vector of P such images
is subtracted from each and an ensemble matrix. U is formed with these P veclors as its columns, The
symmetric covariance matrix, R, gives the mean over all images in the ensemble, of all the interpixel
correlations. As such it statistically deseribes how handwritien character images vary.

R = %UUT )



The covariance matrix R has eigenveciors as the columns of ¥ defined as:

RV = WA ()

where the only non zero clements of A are the eigenvalues on its diagonal. The eigenvectors are
the directions of maximum variance in the image space and form a complete orthonormal set termed
the principal axes of a hyperellipse in that space. The cigenvalues define the statistical “length™ of
these axes: thus the first column of ¥ corresponding to the largest eigenvalue is the major axis. The
eigensolution of the covariance matrix provides an ordered variance expansion of the image ensemble,
The latter eigenvectors, describing very little variance in the images. are discarded thus affording reduced
dimensionality. A ny image vectors as a columm of a new matrix U is a lincar superposition of the basis
vectors:

U=wvV (3)

where the inversion of this formula. V. defines the Karliunen Loéve Transforni. the elements of which
are the components of the image vector onto the principal axes:

v=v'U (1)

These feature vectors are classified using the PNN nearest neighbour technique[7].  Although many
variations have been described the NIST_4 implementation is as follows. The square euclidean distance
of an unknown pattern. v. to the i** prololype of the training set, f;. is

d2 ="ty — ;) (5)

The distances o, Vi are expressed as a function of the slandard deviations of normal distributions centered
on each of the prototypes. A Gaussian is applied as a kernel weighting function.

gi = ¢4 (6)

The weighted distances are then accumulated by-class over the A classes. 1o which the prototypes
belong.

P
P =Y b (7)
i

where & is unity if the ¥ prototype is of class & and zero otherwise. Interestingly this vecfor may he
normalized to give true @ postcriori probabilities by dividing by ¥, pe. For optimal classification it is
necessary (o survey over the Gaussian width o for digits (he besi value was taken as 3.0 whereas {or
uppers and lowers a value of 4.t was adopted. Note that as @ — 2, g, — 1 and classifications defaulis
to that class with the highest @ priori probability obtained {rom the row sums of &.

Rather than use classifiability as a measure of database homogeneity it is possible to obtain a priori
measures. Consider the databases as image ensembles for which the Karhunen Loéve Transform (KLT)
is defined [10]. The variances of the transform coefficients are the eigenvalues. Since the eigenvectors.



the basis of the KLT. form a complete orthonormal set, any image {iucluding those of the ensemble
from which the covarianee matrix is calculated) is exactly a linear superposition of those bases. 1f the
cigenvalue spectrum is relatively llat then the variance in an image ensemble is distributed over many
eigenveclors and more are needed for an adequate representation, as for instance in achieving a low
reconstruction mean square error level, Note that the total image variance is related to the scatter of
the data. 5. delined as

S = L |w —ul} (8)

where the cxpectation. £{-}, of the underlying distribution is replaced by the sample mean whence

P P
. 1 -
5 = FZZ(u! llJ}I {u; — ) (Y}
1=1 =1
I P P . 1 P P
S = LY b ulu) - 530S (a4 aTw) il
1=1 =1 i=1 j=1

Given that the u are mutually independent and {rom a single distribution the double sums are replaced
thus

2 & . L L P
.5=ﬁ5 u,u,—FE u,-FE u, (11)
i=1 i=1 i=l
The latter sums are the mean vectors defined prior to equation 1 to be zero. The first sum of inner
|
products is the also the (race of the sum of the outer products which is identically the covarianee matrix.

S = 2traec UUT (12)

The diagonal elements of the covariance matrix are the variances of the image pixels. Given that the
lotal variance is conserved under unitary transformation:

Z R,; = trace R = traee A (13)

It is found that the seatter slatistic is twice the sum of the cigenvalues. Further expressing the eigenval-
ues as a percentage of their total yields the percentage of the ensemble variance that is represented by
a subsel of N eigenvectors. For comparison of the two databases the difference in the percentages as a
funetion of N is considered. Il an cigenspectrum is wide, then the percentage variance described by (he
XN leading eigeuvectors will be small. If the cross validation percentage classificalion error is also low
the information discarded by using an incomplete KL transform is irrelevant even though there is much
of il. Alternatively. if the eigenspectrum is narrow. with much of the variance captured, then a low
recognition rate implies that the discarded transform coeflicients are valuable. This lattier sensitivity
to the high order KL-translform is undesirable since the motivation for feature extraction is reduced
dimensionality.

Consider the two class problem. Throughout assume that the a priori prebability ol each class is
identical and therefore 0.5, Let the conditional density functions for the two classes be py{u) and py{u)
such that the a pusteriori probabilities of an example being of class £ is



pre(u)

p(u) e

qrlu) =

where p(u) is the mixture deusity function py{u) + pa(n). The decison rule for classification of an
unknown vector u then becomes simply to choose class 1 il py{u) > pa(n) and vice versa. The usual
prablem of not possessing the density functions is obvious. This rule will still not generally give zero
error - given a veclor u consider Lhe condiflional crror 1o he

r(u) = min( qi(u) . g2(u)) (15)

and the total (Bayes) error {o he the expectation ol r{u) thus

= /r(u)p(u) du = /rnin[ pi{u) . pa(u) ) du (16)

-)

pr{u)da - / pa(u1) du (17)
I,

where the volumes Ly correspond to classification of w as class k. This is still of little utility given
the inaceessability of the density functions. However it is possible Lo compule an upper hound on ¢ by
using the lemma that min{a.b) < ¢*b=* lor ) < s < 1. The upper bound ou the error then reduces 1o

I . . 1 s :
r,lzij};](u)l)% (u)du = o 41 > ¢ (18)

and for a normal distribution the ¢(s) can be obtained eventually as (see [11])

b(l — .‘-) T =1 1 d(le-z(.‘\’)
— (2 — Ry (s) (jra — + -y —=
2 (2 = i) 12 {8) Utz = gn1) 2 " det R ddR.",_""

c{a) =

(19)

where Ryp(s) = sRy + (1 — s)Ry. and p; and Ry, are the mean vectors and covariance malrices of class
k. The lefl hand side is termed the Chernoff distance and is parameterized by s. 11 reaches a maxinmm
al s = 0.0 only when Ry = Ry in which case (he term Bhiattacharyya distance is used. These distance
measures are useful in delining class separability and are reasonable even when the data is not normal
although strictly tests lor normality should be applied (‘The Keolmogorar-Smirnoe test for example, in

1))

The first term of equalion 19 measures the distance hetween the class means normalized by the mixture
covariance Rys. The second term quantifies the distance due to differences in the covariances. The
values of ¢, are given in lable 2 lor the ten classes of the two NIST data sets. Note that the matrix is
not symmetric since the upper and lower triangles refer to dillerent dalabases,

4 Cross Validation Results

This study generated a Validation Comparison Matrir. The matrix has rank (wo and dimension equal to
the number of databases in the comparison which in this case is also two. The row and column indices of
the matrix denote, respectively, the databases used for training and tesling. The absolute classification
error values in (e matrix are irrelevant since the entries were all produced using identical classifiers none



of which were particularly optimized. The interesting features are the relative percentages discussed
helow.

The on-digaonal lerms, ¢j;. indicate the mean resull for standard v-lold cross validation of {he i**
dalabase. The off-diagonal elements, 55 i # j. result from cross-cross validation. The first u partitions
of database 7 are used as training sets for Lhe r-fold cross validation of the j** database. In the case of
r-fold partitioning of the training set there will be ur results the mean of which is ¢,;.

All elements have an attached sample standard deviation.,

N
1 < ;
Cas \.—_IZ(JT—II)Z (20)
‘ =1

If an homogenous training set is large enough then recognition error and this deviation will approach
zero. The standard deviation is also affected by the data set redundancy, For instance, consider a
database to which a copy of itsell is appended. and which is classified with, for example. a single
nearest neighbor algorithm. Perfeet recognition could then be achieved il. as in the cross validation
scheme used here, Lhe parlitions are contiguous blocks from the dataset.

For comparing (he means of (wo diflerent databases the standard error is used. It is accessible by
dividing the standard deviations by a further v/ V. The discussion of the comparisons of the means and
the variances is aided by invoking the results of Student’s “t-test™ and the “F-test™ (see for example
[13]) which utilize this quantily and not the @ values of equation 20,

They are used to assess whether two distributions have the sanme niean and the same variances. The
entire corpus of Ininan hand-printed characters may be considered as one distribution of which 8133
and TD1 are subsets, but for this study the two sets are extracted from different distributions, namely
the characters of the (wo social writer groups outlined in the introduction. The t-test guantifies the
difference in two means as a imultiple of thieir mutual rool mean square standard errors.

Hy — Jt2

(21)

Atlached to it is a significance, 0 < p < 1, giving the probability that [¢] could be at least this large by
chance, That is il p lakes on a “small” value then the distributions have “markedly™ different means.
Similarly the F-test quantilies two variances as a ratio taken to be greater than 1 {i.c. either atfol
or its reciprocal). The value of I' directly indicates diflering variances. The aitached significance, p is
again a probability. Small values indicate significantly different variances.

The statistics are derived from the two samples obtained by testing the 10 partitions of SD3 and
TDI data using one or other (raining set. In all cases. digits, upper-case and lower-case letters, the
calculated value of the t is found with very low significance implying the mean differences are not at all
spurious. However in no case does the attached probability for the F-test indicale that the variances
are significantly different.

4.1 Dagits

The handwritten digits of the first 500 writers of NIS'T Special Database 3 (SD)3) were partitioned into
blocks from 50 writers. The number of characters in these ten sets were not identical but varied by
only 0.2%. The number of D3 digits tolalled 53449. The 500 wrilers of NIST Test Data 1 (T1)1) were
similarly partitioned. The number of TD1 digits tolalled 538646, The pure 1 [old cross validations lor



Correct % Test SD3 Test TDI
= 50 writers 50 wrilers
Train 513 L =285 p =00
L7% £ 0.3 6.8% £ 0.1
150 writers F=15p=103
Train 'TD] t=14dp=0.2
3.5% £ 0.3 3.8% £ 0.5
150 wrilers F=21p=03

Table 1: Inter and Intra database Cross Validation Recognition Errors for Iigits.

SD3 and TDI were obtained using the characters of 90% of the writers as prototypes for the characters
ol the remaining 10%. The mean incorreet classifieation percentages are quoted on the diagonal of table

1.

The first partition only (v = 1) of SD3, that is a fixed 150 writers, were used as prolotypes for (he
classification of all v = 10 sets of characters of TDI. and vice versa. The off-diagonal elements of the
validation comparison maltrix. so obtained. are given in the table,

The most relevant result from the above table is that, using the classifier as described above, training
solely on SD3 implies a 5% loss when classifying TD1. This is eflectively NIST's experience with its
NIST_0 and NIST_1 conlerence entered systems.

The on-diagonal elements of the cross validation matrix show that SD3 is a less direrse digit set than
TDI. That is the test parlitions of SI¥3 are miore like their training sets. in the nearest neighbour
sense, than is the case with 'FD1. Greater on-diagonal terms indicate a higher intrinsic diversity for
that database. If we relate the low TDI classification to the width of the eigenvalue spectrum or the
volume of (he eigenspace il is apparent thal TDI would benefit from the use of a less incomplete KI
transform as input to the classifier.

Figure 1 shows (he eigenspectra of the SD3 and TDI characters. Note in particular Lhe total variances
for the 1024 pixel digits are 576 (SD3) and 637 ('I'D1) indicating thal TD1 is ahsolutely more diverse
(larger scatter). Approximalely 6.6%4 more of the variance of SD3 is described by 48 KL coefficients (as
used by the classifier) (han is the case for TDI.

The off-diagonal terms show that SD3 as prototypes for TD1 is markedly inferior to TDI as a training
set for SD3. The implication is that TDI1 is a superset of the SD3 set. i.e. T contains sufficiently
distributed prototypes to classify SD3 - whereas TD1 contains exemplars (hat are not “closely™ present
in SD3. That TDI classifies itsell and SD3 equally (to within one standard deviation) imiplies that TD1
is a more general dataset.

Table 2 shows the Bhattacharyya upper error bounds for all the digits of SD3 and T}, A full Chernoff
lable is expensive to compute so only the s = 0.5 value is given which is generally an overestimate of



TDI |

T 3] 3 4 5 6 T w G
0]60.06 0.00 1537071 037 206 208 027 052 0.3
1| 0.00 56.08 0.00 0.00 000 000 000 0.00 000 0.00
21 L85 000 5174 294 196 323 253 379 G671 2210
31099 000 TT9 5799 096 405 095 273 .80 3.63
SD3 [ 4] 059 0.00 224 1060 5013 349 194  5.14  3.07 16.30
5 260 0.00 296 377 363 6312 6.42  1.92 855  3.02

G| 091 000 174 033 081 L6I 4489 0.10  0.63  0.06 |

7021 006 338 L2600 199 130 0.08 5593 144 1354 |

1003 000 TH) 43R 240 472 205 295 7493 3.82 |

91 018 0.00  LT2 148 836 293 028 1288 530 TLT0 |

Table 2: Bhaltacharyya bounds for digits of NIST Special Database 3 and NIST Test Data 1. The ijth
entry gives the upper bound on the classification error hetween the it class of SD3 and the j** class of
TD1 given all their examples in isolation.

the upper error bound for any given entry. 1t is found in the case of digits of diflerent class that the
first “mean-diflerence™ term of equation 19 is dominant. The exceplions are in the discrimination of
any class from class *17, and from digits of the same class obtained from differing databases when the
second covariance-difference ternn is larger. Note the strong overlaps ofl-diagonal - the =4" - =g~ 5" .
“BT37 - R and the 27 . 8" possses simall Bhattacharyya distance. Uniquely ones are well separated
from all else. 1f the ofl-digacnal row (or coluinn) elements. reweighted by a prieri probabilities of 0.1 not
.5, are summed. then the (otal of these is 1.412%. This figure and the individual error levels are higher
than was ypically achieved using real classifiers. This overestimation ol the error is due to either
the normally distributed model being inappropriate, or the classes are separable by an alternative
(nonlinear} classifier, or the values at s = 0.5 are well above their minima. The on-diagonal terms
conpare the examples from two distributions for a given class. If two distribulions are identical then
a usual distance measure will yield 0 and the mixing error will be 100%. In this case the large on-
diagonal values indicale that the data from SD3 and TDI are at least partly separable and therefore
different. The magnitudes of the terms in equation 19 indicate that this is largely due to differences in
the covariances.

4.2 Uppers

The handwritten uppers of the first 480 writers of NIST Special Database 3 (SD3) were partitioned
into blocks from 48 writers. The upper case letters totalled 10790 examples, The 500 writers of
NIST Test Data 1 (TDI). similarly partitioned, vielded 11941 characters. As in the case of digils
there is a 5% difference hetween the classification of SD3 on itsell and on 1D1. Again TDI is more
diverse in classification of itsell than is the case with SD3. The total variances are 734 (SD3) and
650 (TD1) indicating that SD3 is absolutely more diverse. With classification using 96 KI, coeflicients
the percentage variance captured for SD3 was 4.8% lcss than (hat for TD1. This is reconcilable by
considering the separability of the inter-class separability of the SD3 set to be greater while intra-class
variation is larger.

The off-diagonal elements. however, are the same indicating thal neither set is more general than the
other. That the ofl-diagonal elements are higher than the on-diagonals indicates ihe databases contain
unique subsets that require “speeialist knowledge™ contained only in that database.

INone of the uppercase letters of 20 writers were successfully segmented in the preparation of S[)3, See section 5.

o



Correct 4 Test 5123 Test TDI
+ o 48 wrilers 50 writers
Train 5D3 t=789p=0.0
1429 £ 1.1 19.4% £ 1.4
432 writers F=10p=08
Train TDI t=38p=0.0
19.3% £+ 1.7 16.5% £ 1.4
150 writers F=15p=104

Table 3: Inter and Intra database C'ross Validation Recognition Errors for Uppers.

4.3 Lowers

The handwritten lowers of the first 190% writers of NIST Special Database 3 (§13) were partitioned
into blocks from 49 writers. The lower case letters totalled 10968, The 500 writers of NIST Test
Data 1 (‘"TD1). sitnilarly partitioned, yielded 12000 characters. In particular the total variances are 740
(SD3) and 633 (TD1) indicating that SD3 is absolutely more diverse. With classification using 96 KL
coeflicients the percentage variance captured for SD3 was 2.3% less than the that for T3, The cross
validation matrix shows that the lower case datasets are equally difficult and yet dillerent - they are
insufficiently general (o classify e other as well as they classify themselves.

5 Caveats

5.1 Segmentation

This paper is an initial report into the work NIST conducted immediately afier the COCR conference.
As such it is a provisional investigation of database quality. It is reasonable to conclude that the digits
of SD3 are cleaner than those of TDI. Iowever the study is not experimentally flawless - it is not
a conclusion that (he writers of $D3  em wrote characters nealer than those of TDI1. only that the
characters ultimately ineluded in the database are cleaner. Qne reason for this is 1hat SD3 and TDI,
botl obtained from fields of full page forms, were arrived at with different segmenters. From a possible
ti5000 characters on each 500 form set, final numbers of human checked characters were 53449 (S13)
and 58646 (TDI1). The SD3 segmentor. an old version. produced 9% fewer isolaled characters than
the updated model used for TDI1. the principal reason for failure being connected characters. If the
characters from 513 thal were not segmented resemble the difficult images that putatively characterize
TD1 then the difference between the two databases may not be writer-letter dependent at all, rather it
would be a function of the writer-connectivity that different writer groups use.

2Nune of the lowerrase letters of 10 wrilers were successfully segmented in the preparation of D3, See section 5.



Correct 4 Tesl SDJ Test T
+ o 49 writers 50 writers

Train S13 t=59p =100
19.6% 2 1.4 WA £ 1.4

441 writers F=11p=0.=x

Train TDI t=9.6p=0.10
25.9% £ 1.8 19.2% + 1.1

A50 writers F=2Xip=10l

Table 4: Intler and Intra database ('ross Validation Recognition Frrors for Lowers.

This problem could be negated by resegmenting and rechecking SD3 using the idenlical algorithms
applied to TN, A new differenl database, a supersel of SD3, is then obtained. which can then be used
in a more controlled comparison with T},

The Chernofl integral of 18 is approximated using the normal distribution assumption to obtain an
analytic easily computable expression. This assumption is certainly untrue for binary images. The
sensitivity of the values in (he table to the parameter s was not computed in this study.

5.2 Classifier Dependence

The cigenvalue spectrum describes the information loss suffered when only the leading KL coefficients
are used in classification. The classification of incomplete KLT's is peculiar in that variance ordered
information is discarded. It is not clear that using a much higher number of coefficients in the digit clas-
sification will not equalize the on-diagonal cross validation entries. Lven though the nearest neighbour
recognition of minority patterns in a higher dimensional (but lower variance) KL space is not possible
for parameterized classifiers, the nearest neighhour schemes do better.

Instead of using a “lossy™ incomplete feature classifier it is possible to instead use a full description
of the image: the complete KL transform. Variance cqualizafion may be more reasonable - choose (he
number of KL fealures corresponding to either an absolute level of described variance or percentage
thereof. Thus in the case of digits. 43 eigenvectors describe 75% of the variance whereas (o reach this
level with TDI. 70 KL coefficients are required. Alternative features may be used that do nol bias
information loss. Tor example image row and column pixel histograms or orthogonal moments are
known to be classifiable features for QCR.
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Conclusions

(riven Lhe experimental scheme desceribed. it appears that NIST Test Data | is indeed a more diverse
and general digit set than NIST Special Database 3. The NIST training digits classified themselves
with 5% maore accuracy than they classified the test sel. Further, the use of NIST Test Data | as a
training set yields a 3% improvement over Special Database 3 in the classification of that test sel, The
hypothesis that differing writer populations are responsible for this diversity remains only a possible
conclusion. Indeed, the fact that the cross validalions for the uppers and lowers vield insignificant
differences between the two databases weakens (he argument for digits.
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SOLID — S>3
DO = D1

Figure 1: Eigenvalue vs Index for SD3 and TD1. From top digits. uppers and lowers. All writers were
used,
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