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Abstract

A statistical study is presented quantifying the effects of covariates such as gender,

age, expression, image resolution and focus on three face recognition algorithms.

Specifically, a Generalized Linear Mixed Effect model is used to relate probability

of verification to subject and image covariates. The data and algorithms are selected

from the Face Recognition Grand Challenge and the results show that the effects

of covariates are strong and algorithm specific. The paper presents in detail all of

the significant effects including interactions among covariates.

One significant conclusion is that covariates matter. The variation in verification

rates as a function of covariates is greater than the difference in average performance

between the two best algorithms. Another is that few or no universal effects emerge;

almost no covariates effect all algorithms in the same way and to the same degree.

To highlight one specific effect, there is evidence that verification systems should

enroll subjects with smiling rather than neutral expressions for best performance.
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1 Introduction

Over the last two decades the effort to develop effective automatic face recog-

nition has resulted in hundreds if not thousands of papers [1]. Typically, these

papers report performance on a single data set in order to draw comparisons

among competing approaches [2]. This type of analysis is valuable when the

goal is to conclude that a particular approach is superior to another on a very

specific task as exemplified by the data set. However, this style of analysis

tells us little about underlying factors that make recognition easier or harder.

When it is addressed at all, the question of what factors affect recognition

performance is almost invariably addressed by dataset partitioning. For exam-

ple, several carefully constructed datasets have been developed for studying

the effects of pose and illumination through partitioned data. Work with the

Yale [3] and PIE [4] data sets typically falls into this category. Studies look at

relative performance across changes in pose, illumination, or both as exempli-

fied by performance on distinct data partitions. Partitioned data set analysis
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has also been applied to the question of whether women or men are easier to

recognize [5,6].

Unfortunately, data partitioning is ineffective for answering questions about

more than a few factors, or for answering questions about interactions among

factors. From a practical perspective, partitioning quickly becomes infeasible

due to the combinatorial explosion of partitions over multiple factors. More-

over, it is difficult to control for confounding factors with partitioning schemes.

If one skirts around the combinatorial problem by resorting to marginal anal-

ysis (i.e., abandoning control via partitioning), control of confounding effects

is eliminated altogether. More sophisticated multi-factor statistical techniques

provide greater control and permit more thorough evaluation of factor effects.

Generalized linear mixed models (GLMMs) are one such technique. This paper

uses GLMMs to provide the largest statistical analysis to date of factors that

influence face recognition performance. Our analysis investigates how a set of

factors, henceforth called covariates, predict verification rate at various false

accept rates. Performance data for three algorithms from the Face Recognition

Grand Challenge Experiment 4 are used in our analysis. The covariates include

gender, race, age, distance between eyes in pixels, and image focus quality. The

complete set of covariates are described below.

Multi-factor statistical analysis represents an important step forward on the

path toward developing a mature empirical understanding of what covariates

make recognition harder or easier. It is broader in scope, more powerful sta-

tistically, more efficient with data, and more precise for inference. With its

greater control of confounding factors it also affords greater confidence that

the conclusions will generalize to other data sets.
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We have previously used GLMM analysis to characterize the performance

of face recognition algorithms [7–9]. There are few other instances of these

techniques being used to characterize the performance of face recognition al-

gorithms, although it should be noted that Mitra et al. [10] use a GLM with

random (rather than mixed) effects to predict the performance of a biometric

authentication system in a watch-list scenario from the data set size. This al-

lows them to predict performance over data sets that are much larger than the

tested sets, but provides no information about the effects of specific factors.

The study presented here goes beyond our own prior work in several important

ways. First, our earlier work focused only on the FERET data and our own im-

plementations of algorithms included in the original FERET tests. This paper

presents results for the two top performing algorithms in the Face Recognition

Grand Challenge Experiment 4. Hence, the data set is newer and more chal-

lenging and the algorithms represent the state-of-the-art in the time frame of

the Face Recognition Grand Challenge, i.e. 2005–2006. Second, the presence of

more imagery per person enables us to design a more data rich study. Finally,

the study presented here is our first to include measured properties of the im-

ages themselves. As the results will show, some of these are strong predictors

of algorithm performance. This opens up a connection between our work and

the larger question of how to characterize the quality of a face image in terms

of measured properties of that image.

Most of the findings presented in this paper, specifically those in Section 5.2,

have not been observed before in a major empirical study of face recognition

performance. For example, the results summarized in Section 5.2.1 suggest

that when a single face image is enrolled it is better to let the person smile

than not. This directly contradicts the common wisdom among many who
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are designing biometric collection protocols. Another new finding, presented

in Section 5.2.2, indicates that one of the top performing algorithms is not

influenced by elapsed time between images as measured in months. Common

wisdom dictates that increasing time between acquisition of images makes

recognition harder. To offer a third example, Section 5.2.3 presents an impor-

tant interaction between resolution of target and query images that suggests

relative size of one versus the other is more important than the absolute num-

ber of pixels available. Most discussion of image resolution in the context of

face recognition focuses on the absolute resolution of individual images rather

than the importance of relative sizes of images being compared, and conse-

quently ignores what our data suggests might be most important.

Other findings presented here bolster results from previous empirical studies.

For example, Section 5.3.4 presents findings showing recognition performance

is better on Asian subjects when compared to White subjects even though

Asians constitute only 26% of the sample population compared to 72% for

Whites. This kind of result favoring a non-majority group has been seen before.

While it is relatively easy to speculate on why algorithms might behave in this

fashion, to our knowledge algorithm developers have yet to really explore in

depth what is going on in this situation. Such future work offers the promise

of improving overall recognition performance, and it begins when algorithm

developers become aware of the phenomenon.

The overall outline of this paper is as follows. The next section reviews the

Face Recognition Grand Challenge and explains why Experiment 4 has been

selected as the focus of our study. Section 3 motivates our approach. A sum-

mary of results appears in this section, highlighting how much influence these

covariates exert over recognition performance. Section 4 introduces the formal
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statistical model, and describes the complete set of covariates examined and

the full experimental design. Section 5 presents the results of our analysis and

Section 6 summary conclusions.

2 Face Recognition Grand Challenge Experiment 4

Version 2.0 of the Face Recognition Grand Challenge (FRGC) specified six

separate experiments [11]. Experiments 1 and 2 compared frontal still images

of faces taken under mug shot lighting conditions. Experiments 3, 5 and 6

involved 3-D face data. Our focus is on experiment 4, which used frontal

still 2-D images. Unlike experiments 1 and 2, however, some of the imagery in

experiment 4 was acquired with uncontrolled lighting. These images were taken

in a hallway with subjects standing facing the camera. These uncontrolled

conditions make recognition harder, and consequently performance between

algorithms varied much more in experiment 4 than in either experiments 1 or

2. Figure 1 shows two controlled and two uncontrolled images from the FRGC

Experiment 4 data.

Experiment 4 presents algorithms with problems that range from easy to hard.

This is important since the goal of our analysis is to identify covariates or

sets of covariates that make recognition easier or harder, and this influence

can only be measured using a data set with sufficient variation in problem

difficulty. Experiment 4 is also a good choice because the scenario is of practical

importance in that it closely mimics potential implementation protocols.

The performance task for Experiment 4 was verification. Specifically, algo-

rithms were given the problem of deciding whether a person was who they
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Fig. 1. Sample imagery from the FRGC Experiment 4 data.

claimed to be. The decision must be made by comparing two images. One

image—the target image—was presumed to have been taken earlier and to re-

side in a database. The other image—the query image—served as the ‘claim’

and was presumed to have been taken at the time the person attempted to

have his or her identity verified.

Verification performance on Experiment 4 can be summarized in two simple

ways. When a single number is desired for a given algorithm, the FRGC reports

the rate of successful verification at a false accept rate (FAR) of 1 in 1, 000.

To report verification rates over a range of false accept rates, ROC curves are

used. Average verification rates for different algorithms at the 1 in 1, 000 false

accept rate ranged from about 10% up to about 75% [12].
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The dataset for Experiment 4 contains images of 466 people. These images

were acquired over multiple sessions during the Fall 2003 and Spring 2004

Semesters at the University of Notre Dame. During a session, a subject would

sit while four still digital photographs were taken under controlled lighting

conditions. Two images were taken with controlled lighting coming from two

professional photographer’s lamps, one to either side of the camera. Two more

images were taken with a third photographer’s lamp added in the center. Un-

der each lighting configuration, subjects were instructed to adopt two facial

expressions: one neutral, the other smiling. The resulting four images are de-

scribed as having been taken under controlled lighting.

During the same sessions, subjects were asked to stand, typically in a hallway,

and face a camera. Two more photographs were then taken, one in which the

subject was asked to smile and the other in which the subject was asked to

adopt a neutral expression. These hallway images were taken in uncontrolled

lighting conditions which were highly variable and often quite poor. An exam-

ple of neutral and smiling expressions for a subject are shown in the top and

bottom row of Figure 1 respectively.

FRGC experiment 4 compares target images taken under controlled lighting

to query images taken under uncontrolled lighting. This models a scenario in

which subjects are enrolled under controlled conditions, but must be verified

under uncontrolled conditions. The target set for experiment 4 contains 16, 029

controlled lighting images; the query set contains 8, 014 uncontrolled lighting

images. Comparing every query image to every target image produces over

128 million similarity scores per algorithm.

Twelve algorithms were tested in the FRGC. Three of these algorithms, desig-

8



nated A, B and C, have been selected for study in this paper. Algorithm A uses

principal component analysis (PCA), and was used as a baseline in FRGC. It

performs relatively poorly. Algorithms B and C were submitted by Carnegie

Mellon University (CMU) and the New Jersey Institute of Technology (NJIT),

respectively. These algorithms were chosen for study here because their perfor-

mance represented a break through on the FRGC experiment 4 data. Roughly

speaking, a 30% verification rate at a FAR of 1 in 1, 000 represented median

performance for algorithms on Experiment 4. Algorithm B and C roughly dou-

bled this rate. Both research groups have subsequently published descriptions

of their approaches [13,14].

The results from NJIT were provided to NIST for analysis in January 2005

and the results from CMU were provided in August 2005. The analysis in this

paper reflects properties of these two algorithms on the submission dates. In

the reminder of the paper the algorithms are designated by A, B, and C to

emphasize the analysis, not the properties of a particular instantiation of an

algorithm.

3 Motivation for Covariate Analysis

Our goal is to measure whether, and to what degree, a covariate or combination

of covariates influences the performance of face recognition algorithms. Our

analysis fits a generalized linear mixed model (GLMM) to a carefully designed

dataset built from the FRGC Experiment 4 data. The details of our design,

model, and results are presented in the following sections. Before taking up

the full model in detail, it is helpful to illustrate that the Experiment 4 dataset

contains important and scientifically interesting performance information that
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can be extracted using a GLMM.

Perhaps the most fundamental question one should ask is “Do covariates mat-

ter?”. To put the question somewhat differently, just how much does the ver-

ification rate vary as a function of covariates such as gender, image size, etc.?

One way to answer this question is to look at the range of estimated verifica-

tion rates associated with altering covariate values in our statistical model.

Figure 2 provides a simple visual summary of performance variations at the

standard false accept rate of one in one thousand, i.e. FAR = 0.001, associated

with the GLMM developed in this paper. In this plot, the vertical axis shows

verification rates associated with changing values of subject covariates such as

age, gender and race. The horizontal axis shows verification rates associated

with changing values of image-derived covariates such as image focus, resolu-

tion and rotation. The specific subject and image covariates being varied are

summarized in Table 1 and are explained later in this paper.

The three crosses in Figure 2 indicate the range of predicted verification rates

associated with changes to the subject and image covariates. The center of

each cross is located at the predicted overall verification rate for the algo-

rithm at FAR = 0.001. To avoid hidden extrapolation with the continuous

image covariates, we found the vector described by the marginal 5th or 95th

percentiles of each covariate, then shrunk this vector back towards the mean

until its Mahalanobis distance was within the 95% joint probability region of

the appropriate chi-squared distribution. The range of performance shown in

the figure relates only to this range of covariate variation.

Figure 2 shows that the estimated verification rate varies enormously depend-

ing upon the values of the covariates used in our model. This performance
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Fig. 2. Performance range associated with varying subject and image-derived co-

variates, for algorithms A, B, and C.

variation is observed both within and between algorithms, and is affected by

both subject and image covariates. Clearly the covariates matter.

Having established that covariates are associated with performance variations

of a scientifically interesting magnitude, two additional questions come to

mind. First, do covariates matter as much as the choice of algorithm? In other

words, does performance of a given algorithm vary among subjects having

different covariate values as much as performance varies between algorithms?

Second, do subject and image covariates interact with the choice of algorithm?

That is, do covariates influence all algorithms in the same manner, or do they

affect different algorithms in different ways?

Observe that the crosses associated with algorithms B and C overlap. The

answer to our first question (Do covariates matter as much as choice of algo-
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rithm?) is now evident. The change in estimated verification rates induced by

changes in covariates is as great as the difference in verification rates between

the two algorithms. The answer to our second question (Do covariates inter-

act?) is also suggested in Figure 2. Observe that the extent of performance

degradation associated with algorithm B is smaller than for algorithm C, par-

ticularly with respect to variation in subject covariates. This is our first hint

that covariates influence algorithms differently. Indeed, model results shown

later will illustrate that C does not dominate B: there is a substantial minority

of cases where the relative performance of B and C is reversed.

As we present the results of our full model, the presence of covariate-algorithm

interactions will become an important theme. Put simply, there are few uni-

versal covariates. We have found practically no covariate that influences all

three algorithms in the same manner and to the same extent. Figure 2 also

contains the first hint of a second major theme to emerge from our study. Be-

tween algorithm B and C, a trade-off between performance and robustness is

evident. The highest verification rates are achieved by algorithm C. However,

compared to algorithm B, algorithm C also experiences much wider swings in

verification rates as covariates vary.

4 Methods

4.1 Overview of the Statistical Model

We use empirical performance and covariate data associated with people and

imagery to fit a model relating covariates values to the probability that a

person will be correctly verified. The purpose of the model is to quantify
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how changes in covariates alter the probability that a person will be correctly

verified.

The raw data upon which our analysis is based are pairs of matching query

and target images along with an indication of whether the person pictured

was correctly verified using a particular algorithm at a specific FAR setting.

The response variable is binary: it equals 1 if the query was correctly verified

and 0 otherwise. The other data used are covariate measurements. Covariate

measurements may, as in the case of gender, have been recorded along with

the original data. Covariates may also be automatically computed off of the

imagery itself, as in the example of estimates of image focus. We discuss covari-

ates further below. The match similarity score itself is not directly analyzed,

but it is used for determining whether verification was successful at a given

FAR.

A generalized linear mixed model (GLMM) with logit link is used because

our response variable is binary and we have repeated measures on individuals.

Except for a random effect for subject, all other effects (e.g., for gender) are

treated as estimable fixed effects. Inclusion of the random subject effect in the

model is important because it is well known that some people are inherently

harder to recognize than others [15,8,9] and because we view the Experiment

4 individuals as a random sample from a larger population of interest.

The details of GLMM modeling are too complex for inclusion here; see [16,17].

The model is closely related to the notion of odds. Let pi be the verification

probability for a person of type i, and pj for type j. For example, i could refer

to women and j to men. The odds of verification for type i is pi/(1 − pi). A

GLMM models the log odds with a linear predictor that is a function of the
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covariates.

The effects of covariates in a GLMM are most easily expressed in terms of

odds ratios. If we want to compare the ease of verification of types i to that

of type j, we may use the ratio of their odds. The odds ratio for verification,

type i relative to type j is

OR =
pi/(1− pi)

pj/(1− pj)
. (1)

An odds ratio of 1.0 indicates that there is no difference between the odds for

i and j. We use estimates of both odds ratios and verification probabilities to

describe our results, and for GLMMs we adopt the SAS convention that odds

ratios are calculated from the fixed-effect portion of the model.

The GLMM was fit using the glimmix procedure in SAS 9.1 with conjugate

gradient optimization [18]. Additional details may be found through the SAS

website 2 .

As the reader considers the results from our GLMM, it is critical to under-

stand that a GLMM quantifies effects over a set of covariates and that the

result should never be confused with a ’marginal analysis’ obtained simply by

separately tabulating verification outcomes split by the levels of each covariate

(e.g., split by gender). Marginal analysis fails to control for the other covari-

ates, whereas the GLMM analysis provides an estimate of the effect of each

covariate controlled for all other variables in the model. For this reason, we

view the GLMM approach as providing a more reasonable means of isolating

the true effects of each covariate.

2 The URL is http://support.sas.com/rnd/app/papers/glimmix.pdf
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4.2 The Covariates

As already suggested by Figure 2 above, covariates fall broadly into two cat-

egories. Subject covariates are properties of the person. Examples of subject

covariates include gender and race. A person’s expression, smiling versus neu-

tral, is also regarded as a subject covariate. Image-derived covariates are prop-

erties of the image, not the person. For example, the extent to which an image

is in focus is an image covariate. Some useful covariates do not fit neatly

into this simple dichotomy. For example, the distance between a person’s eyes

(measured in pixels) depends both upon the size of the person’s face and the

distance between their face and the camera. However, under the data collec-

tion protocol for Experiment 4, distance between eyes tells us more about the

distance to the camera, and consequently the number of pixels on-face, than

it does about the intrinsic geometry of the person.

The false accept rate is worth special attention. We collected data for verifica-

tion at eight different FAR settings: 1/10, 1/100, 1/200, 1/350, 1/700, 1/1000,

1/2500, 1/5000 and 1/10,000 and 1/10,000. These choices are roughly evenly

distributed on a log scale. In a previous study of verification performance on

the FERET data set, we observed a nearly linear relationship between the neg-

ative log of the false accept rate and the probability of correct verification [9].

A similar relationship has been observed for the FRGC data, thus supporting

the appropriateness of our decision to model log odds of verification.

Now we can more precisely describe how response variable values were de-

termined. Algorithms produce similarity measures between query and target

images. The set of similarity scores can be divided into two groups: match
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Gender M (.55), F (.45)
Race White (.66), Black (.01), Asian (.26),

Hispanic (.04), Unknown (.03)
Query wearing glasses N (.83), Y (.17)
Age 21, (17, 69)
Expression Q:T NN (.25), SN (.25), NS (.25), SS (.25)
Elapsed months, Q to T .9, (0, 7.9)

Image size ratio, Q/T .55, (.39, .81)
Query image resolution 142, (104, 200)
  (pixels between eyes)
Tilt difference, | Q-T |  .03, (0, .41)
(degrees)

Focus difference, Q-T -1.2, (-54.6, 45.8)
Focus average   42.4, (21.7, 63.8)
Fragmentation   8.0, (7.7, 12.9)
Novelty difference, Q-T -.04, (-.26, .17)
Novelty average .08, (.01, .23)

Subject Covariates

Image Covariates Values, or Median and Range

Values, or Median and Range

Table 1

Subject and image covariates used in our analysis. For discrete covariates, the second

column lists covariate levels and proportional representations in the dataset. For

quantitative covariates, this column shows the mean and range of values observed.

Capital Q and T are used as shorthand for query and target image respectively.

Facial expressions were categorized as neutral (N) or smiling (S). Details about the

covariates are included with the discussion of covariate results in Section 5.

scores, which are computed between ‘matching’ query and target images of

the same subject, and non-match scores, where the query and target images

are of different subjects and therefore should not match. To set the false ac-

cept rate (FAR), the non-match scores are sorted from greatest to least, and

thresholds are chosen to create specific FARs. For example, the similarity score

at the 99th percentile of this list would—if used as a verification threshold—

yield a FAR of 1
100

because only 1% of non-match scores would exceed the

threshold and thereby be designated (incorrectly) as matches. We used this
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approach to find similarity score thresholds corresponding to each of the eight

FAR settings listed above. For each pair of query and target images for a per-

son (i.e., match pairs), the response variable is 1 if and only if the similarity

score between these two images is greater than the verification threshold for

the FAR setting at which the image pair is tested. To reiterate, only match

pair responses are directly analyzed in our model.

Table 1 summarizes the subject and image covariates used in our model. The

subject covariates for the most part represent demographic information col-

lected along with the images. The image covariates address basic properties

of the imagery such as the resolution of the face, tilt of the face and rela-

tive focus of the image. These later take on extra practical significance since

they represent factors over which those deploying a system might exert some

control.

As noted above, we fit a generalized linear mixed model with bernoulli response

and random effects for subjects. More specifically, the model can be described

as follows. Let s index subject and is index a trial within subject, in other

words an attempt to verify the subject. Then Yis,s denotes the outcome of a

specific trial. The primary component of the model is the linear predictor and

its link to mean responses. In our case, we have

logit(πis,s) = β0 + XT
is,sβ + γs (2)

where E(Yis,s|γs) = πis,s. The fixed part of the linear predictor depends on

covariates XT , the columns of which are constructed in the standard manner

from the covariates and interactions listed in the next paragraph. The distri-

butional variance function is var(Yis,s|γs) = πis,s(1−πis,s). The subject-specific
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random effect provides additional variance var(γs) = σ2.

Our model includes additive effects for each of the covariates/predictors enu-

merated in Table 1 as well as for FAR and algorithm (A, B, and C). Interac-

tions with algorithm were also used for FAR and all the subject and image

covariates except tilt difference. A three-way interaction between FAR, algo-

rithm, and query eye distance was also included. Model selection was carried

out manually, mainly using a backwards elimination philosophy starting from

much richer models than the final choice described here.

4.3 Experimental Design

The dataset used in this study contains a total of 134, 760 outcomes. Our

subject list was chosen as the Experiment 4 subjects for which there were at

least 16 target images and 8 query images per subject. Imagery was randomly

sub-sampled to these levels for subjects with more abundant imagery. Thus,

for each subject there were 128 possible target and query pairings for a total

of 128 outcomes.

Since the Notre Dame image data used in the FRGC includes many more

target and query images for some subjects than for others, there is a trade-off

to be made between the total number of subjects included in the study and the

number of possible outcomes per subject. The specific choice of 128 outcomes

per subject allows us to include 351 of the 466 subjects in our study while at

the same time generating more than 100 outcomes per subject. This reduction

in the number of subjects means our results are not exactly equivalent to

those reported in the standard FRGC Experiment 4 ROCs. However, we have
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checked mean performance on our 351 subjects versus the original ROCs, and

performance is comparable.

Each outcome for each of the 351 subjects is a value of the binary response

variable described above indicating whether an algorithm did or did not suc-

cessfully verify the associated person at the indicated false accept rate. The

8 FAR settings listed above were allocated evenly across the 128 query target

image pairings per subject, yielding 16 trials at each FAR. Due to the nature of

Experiment 4 imagery, query and target facial expressions were also perfectly

balanced with respect to subject, FAR, and algorithm. Constructing our data

set in this fashion also balanced the number of outcomes per subject.

Several deletions and corrections had to be made to the primary data set. All

384 outcomes for subject 4542 were deleted because the subject wore glasses

in some of the controlled lighting imagery, and was the only subject to do

so. The number 384 is a consequence of there being 128 outcomes for each

of 3 algorithms. Another 24 outcomes associated with image ’02463d524.jpg’

were deleted due to an error in how the novelty covariate was computed for

this image. These deletions took us from 135, 168 to 134, 760 outcomes. One

correction was also made. The original Notre Dame data incorrectly flagged

the subject as wearing glasses in image ’04748d35.jpg’

Training data was made available to participants in FRGC, and 133 of the 351

subjects included in our study were among the 222 subjects represented in the

FRGC 2.0 training data. We considered attempting to explicitly incorporate

this distinction, i.e. was the subject present in the training data, into our

experiment design. However, after reflection on the issue, we concluded that

we could not actually know what individual participants did or did not do
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with the training imagery and consequently there was no clearly correct way

of explicitly including this information in our experiment.

5 Results

5.1 Overview

Performance varied widely among algorithms. Over all FAR settings and sub-

jects, the rates of correct verification were 15%, 58%, and 70% for algorithms

A, B and C respectively. At a FAR of 0.001, these rates were 12%, 55%, and

71%. As expected, verification rates increased with increasing FAR.

Model fit appeared adequate, with an estimated over-dispersion parameter

of 1.36 and the estimated variance of the random effects being 2.16 on the

logit scale [19,20]. In the following sections, we discuss many specific findings

about covariate effects. All of these effects were found to be highly statistically

significant using traditional testing methods. In part, this is due to the very

large sample size. Therefore, in choosing which effects to include in a final

model, we required the effect to exhibit both statistical significance and scien-

tific importance as judged by whether the magnitude of the estimated effect

was large enough that verification outcomes would be expected to change by

at least several people per 100.

In the following sections, predictions of verification probability require spec-

ification of the levels of all covariates in the model (whereas odds ratios do

not, because they are comparative). For such predictions, all unmentioned

variables are set at their baseline levels, which are the first categories listed in
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Table 1 for qualitative variables and which equal the marginal sample means

for quantitative variables. The baseline FAR is 0.001.

5.2 Surprises

This section highlights several findings that are new and unexpected. A key

aspect of some of these surprising results relates to asymmetries in the effects

of covariates.

5.2.1 Expression: Smiling versus Neutral

Performance varied strongly for different facial expressions. Not surprisingly,

the odds of a subject being correctly verified increased when the expressions

in the target and query images matched: verification was easier for smiling

queries paired with smiling targets, and for neutral queries paired with neutral

targets.

Surprisingly, there was an asymmetry of effect when expressions differed. Per-

formance for smiling query images paired with neutral target images was in-

ferior (for algorithms B and C) to that for neutral query images paired with

smiling target images. The magnitude of this effect and the degree of asym-

metry varied substantially between algorithms.

Estimated odds ratios for verification for each pairing of facial expressions,

relative to neutral-neutral pairings are given in Table 2. The associated es-

timated probabilities of verification are also shown. Expressions were either

neutral (N) or smiling (S) and are listed with the query image first. Thus, NS

indicates a neutral expression in the query image and a smiling expression in
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Odds Ratios P[Verification]

Expressions A B C A B C

NN 1.00 1.00 1.00 .065 .644 .850

NS 0.31 0.84 0.64 .021 .602 .783

SN 0.48 0.74 0.45 .033 .571 .718

SS 1.17 1.44 1.18 .075 .723 .870

Table 2

Estimated odds ratio for verification for each expression pairing, relative to NN,

for each algorithm. Expressions were either neutral (N) or smiling (S) and are listed

with the query image first. Also shown are the estimated probabilities of verification.

the target image.

These results challenge conventional wisdom. It is common for operators col-

lecting facial biometrics, namely images, to instruct people not to smile. For

example, the Canadian policy for passport photos is that no smiles are al-

lowed. Specifically ”Applicant must show a neutral facial expression (no smil-

ing, mouth closed) and look straight at the camera.” 3

In these instructions is a presumption that a stored image with a neutral

expression will be most universally recognizable. Our findings directly con-

tradict this presumption and are consistent with earlier work by Yacoob and

Davis [21]. All three algorithms have a higher estimated probability of ver-

ification when the subject is smiling in the query and target images. If we

assume for the moment that we can not control the expression of the subject

3 From http:www.ppt.gc.cacdnphotos.aspx on 9/10/08.
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in the query image and only one image may be enrolled, then a smiling target

image is better than one with a neutral expression. Further, as others suggest

as well [22], enrolling multiple target images per subject (e.g., one neutral and

one smiling) is better still.

5.2.2 Elapsed Time

One of the most commonly reported covariates contributing to recognition

difficulty is the elapsed time between when query and target images are ac-

quired [23–25]. This elapsed time is one of the covariates in our study. The

total elapsed time for image pairs in our data set is relatively modest, and

skewed toward smaller values. Specifically, the minimum, quartiles, and max-

imum values are 0, 4, 28, 52, 84 and 238 days respectively.

Nevertheless, there is sufficient variety in the data to test for an effect, and

the odds ratios for verification associated with a 30-day increase in elapsed

time are 0.85, 0.99, and 0.89, respectively, for A, B, and C. Thus, algorithm B

is essentially unaffected by elapsed time (up to eight months), whereas A and

C suffer substantially with increasing elapsed time. Figure 3 shows estimated

verification probabilities as a function of elapsed time for each algorithm.

It is surprising that algorithm B is essentially unaffected by elapsed time. Ob-

viously this may not hold for longer time periods, but insensitivity to elapsed

time even over the modest range of 8 months is noteworthy.
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Fig. 3. Elapsed time and estimated verification probabilities for each algorithm.

5.2.3 Image Resolution: Pixels between Eyes

The pixel coordinates for the center of the left and right eyes were collected

by hand at the University of Notre Dame. The distance between the eyes,

measured in pixels, indicates the resolution at which the face has been cap-

tured. There is considerable variation in this variable among the imagery. For

target images typical distances between the eyes ranged between 220 and 320

pixels. The range for query images was 120 to 180 pixels. Our main analysis

fit model terms for the query image eye distance and for the ratio of eye dis-

tances, query relative to target. For our data set, the query-target eye distance

ratio ranges from about 0.45 to 0.75; the query images are always smaller than

the target images due to the uncontrolled query imaging protocol. The ratio

has a strong association with performance variations and it interacts strongly

with algorithm. The odds ratio for verification associated with an increase of
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one standard deviation in the query-target eye distance ratio are 0.66, 1.16,

and 1.24, respectively for algorithms A, B and C. Thus, the performances of

algorithms B and C improve with increasing relative size of the query image,

whereas the performance for algorithm A degrades markedly.

It is important to note that for GLMMs the interpretation of the query/target

eye distance ratio is conditioned on holding all other predictors fixed, including

the query image eye distance itself. This complicates interpretation. To better

understand how performance varies with query and target image sizes, we

also fit a secondary model replacing the terms in query eye distance and eye

distance ratio. The replacement terms represented a cubic polynomial in query

and target eye distances. This polynomial included all terms having total

exponent of 3 or less (i.e., terms like Q2 and Q2T 1 were allowed but not

Q3T 3.).

Contour plots of estimated verification probability for this model are shown in

Figure 4. The ellipses indicate the region of covariates space where 95% of our

samples fall. The contours are labeled with the predicted verification rate, i.e.

70 indicates a predicted probability of correct verification of 0.70. We found

(in both models) a significant three-way interaction between FAR, query eye

distance, and algorithm (see discussion of FAR later); therefore these contour

plots are made specifically for the baseline FAR of 0.001.

In Figure 4, the effect of increasing query eye distance is negative for algorithm

A but positive for B and C. Concentrating on the latter algorithms, we notice

that the contours are generally diagonal at the same angle, suggesting that

the ratio of image sizes is a key variable: performance is roughly constant for

a fixed ratio, regardless of whether this ratio is achieved with large images

25



Algorithm C

Query Eye Distance

Ta
rg

et
 E

ye
 D

is
ta

nc
e

120 140 160

22
0

24
0

26
0

28
0

30
0

65
70

75
80

85
89

89

Algorithm B

Query Eye Distance

Ta
rg

et
 E

ye
 D

is
ta

nc
e

120 140 160

22
0

24
0

26
0

28
0

30
0

45

50
55

60
65 70

Algorithm A

Query Eye Distance

Ta
rg

et
 E

ye
 D

is
ta

nc
e

120 140 160

22
0

24
0

26
0

28
0

30
0

5
1015

25
35

45

50

Fig. 4. Contours of estimated verification probabilities for each algorithm, against

query and target eye distances.

or smaller ones. Finally, comparing the central and right panels of Figure 4,

the performance benefit of increasing query image size vanishes for algorithm

C above about 140 pixels between the eyes in the query image, whereas the

benefit continues (albeit more slowly) for algorithm B.
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5.2.4 Face Tilt Difference

The pixel coordinates for the left and right eyes also indicate the extent to

which the face is tilted side to side. The tilt of most faces lies in the range

−7 to 0 degrees for target images and −6 to 2 degrees for query images. A

slight tendency for the right eye to be higher in the image than the left eye

is evident; the median tilt is 3 and 2 degrees for the target and query images

respectively.

It is reasonable to ask whether a face rotated in a query image relative to the

target image might complicate recognition. To test for this effect, our study

considered the absolute in-plane rotational difference, i.e. angle, between line

segments connecting the eyes in the query and the target image. A zero on

this covariate tells us the face tilt is the same in the target and query image.

Departure from zero tells us the face is rotated between the query and target

images.

We found the effect of tilt difference to be significant but statistically indis-

tinguishable among the three algorithms. Increasing tilt difference degrades

performance. The odds ratio for verification associated with increasing the

tilt difference by 1 standard deviation (about 3 degrees) is 0.89. It is worth

drawing special attention to the fact that this is one of the few effects that

did not involve any algorithm interaction, and thus tilt difference seemed to

affect all algorithms in the same fashion and to the same extent.
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5.2.5 Image Focus

The extent to which an image is, or is not, in focus also influenced verifi-

cation performance. Unfortunately, we possess no perfect knowledge of focus

and must infer it after the fact from the imagery itself. While imperfect, es-

timates of focus can be derived using the Tenengrad function measure as

defined in “Active Computer Vision by Cooperative Focus and Stereo” by

Eric Krotkov [26]. This approach essentially convolves the image with an edge

detector (Sobel) and then measures edge density. Focus is measured by the

sum of the pixel gradient magnitudes.

This measure of focus is restricted to only pixels lying on the face. The face

region is defined by the eye coordinates and a canonical oval template. A

choice arose in designing this study whether to measure focus over pixels in

the original images, or in images down-sampled to a standard 130× 150 size.

Both options were investigated, and it was found that focus computed over the

down-sampled images was a more useful predictor of verification performance.

Thus, our focus variables were computed over down-sampled imagery.

In our main analysis, we fit model terms for the difference in focus (query

minus target) and the mean focus (over query and target). We found significant

effects for both variables and for their interactions with algorithm. To better

understand the nature of the relationships, we fit a secondary model with cubic

polynomial terms in query and target focus analogous to the case described

above for eye distance. The estimated verification probabilities from this model

are shown with contour plots in Figure 5. Overall, there are strong effects for

these focus variables, and a strong interaction with algorithm. There is also a

strong asymmetry in the effect of focus. Blurry query with sharp target is not
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Fig. 5. Contours of estimated verification probabilities for each algorithm, against

query and target focus.

the same as sharp query with blurry target.

For algorithm A, performance was best when the target was much sharper

than the query. For algorithm B, performance was best when the query was

somewhat sharper than the target. There was an optimal focus level for the

target, which is in the middle of the possible range. In other words, for fixed

target focus, B preferred the query as sharp as possible, but for fixed query
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focus, B preferred target focus around 40. The conclusion is surprisingly similar

for algorithm C, except that for blurry queries lower target focus was preferred.

Ignoring algorithm A, our findings suggest an important quality measure:

target images should aim to have a focus score around 40, not substantially

higher or lower 4 . Query images should have the highest possible focus score,

regardless of target focus.

5.2.6 Novelty

Some face images are more unusual or novel than others. One way of quanti-

fying this idea is to build a face-space using standard PCA techniques [27,28],

and then measure the novelty of new images relative to the standardized rep-

resentation. We have done this by first selecting a set of imagery, not part of

our study, that represents what might be thought of as normal variation.

In particular, 496 Notre Dame face images of 67 subjects were selected from

the Spring 2003 data set. Only controlled lighting imagery was used, and

the set of 67 subjects is disjoint from the subjects included in our covariate

analysis. Standard geometric normalization was carried out so that novelty

was always measured using 130 by 150 pixel images with cropped faces in

standard position. A PCA subspace was then constructed from the Spring

2003 imagery and all images in our study were projected into this subspace.

Images which are novel are not well encoded by the PCA subspace, and thus

part of their content is lost.

4 The output of the Sobel mask was used directly, so the average gradient magni-

tude is over estimated by a factor 2. Hence, 40 corresponds to an average gradient

magnitude of 20 grey-levels
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Formally, let V be a vector representing a geometrically normalized face image.

Further rescale V such that it is of unit length: |V | = 1. Now let W be V

after projection into the PCA subspace. Novelty is

novelty = 1 − |W | (3)

If the PCA space perfectly encodes the new image V , then novelty is zero.

Otherwise, novelty is a value between zero and one indicating the degree to

which V is unlike our original set of images. For the query images, the min-

imum, quartiles and maximum novelty values are 0.0031, 0.047, 0.061, 0.075

and 0.222 respectively. For the target images, these values are 0.0026, 0.068,

0.106, 0.144 and 0.278.

In our main analysis we fit model terms for the difference (query minus target)

and mean (over query and target) novelty scores. We found significant effects

for both variables and their interactions with algorithm. To better understand

the nature of our findings, we fit a secondary model with cubic polynomial

terms for query and target novelty, analogous to the case described above

for eye distance. The estimated verification probabilities from this model are

shown in the contour plots given in Figure 6.

The contour graphs in Figure 6 show how query and target image novelty

interact to affect performance. For algorithm A, performance was best when

query novelty was low. Target novelty appeared not to affect algorithm A

much.

Algorithm B performed best when query and target novelties were high, and

worst when they were low. In contrast, algorithm C performed best when

target novelty was high but query novelty was low. Notice that novelty differ-
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Fig. 6. Contours of estimated verification probabilities for each algorithm, against

query and target novelty.

ence operated roughly symmetrically on algorithm B (in that it did not matter

much which image was more novel), whereas it operated highly asymmetrically

on algorithm C (with negative values of the difference strongly preferred).
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5.2.7 Fragmentation

Another covariate considered in our study is the degree of fragmentation or

homogeneity in the face. The region segmentation algorithm developed by

Meer [29] was used to segment the face region as defined by the same clipping

oval used above for the focus measure. Our model included the signed differ-

ence between the number of detected regions in the query and target images.

Algorithm-specific effects were found. The odds ratios for verification associ-

ated with a 1-standard-deviation increase in this covariate are 1.12, 1.00, and

0.85, respectively, for A, B, and C. Notice that performance of algorithm C

was degraded when the number of regions in the query image increases rela-

tive to the number of regions in the target image, while B was indifferent to

increased fragmentation.

5.3 Mounting Evidence

Some of our findings corroborate previous results from our own studies [6,30,31]

and those of other researchers [21,5]. While not entirely new, some of these

results are still of considerable practical importance. For example, while not

surprising, our results further confirm that comparing images of a person with

glasses and without glasses significantly reduces performance. Perhaps more

interestingly, the outcome that performance is higher for Asian than for White

subjects is consistent with other studies and raises important practical ques-

tions for algorithm designers concerning how algorithms handle individuals

from distinct groups.
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Fig. 7. Estimated verification probability and log odds against FAR. For each al-

gorithm, the heavy, medium, and light line correspond to high, medium, and low

values of query eye distance, respectively. The FAR axis labels are inverted to sim-

plify labeling, but FAR increases to the right.

5.3.1 False Accept Rate

Figure 7 summarizes how varying FAR affected the probability of verification.

Generally, verification performance improved significantly for higher FAR set-

tings, and this is entirely to be expected. However, note that the algorithms

responded differently to changes in FAR. In other words, there is a clear in-

teraction between FAR and algorithm.

Also note the inclusion in Figure 7 of three curves for each algorithm. These

curves are for different distances between eyes in the query images: high,

medium and low. Our model revealed a three-way interaction between FAR,

algorithm and query image eye distance. Only for algorithm C does the rela-

tionship between FAR and performance seem unaffected by query image eye

distance.

In terms of verification probabilities, algorithm B was relatively insensitive to
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eye distance for the lowest FAR settings, and then performed better at higher

FAR settings when eyes in the query images were farther apart. Algorithm A

was always better when eyes in the query images were closer together, and

algorithm C was always better when the query image eyes were further apart.

For algorithm A, the range of performance variation as eye distance varies

diminished somewhat with increasing FAR, but the range was unchanged for

algorithm C.

The right panel of Figure 7 repeats the graph on the log odds scale. In this

panel, model fits are straight lines because our GLMM is linear in log-odds.

Presence of parallel lines in the log odds plot indicates a lack of an interaction

effect. The right panel is thus included here to underscore the basis for con-

cluding that the relationship between FAR and verification performance for

algorithm C is unaffected by query image eye distance.

5.3.2 Age

Most subjects in the data set are young. The minimum, quartiles, and max-

imum values for age are 17, 19, 21, 24 and 69. Out of 351 subjects, only 10

are over 40 years of age. Consequently, while results are presented over the

full range of ages, the data is sparse for subjects older than 40 and attention

is best focused on the results for subjects younger than 40. That said, this

study corroborates results from past studies indicating that performance im-

proves for older subjects [6]. The odds ratios for verification associated with

a 1-year increase in age are 1.01, 1.08, and 1.05 for algorithms A, B, and C,

respectively. For a 1-decade increase in age, these become 1.13, 2.06, and 1.60,

respectively. Figure 8 shows the estimated probability of verification for each
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Fig. 8. Age and estimated verification probabilities for each algorithm.

algorithm as a function of age.

5.3.3 Gender

There are 159 female and 192 male subjects in our study. The estimated

probabilities of verification are summarized in Table 3. Men were easier to

recognize than women for algorithms B and C, while women were easier to

recognize for algorithm A.

In our earlier studies of a PCA algorithm, similar to Algorithm A in this

study, men were found to be somewhat easier to recognize as characterized by

probability of rank one identification [31] and definitively easier to recognize

as characterized by probability of correct verification [9]. Thus, women being

easier to recognize for Algorithm A is counter to our previous findings. Obvi-

ously Algorithm A is on the whole failing much more often than succeeding for

Experiment 4. This is not the case in prior studies, and may be contributing
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A B C

Male 0.066 0.644 0.850

Female 0.101 0.624 0.812

A B C

No Glasses 0.065 0.644 0.850

Glasses 0.030 0.462 0.586

A B C

White 0.065 0.644 0.850

Asian 0.119 0.727 0.942

Black 0.025 0.281 0.690

Hispanic 0.151 0.691 0.858

Unknown 0.133 0.436 0.838

Table 3

Estimated probabilities of verification for departures from baseline associated with

gender, race and glasses.

to somewhat atypical behavior on the part of Algorithm A.

More generally, whether men are easier or harder to recognize has been ad-

dressed in several prior studies. Notably, marginal analysis for the FaceIt al-

gorithm in 2001 on the AR dataset indicates women being somewhat easier

to recognize [5]. For a marginal analysis over a much larger population and

multiple algorithms, FRVT 2002 found men typically easier to recognize than

women [6]. Discounting Algorithm A based upon its overall poor performance,

a trend is emerging suggesting men are easier to recognize than women.

5.3.4 Race

The estimated probabilities of verification for different races are shown in Ta-

ble 3. Only White (253) and Asian (91) subjects are present in large numbers,

while Black (4), Hispanic (13), and Unknown (10) are not.

Algorithms responded differently to race, but generally all non-White races
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except Black were easier to verify. Asian seemed easiest, and Black hardest.

The performance of Algorithm B improved less for Asian and Hispanic than

that of A and C. However, due to small sample sizes, caution should be used

in making inferences about races other than White and Asian.

This result continues a trend noted in our earlier study using data from the

FERET evaluations [31], where we observed algorithms performing better for

non-majority races. It is difficult to precisely explain this outcome, but in

general it is worth noting that any disadvantage one might presume due to

under-representation in algorithm training seems more than compensated for

by some factor having to do with a reduced likelihood of confusion for non-

majority races. Furthermore, in [7], race effects persisted even after we cor-

rected for under-representation in training and testing.

It is also worth noting that we observed Caucasians being harder to recognize

than Asians in the HCInt portion of FRVT 2002. This was not originally

reported as part of FRVT [6] due to a relatively small number of Asians,

about 130. However, it is worth mentioning given this new finding for FRGC

Experiment 4.

5.3.5 Glasses

Recall that subjects never wore glasses in the target imagery, but subjects

wore glasses in 465 of the 2, 808 query images. The estimated probabilities of

verification with and without glasses in the query image are shown in Table 3.

Wearing glasses generally degraded performance, but it affected different al-

gorithms to different extents. In particular, algorithm C was more sensitive to

glasses than were the other two algorithms.
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This result highlights something most researchers expected, namely that in-

consistent usage of glasses can strongly degrade performance. Our previous

study on the FERET data [9] showed a modest tendency for glasses to im-

prove performance, but in that case we were measuring a benefit associated

with a subject always wearing the same pair of glasses. Clearly the two situ-

ations should not be confused.

5.4 Model Calibration and Power

A common but often misguided criticism of empirical analyses of performance

is that the fitted model is divorced from reality, particularly in the sense

that its predictions have some explanatory utility on average but less so for

individuals. It is important to examine model fit in light of this concern,

and here we present additional results that suggest our model is indeed well

calibrated to the observed data and has genuine predictive power 5 .

An elementary check on the power for a model such as ours is to ask how

well it predicts individual outcomes. Overall, about 83.5% of model estimates

(59, 156 of 70, 192 for true failures and 53, 730 of 64, 568 for true successes)

would have provided correct classifications of success or failure using an es-

timated probability threshold of 0.5 for classification 6 . This indicates that

as a predictive tool, our model is effectively extracting information from the

5 The term “prediction” here is used in the sense common to discussions of statis-

tical models, and concerns the observed data. We are not making stronger claims

about generalization to other data sets in the manner common in machine learning.
6 Classification success is even better if one chooses the best possible threshold,

knowing that the dataset has 52% failures.
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Fig. 9. True verification outcomes and estimated verification probabilities.

covariates about verification outcome.

Another valid concern is the behavior of the model over the range of co-

variates, particularly at the extremes. One way to examine the relationship

between what the model predicts and the actual fraction of verification suc-

cesses to failures is to divide all the observed data into a series of strata based

upon the outcome predicted by the model, and then to report the fraction of

true verification successes for each stratum. This has been done in Figure 9.

Each row of this table shows a stacked bar chart indicating the numbers of

true verification failures and true verification successes. For example, the top

bar indicates that about 14, 000 observations had an estimated probability

of correct verification between 0.95 and 1.0. Further, the relative sizes of the

40



black versus brown portions of the bar indicated that the vast majority of

these instances were true verification successes.

What we can observe from Figure 9 is that while estimated verification prob-

abilities range widely—nearly from 0 to 1—this range is not indicative of

inappropriate over-fitting. Nearly all the cases having very high estimates of

verification probability were true successes, so the model is making accurate

predictions. The analogous result holds at the other end of the spectrum. If

anything, the model is over-smooth, with fitted verification probabilities not

adjusting quite quickly enough to the predictors. This is common in such

models.

Another key question in our analysis relates to the explanatory power of our

model. Also, what is the relative importance of these covariates compared to

between-subject variation that is identifiable but unattributed to our chosen

covariates? To answer such questions, we constructed a table comparing results

from four models:

(i) the full model,

(ii) a model having only covariate effects with no random effects for subjects,

(iii) a model having only a random effect for subjects with no covariate effects,

and

(iv) a constant (null) model which yields estimated verification probability of

0.48 for every observation.

For each observation in the dataset, a predicted verification probability was

estimated for each model, along with a confidence interval. If that interval

covered 0.5, the model prediction was judged to be inconclusive. If that interval

fell entirely on the correct/incorrect side of 0.5, the model was judged to yield
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Model Success Failure Inconclusive Forced

(i) Full 79 13 8 84

(ii) Only Covariates 73 22 4 76

(iii) Only Subjects 58 26 16 67

(iv) Constant 52 48 0 52

Table 4

Percentages of correct model prediction (i.e., explanatory power) for four models

described in the text.

a prediction success/failure for that case. Finally, prediction decisions were

also forced by examining only the point estimate, ignoring the interval. If the

point estimate fell on the correct/incorrect side of 0.5, the model was judged

to yield a prediction success/failure for that case. If the point estimate equaled

0.5, model prediction was said to have failed. Note that for the ‘forced’ case,

the constant model (iv) predicts non-verification in every instance; therefore

every actual verification in the dataset constitutes a model prediction failure.

Table 4 summarizes the explanatory power of the models by tabulating the

prediction successes and failures described above, expressed as percentages

of total attempts, for each of the four models. The odds ratio for correctly

predicting the verification outcome using our model, compared to model (iv),

is 4.85. This shows the substantial explanatory power of our model.

To further interpret these results, begin with the constant model (iv). The

predominant (52%) outcome in the dataset is non-verification. Thus, a mon-

key could correctly predict 52% of cases correctly simply by guessing ‘non-

verification’ in every case. This corresponds to the final row of the table.

42



Now, if we model unspecified between-subject variation, we can improve to

67% correct prediction using the random intercept model (iii). The covariates

clearly carry a signal beyond subject-to-subject variation, because when they

are added to the random intercept model, correct predictions increase from

67% to 84%. However, there is a non-negligible portion of between-subject

variation that is unexplained by the covariates, evidenced by the drop from

84% to 76% when random intercepts are omitted from the full model. These

findings support the view that the magnitude and importance of covariate-

related performance variations are at least as great as those attributable to

unexplained variation between subjects.

6 Conclusions

Perhaps the most important lesson to be learned from this study is that covari-

ates do indeed matter. Recall from Figure 2 the spread in estimated verification

probability from about 0.4 to 0.9 for algorithms B and C when covariates such

as gender, age, glasses are taken into account. This is a very large range of

possible outcomes, and it overshadows somewhat the difference between al-

gorithms themselves. Thus, this paper clearly establishes the fact that these

covariates strongly influence recognition performance, and it is now essential

that researchers in the field begin to better understand why.

It is also important to note that as often as not, and particularly for covariates

derived directly by measuring properties of the imagery, algorithms respond

differently. This has important implications for work on image quality metrics.

At least the cases considered here, in particular resolution, focus and novelty,

it is wrong to assume a universal link between these image properties and
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algorithm performance.

The asymmetric nature of the smiling versus neutral expression effect is im-

portant to those charged with establishing enrollment protocols. For example,

recall that predicted verification rates increase from 0.72 to 0.78 for algorithm

C when smiling instead of neutral faces are enrolled in the target set. We re-

peat here our conclusion that the best practice is to store both a smiling and

a neutral expression image. However, if forced to store only a single image,

our results strongly argue for a smile.

Three other findings deserve a comment. First, as in previous studies, younger

adults are harder to recognize than older adults. This finding is one of the

few to appear consistent in all studies, and it is rapidly gaining stature as

an accepted fact. The second finding is that males appear easier to recognize

than females. As discussed above, the evidence from prior studies is not as

consistent as for age. However, it is our judgment that the weight of evidence

is shifting in favor of the view that males are somewhat more easily recognized.

Finally, as in past studies, Asians are showing up as more easily recognized

than are Caucasians in data sets with a majority of Caucasian subjects. It

will be interesting as more studies are conducted to see what happens on a

majority Asian data set with a minority subset of Caucasians.
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