
VOLUME 86, NUMBER 6 P H Y S I C A L R E V I E W L E T T E R S 5 FEBRUARY 2001
String Formation in Sheared Polymer Blends: Coalescence, Breakup, and Finite Size Effects
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We have discovered a droplet-string transition in concentrated polymer blends which occurs when
the size of the dispersed droplets becomes comparable to the gap width between the shearing surfaces.
The transition is abrupt and proceeds via the coalescence of droplets in a four-stage kinetic process.
Once formed, the strings are stable and exhibit pronounced hysteresis. The string state is stabilized by a
suppression of the Rayleigh-Tomotika instability due to both finite size effects and to the shear-induced
advection of small-amplitude disturbances.
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Polymer blends are traditionally used in macroscopic
applications where the synergetic properties of two immis-
cible polymers can be exploited, such as in nylon/rubber
blends [1]. The length scale of the dispersed phase is typi-
cally of order 1 mm whereas the smallest length scale, d,
of the part manufactured from the blend is much larger
(e.g., a car bumper). There is great current interest in mi-
cro and nano length scale technologies in which polymer
blends could play an important role, but the physics of
processing polymeric emulsions when the droplet size is
comparable to a sample dimension is poorly understood.
Here we report on several novel phenomena that occur in
this regime.

The size and morphology of the dispersed component
is determined during material processing and is crucial to
the final physical properties; for example, fibers can pro-
vide great enhancements in unidirectional strength, sheet
structures can possess ultralow permeability and spherical
inclusions provide impact resistance [1,2]. The fundamen-
tal understanding of the dispersion mechanism comes from
the works of Taylor and others who have shown the ratio
of the viscous to interfacial stresses on a droplet, i.e., the
capillary number (Ca), determines its stability in a shear
field [3–6]. For the case considered here of (roughly)
equal viscosity between droplet and matrix, there is a criti-
cal capillary number Cac � 0.5; droplets in a shear field
with Ca , Cac will remain stable, whereas those with
Ca . Cac will elongate and break up. Using Taylor’s defi-
nition Ca � sa�k where a is the unperturbed droplet ra-
dius, s is the matrix shear stress, and k the interfacial
tension, we can define a length scale for a droplet in a
shear field, a0 � Cack�s. The situation is more com-
plex in concentrated dispersions where droplet coalescence
and breakup occur simultaneously, however a0 still de-
fines a length scale for the maximum stable droplet size
[7,8]. Stringlike structures have been observed in blends
which are thermodynamically near a phase transition point
[9–12] and in immiscible viscoelastic systems in complex
flow fields [13]. While these studies focus on bulk behav-
ior �a0 ø d�, a two-dimensional simulation has studied
the influence of the walls [14]. In this work, we investi-
gate the limit where a0 becomes comparable to and smaller
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than the gap thickness d. Since s � �gh, where �g is the
matrix shear rate and h is the matrix viscosity, we can ex-
perimentally vary a0 through its dependence on �g.

The shear-induced structures are generated by placing
the sample in between two parallel quartz disks and rotat-
ing the upper one at a controlled rate. The shear rate is
then �g � n�r��d where n�r� is the upper plate velocity
at the radial point of measurement r . Stroboscopic opti-
cal microscopy is utilized to visualize the structures, and
the data are recorded onto videotape for subsequent analy-
sis [15]. The minority component is Polydimethylsilox-
ane (PDMS), used at a mass ratio of 0.28 which is within
the range typically utilized in industrial polymer process-
ing, and the majority component is Polyisobutylene (PIB).
Both components are fairly Newtonian (constant viscosity)
for the shear rates used here and are nearly matched in vis-
cosity; hPDMS � �10.0 6 0.2� Pa s and hPIB � �11.3 6

0.2� Pa s at room temperature. The materials are weighed,
blended, and loaded into the quartz shear cell.

In Figs. 1(A)–1(D) we show video micrographs of the
blend structures as the shear rate is progressively deceased
at a fixed gap width �d � 36 mm�. The procedure is to
decrement the shear rate in 20% (or less) intervals and
wait for system equilibration (minimum wait time is 2 h).
In Fig. 1(A) � �g � 6.4 s21�, approximately three layers of
droplets exist between the disks (as determined by moni-
toring the velocity of the droplets in the video image). As
the shear rate is decreased, the size of the droplets in-
creases so that in Fig. 1(B) � �g � 4.1 s21�, only two lay-
ers of droplets fit between the disks; in Fig. 1(C), � �g �
2.6 s21� only one layer fits. We observe the unexpected
droplet-string transition upon further decrease of the shear
rate. Figure 1(D) at �g � 2.4 s21 shows that the droplets
have coalesced into very long strings.

We measure the sharpness of the transition by taking ad-
vantage of the linear increase in �g as a function of r . Thus,
8 h after applying a shear rate known to be near the tran-
sition, we quickly translate the objective lens in the radial
direction. Subsequently, we seamlessly link together im-
ages taken at different radial positions (i.e., different shear
rates), as shown in Fig. 1(E). Here, the shear rate is 10%
higher at the top of the composite image (closer to the outer
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FIG. 1. Droplet-string transition in immiscible sheared poly-
mer blends. Images are in the plane containing the flow (see
arrow) and vorticity directions. The distance between the plates
in the shear gradient direction (perpendicular to the plane of
the image) is d � 36 mm. (A) Three layers of droplets at
�g � 6.4 s21. For (A)–(D), the distance between the plates in
the shear gradient direction (perpendicular to the plane of the im-
age) is d � 36 mm; (B) two layers of droplets at �g � 4.1 s21;
(C) one layer at �g � 2.62 s21; (D) string transition at �g �
2.48 s21 (note change in scale). (E) In a plate-plate geometry,
the shear varies with radial position so that the shear rate at the
top is 10% higher than the bottom. The arrow to the left of this
composite image shows the width of the transition region. In
(E) only, hd � 30 Pa s and d � 40 mm.

edge) than at the bottom (closer to the center). We observe
droplets at higher shear towards the top of the image and
strings at lower shear towards the bottom. Over the region
of the double arrow, the string length �ls� over gap width
ratio changes from ls�d . 25 to ls�d � 5 while the shear
rate changes by only 0.025, demonstrating a strong depen-
dence of string length on shear in the transition region.

In order to uncover the relevant scaling laws governing
this transition, we carry out a series of measurements as
a function of decreasing shear rate for three separate gap
widths d ranging from �36 6 5� mm to �122 6 5� mm.
At each shear rate, we measure the size in the vortic-
ity direction of the largest stable droplets lz . We plot
the results as a function of the dimensionless variables
lz�d vs �g� �gd , where �gd � k�dh is the shear rate at
which Taylor theory predicts the maximum droplet ra-
dius is of order d. Figure 2 demonstrates that the data
for the three gap widths collapse onto a universal curve.
For all three cases the transition occurs in the vicinity
of lz�d � 0.5 and �g� �gd � 0.5. Alternatively, we can
1024
FIG. 2. Scaling of dimensionless droplet width �Lz�d� versus
dimensionless shear rate � �g� �gd�. Experiment was carried out at
several values of the gap thickness d: ��� 36 mm; ��� 58 mm;
and ��� 122 mm.

decrement the gap width at fixed shear rate. While this
procedure is experimentally cumbersome, we do observe
the same droplet-string transition. These observations are
proof of our central assertion that the transition is governed
by the ratio of two length scales; the maximum droplet size
to the gap width. This ratio is then determined by �g� �gd .

The solid line in Fig. 2 represents a power law with
slope 21. The collapse of the data at these reduced
shear rates indicates that in the case where the droplets
are smaller than the gap �lz ø d�, the droplet size is inde-
pendent of gap width and scales as lz � �g21, as expected
from the above scaling laws. For the largest gap width of
d � 122 mm (hence largest droplet sizes), the transition
occurs at a slightly lower value of �g� �gd . For these large
drop sizes, the coalescence rate becomes extremely small,
indicating long equilibration times and possible deviations
from the 21 power law at lz � 100 mm [8,16].

The kinetics of the droplet-string transition upon reduc-
tion of shear proceeds in four stages. In the video mi-
crographs of Fig. 3, the shear is reduced from a point
just above the transition, �g� �gd � 0.46, to a point be-
low it, �g� �gd � 0.29. In the first regime, Figs. 3(A) and
3(B), there is an increase in the average droplet size. In
the second regime, the large droplets self-organize into
pearl necklace structures [Figs. 3(B) and 3(C)]. Eventu-
ally, the aligned droplets coalesce with each other to form
strings [Fig. 3(D)]. The strings then coalesce with each
other [Figs. 3(E) and 3(F)]. The “defect” in Fig. 3(E) (see
arrow) shows the mechanism for string-string coalescence.
It travels to the left (relative to the midplane velocity) pro-
ducing a single string of greater width than the individ-
ual components. In Fig. 3(F), the middle string width
is 150 mm whereas d � 30 mm so that the strings are
ribbonlike. In the rotating disk geometry, the strings are
concentric arches about the axis of rotation. In some
cases, they actually form into closed ring structures. In
summary, this four-stage process transforms droplets with
typical volume ��30 mm�3 into strings with typical dimen-
sions �30 mm 3 125 mm 3 75, 000 mm�, an increase by
4 orders of magnitude.
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FIG. 3. Kinetics of the droplet-string transition. Shear rate is
reduced at t: t � 0 s from the droplet regime � �g � 4.0 s21�
to the string regime �g � 2.5 s21. (A)–(B) Increase in size.
(B)–(C) Chaining. (D) Coalescence into strings. (E)–(F)
String-string coalescence into ribbons.

A key step in the kinetics of the transformation from
dispersed droplets to strings is the transient pearl necklace
structure shown in Fig. 3(C). Chaining of solid particles
has been observed in sedimentation [17] and shear flow
[18,19], but has not been reported previously when the
dispersed phase is a fluid. In the case of shear and sedi-
mentation, chaining is observed only when the suspending
fluid is viscoelastic, i.e., it generates large normal forces
under shear. It was shown that the strong viscosity redistri-
butions that occur for a sphere moving in a non-Newtonian
fluid relative to a Newtoninan one cause an attractive inter-
action between spheres that can cause them to line up. In
our case, both fluids are Newtonian, and clearly there is no
attractive interaction when the droplets are much smaller
than the gap width. We speculate that the walls distort the
velocity fields when the droplet size is comparable to the
wall dimension enough to cause an attractive interaction.

What accounts for the stability of the string structures?
Typically, droplets with Ca ¿ 1 deform and break up, but
here they are stable. We propose two distinct mechanisms
to explain this phenomenon; the first stability mechanism
is due to the walls themselves. The wall induced stability
is clearly seen in Fig. 4, which shows the kinetics of
the string morphology following the cessation of shear.
Figure 4(A) shows that 0.2 s before shear is stopped;
there is a distribution of string widths. After cessation of
shear, increasingly wider strings break up into droplets
FIG. 4. Suppression of string breakup due to wall-string inter-
actions. For t , 0, �g � 2.48 s21 whereas for t . 0, �g � 0.
(A) t � 20.2 s; Before cessation, a distribution in width of the
strings is observed. (B)–(E) Progressively wider strings break
up. (F) Widest two strings are stable (note jump in time).

[Figs. 4(B)–4(E)]. However, the widest two strings are
stable; note the time jump from Fig. 4(E) �t � 48 s� to
Fig. 4(F) �t � 1400 s�. From this sequence of micro-
graphs, we find that lz�d � 1.2 6 0.2 is the critical ratio
marking the transition from breakup to stability upon
cessation of flow. Thus the wide stationary strings whose
cross sections are large enough that they interact with the
walls are stable. In the absence of the wall, they would
break up by the Rayleigh-Tomotika mechanism. The wall
induced stability of the wide strings stems from a simple
dimensionality argument. In three dimensions, a cylinder
of radius R is hydrodynamically unstable with respect to
an axial fluctuation whose wavelength is greater than 2pR
because it causes a net decrease in surface area [20]. Hy-
drodynamically, the Laplace pressure induces flow from
the neck regions where curvature is higher into the bulges
where it is lower. In the two-dimensional limit, however,
a ribbon is stable with respect to an analogous fluctuation
because it causes an increase in surface area [21] and no
change in curvature (i.e., Laplace pressure) from the crest
of a fluctuation to its valley. In our system, for the wide
strings, the confining walls make the system quasi two-
dimensional; fluctuations in the z direction are not al-
lowed. Thermal fluctuations in the y direction are then
suppressed because they cause an increase in surface area.

However, the narrower stings in Fig. 4 are stable in
the shear field and break up only upon cessation of flow.
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A second mechanism that causes strings to be stable
was found theoretically by Frischknecht [12], in which a
linear stability analysis showed that the Rayleigh-Tomotika
instability can be suppressed by a shear field. Varicose
fluctuations from one side of the cylinder are convected
relative to the other and do not have time to grow. One
can define a critical radius for the string: Rc � Cas

ck�s

where Cas
c � 0.17 (for equal viscosity ratio) is a critical

capillary number pertaining to strings. The strings are
stabilized by shear whereas droplets are destabilized.
Further support for the shear-induced suppression of
fluctuations [12] in strings comes from the pronounced
hysteresis in the strings. As seen in Figs. 3(E), 3(F),
and 4(A), there can be a distribution of string widths. If
we subsequently increase the shear rate to �g� �gd � 3,
the strings remain. A further increase to �g� �gd � 20
makes the narrower ones break up into droplets, but
some remain. Beyond that shear rate, instabilities in the
matrix are observed (such as voids and instabilities at the
outer edge of the plate) due to the high shear rate, and
measurements cannot be made. Thus, while the strings
are formed by reducing the shear, they are then stable
in the high shear regime, defined as �g� �gd $ 2. Strings
in the high shear limit can be fairly narrow in cross
section, lz�d � 0.1, and thus are not interacting with
the walls.

Finally, we note that we have observed the droplet-string
transition over a range of viscosity ratios from 0.1 to 10,
as well as in the case where the matrix is highly elastic,
indicating that this phenomenon is generic. To summarize
the novel features of this work, we have found a transi-
tion from a dispersed state to a string state upon decrease
of shear. We have also found that the Rayleigh-Tomotika
breakup is suppressed by both finite size effects (in the case
of the wider strings) and by shear flow (for the narrower
strings). A transient stage in the kinetics of the transfor-
mation is the pearl necklace pattern, which has not been
observed previously for liquid/liquid dispersions.

One can speculate on applications of these structures —
by increasing the viscosity, the size scale should decrease,
so that much smaller scale structures can be produced com-
1026
pared to the present experiments. If the string component
were conductive and the matrix were an insulator with
good mechanical properties, then one could produce wires.
If the processing were done at elevated temperature and the
string component formed into a fiber, one could have ul-
trathin materials of high one-dimensional strength. A third
application would be to dissolve out the string component
and use the resulting structures as scaffolds.
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