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Abstract 

 

From the operational perspective, on large fingerprint data sets, a receiver operating 

characteristic (ROC) curve is usually measured by the true accept rate (TAR) of the genuine 

scores given a specified false accept rate (FAR) of the impostor scores. The ties of genuine 

and/or impostor scores at a threshold can often occur on large fingerprint data sets, and how to 

determine the TAR at an operational FAR is provided. The accuracy of the measurement of TAR 

at a specified FAR for an ROC curve is explored using the nonparametric two-sample bootstrap. 

The variability of the estimates of standard error and lower bound and upper bound of 95% 

confidence interval of two-sample bootstrap distribution of the statistic TARs on large 

fingerprint data sets is extensively studied empirically. Thereafter, the number of two-sample 

bootstrap replications is determined. Both high-accuracy and low-accuracy fingerprint-image 

matching algorithms are taken as examples. 
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1. Introduction 

 

In many biometric applications, the performances of, for example, algorithms, etc. are evaluated 

by a receiver operating characteristic (ROC) curve. For instance, concerning the analysis of 

fingerprint data on large data sets, comparing two different fingerprint images of the same 

subject generates genuine score, and matching two fingerprint images of two different subjects 

creates impostor score. Sometimes, both of them are referred to as similarity scores in this 

article. The cumulative probabilities of genuine and impostor scores from the highest similarity 

score to a specified similarity score (i.e., threshold) are defined as the true accept rate (TAR) and 

the false accept rate (FAR), respectively. For continuous similarity scores, all these elements are 

schematically depicted in Figure 1 (A). Inside the similarity score range, among three variables 

TAR, FAR and threshold, one determines the other two. An ROC curve is constructed by 

moving the threshold from the highest similarity score down to the lowest similarity score [1]. 

An ROC curve in the FAR-and-TAR coordinate system is schematically drawn in Figure 1 (B). 

 

Different fingerprint-image matching algorithms employ different scoring systems. In reality, 

nonetheless, different scoring systems can be converted to integral scores, if they are not [1]. 

Therefore, all similarity scores dealt with in this article are integral scores, and thus the 

distribution functions explored in this article are all discrete probability distribution functions 

and an ROC curve is no longer a smooth curve. The empirical distribution is assumed for each of 

the observed similarity scores. An ROC curve can be measured either by invoking the area under 

ROC curve [1, and references therein], or by using the TAR (or 1 – TAR) at a specified FAR 

from the operational perspective [2]. 

 

The area under an ROC curve, first, is equal to the probability of correctly identifying which is 

more likely than the other in the two stimuli under investigation, and it measures the overall 

ROC curve. Second, this area, if it is computed using the trapezoidal rule, is equivalent to the 

Mann-Whitney statistic that is formed, in the case of fingerprint data, by genuine and impostor 

scores. Hence, the variance of the Mann-Whitney statistic can be utilized as the variance of the 

area. That is, the measure of the area under an ROC curve can always be accompanied with a 

standard error. Third, because the Mann-Whitney statistic is asymptotically normally distributed 
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distribution function for genuine and impostor scores, the distribution of genuine scores is 

considerably different from the distribution of impostor scores in general, and the distributions 

vary substantially from algorithm to algorithm in such a way that makes algorithms so different 

in terms of qualities. This suggests that the nonparametric analysis is pertinent to evaluating 

fingerprint-image matching algorithms on large-scale data sets. 

 

An ROC curve is determined by the distribution function of genuine scores as well as the 

distribution function of impostor scores. More explicitly, an ROC curve is characterized by the 

relative relationship between these two distributions [1,9]. Further, the distribution of genuine 

scores and the distribution of impostor scores are interrelated by the algorithm that generates 

these two distributions. In other words, the performance of a fingerprint-image matching 

algorithm is determined not only by its ability of executing the genuine matching but also by its 

ability of implementing the impostor matching. In the medical applications, two possible 

corrections to the variance that was estimated under the assumption of binomial distribution were 

proposed [3,5]. 

 

As a result, the issue of computing the TAR at a specified FAR and measuring its accuracy for 

an ROC curve is a two-distribution issue other than one-distribution issue. Thus, in this article, 

the nonparametric two-sample bootstrap rather than the one-sample bootstrap is employed [10-

13]. Here, the two samples are a set of genuine scores and a set of impostor scores, respectively. 

The statistic of interest is the TAR at an operational FAR under the combined impact of these 

two samples. The FAR is set to be 0.001 in this article [9,14]. The total number of genuine scores 

is a little over 60 000 and the total number of impostor scores can reach as high as about 120 000 

[14]. 

 

For bootstrap methods, one of very important parameters is the number of bootstrap replications. 

It is intrinsically related to the variability of some feature, such as standard error, lower bound 

and upper bound of confidence interval, etc., of two-sample bootstrap distribution of the statistic 

of interest. And it also depends on the underlying distributions of, for instance, similarity scores 

in fingerprint application and what the statistic of interest is [11-13]. As studied before [1], it is 

absolutely inappropriate to assume the normality for distributions of similarity scores generated 
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by fingerprint-image matching algorithms. The statistic of interest in our case is the TAR at a 

specified FAR rather than a simple sample mean. Moreover, the sizes of fingerprint similarity 

scores are much greater than those that have been encountered in other applications, such as 

medical application, etc.. Therefore, the issue of how many two-sample bootstrap replications are 

needed to meet accuracy requirement in the fingerprint application needs to be investigated. 

 

Not only the standard error but also the 95% confidence interval of the TAR at a specified FAR 

can be computed using the nonparametric two-sample bootstrap. It can have many applications 

in the biometrics. For instance, while evaluating fingerprint-image matching algorithms, once a 

criterion of the TAR at a specified FAR is set, those algorithms whose 95% confidence intervals 

of the TARs at a specified FAR are higher than the criterion would be accepted at least at 95% 

confidence level. 

 

The discrete distribution functions of genuine and impostor scores along with ROC curve are 

explored in Section 2. The method of computing TAR at a specified FAR for an ROC curve, 

including that the ties of similarity scores occur at the threshold, is presented in Section 3. An 

algorithm of calculating standard error and confidence interval of the TAR at a specified FAR 

using the nonparametric two-sample bootstrap is provided in Section 4. The variability of two-

sample bootstrap estimates on large fingerprint data sets and thus the number of bootstrap 

replications are investigated in Section 5. The results of four fingerprint-image matching 

algorithms1 are shown in Section 6, among which two are of high accuracy and two are of low 

accuracy. Finally, conclusion and discussion can be found in Section 7. 

 

2. The discrete distribution functions of genuine and impostor scores and ROC curve 

 

It is supposed that all similarity scores are represented in integers [1]. Without loss of generality, 

for any matching algorithm, the scoring system can be expressed inclusively using the integral 

                                                 
1 These tests were performed for the Department of Homeland Security in accordance with section 303 of the Border 
Security Act, codified at 8 U.S.C. 1732. Specific hardware and software products identified in this report were used 
in order to adequately support the development of technology to conduct the performance evaluations described in 
this document.  In no case does such identification imply recommendation or endorsement by the National Institute 
of Standards and Technology, nor does it imply that the products and equipment identified are necessarily the best 
available for the purpose. 
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score set {s} = {smin, smin+1, …, smax}, running consecutively from the minimum score smin to the 

maximum score smax. To make the presentation clear, in the following text, the symbol “∀ s ∈ 

{s}” indicates that s takes all integral scores from smin up to smax in the ascending order, and the 

symbol “∀ s ∈ { s }” means that s takes all integral scores from smax down to smin in the 

descending order. 

 

While executing a matching algorithm over a fingerprint-image data set, the genuine score set, 

generated by comparing two different fingerprint images of the same subject, is denoted as 

G = { mi  | mi ∈ {s} and ∀ i ∈ {1, …, NG}} , (1) 

where NG is the total number of genuine scores. Note that genuine score mi may not exhaust all 

members in the integral score set {s}. In addition, some of the comparisons may very well share 

the same integral value. Therefore, the genuine score set G can be partitioned into pairwise-

disjoint subsets {Gm}, in each of which members possess the same integral score m ∈ {s}. And 

the genuine score set G is the union of all these subsets {Gm}. 

 

Let PG (m) denote the empirical probability at a genuine score m corresponding to the subset Gm. 

To deal with the whole spectrum of the scores by including zero frequencies, the discrete 

probability distribution function of the genuine scores can be expressed as 

PG = { PG (s) | ∀ s ∈ {s} and ∑
=

max

min

s

sτ

 PG (τ) = 1 } . (2) 

And the cumulative discrete probability distribution function of the genuine scores can be 

computed by moving the threshold one integral score at a time from the highest score smax down 

to the lowest score smin. Thus, it can be expressed as 

CG = { CG (s) = ∑
=

maxs

sτ

 PG (τ) | ∀ s ∈ { s } } , (3) 

where CG (s) is the cumulative probability of the genuine scores, i.e., the TAR, at the integral 

score s from the highest score smax. 

 

By analogy with the genuine scores, the impostor score set, created by matching two fingerprint 

images of two different subjects, is expressed as 
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I = { ni  | ni ∈ {s} and ∀ i ∈ {1, …, NI}} , (4) 

where NI is the total number of impostor scores. The discrete probability distribution function of 

the impostor scores can be formulated in terms of the empirical probability PI (s) as 

PI = { PI (s) | ∀ s ∈ {s} and ∑
=

max

min

s

sτ

 PI (τ) = 1 } . (5) 

And the cumulative discrete probability distribution function of the impostor scores can be 

expressed as 

CI = { CI (s) = ∑
=

maxs

sτ

 PI (τ) | ∀ s ∈ {s } } , (6) 

where CI (s) is the cumulative probability of the impostor scores, i.e., the FAR, at the integral 

score s from the highest score smax. 

 

An ROC curve, constructed based on the cumulative discrete probability distribution functions of 

the genuine and impostor scores, is defined in this article as a curve connecting smax – smin + 1 

points, { (CI (s), CG (s)) | ∀ s ∈ {s } }, in the FAR-and-TAR coordinate system, and extending to 

the origin of the coordinate system. The fingerprint-image matching algorithm is designed in 

such a way that an ROC curve always starts from the origin of the FAR-and-TAR coordinate 

system, ends at the point (1, 1), and is above the straight line from the origin to (1, 1). Overlap of 

points (CI (s), CG (s)) can occur, while both PI (s) and PG (s) are zero. An ROC curve goes 

horizontally, vertically, or inclined upper-rightwards at the score s, depending on whether only PI 

(s) is nonzero, or only PG (s) is nonzero, or both of them are nonzero, respectively. 

 

Except at scores where both PI (s) and PG (s) are zero, such a precise ROC curve provides the 

same information as that nonzero PI (s) and nonzero PG (s) provide. The precise ROC curve 

uniquely and accurately represents the cumulative discrete probability distribution functions of 

the genuine and impostor scores. Moreover, such an ROC curve is constructed directly from the 

original data, after converting to integral scores if necessary, without any assumption regarding 

their distributions. Investigating ROC curve of genuine and impostor scores is a way to discover 

how the discrete probability distribution functions of the genuine and impostor scores are related 

to each other, and thus how well/bad the fingerprint-image matching algorithm works. 
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Figure 2 A schematic diagram of a line segment AC from similarity score t + 1 to the threshold t on an ROC curve 
in the FAR-and-TAR coordinate system. OV  is equal to the specified FAR = f. 

 

3. Determine the TAR Value at a Specified FAR for an ROC Curve 

 

Assume that all similarity scores are converted to integral scores. Given a FAR = f where 0 < f < 

1, without loss of generality, the threshold t is defined to satisfy 

CI (t + 1) < f and CI (t) ≥  f , (7) 

where both t and (t + 1) ∈ {s}. As a consequence, the probability of impostor scores at the 

threshold t, PI (t) = CI (t) – CI (t + 1), is always positive. If the probability of genuine scores at 

the threshold t, PG (t), is not equal to zero, it is schematically depicted in Figure 2 that AC 

represents a line segment from similarity score t + 1 to the threshold t on an ROC curve in the 

FAR-and-TAR coordinate system. Therefore, Point A is at (CI (t + 1), CG (t + 1)), and Point C is 

at (CI (t), CG (t)). In Figure 2, OV  is set to be the specified FAR = f. 

 

Theorem   The estimated TAR at a specified FAR = f is 

TÂR(f) = CG (t + 1) + PG (t) * 
(t)P

1)(tCf

I

I +−  . (8) 

 

Proof   If PG (t) is not equal to zero, as shown in Figure 2, OU  = CI (t + 1), OW  = CI (t), OX  = 

CG (t + 1), OZ = CG (t), and OV  = f. And Pi (t) = Ci (t) – Ci (t + 1), where i ∈ {I, G}, due to 
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Eqs. (3) and (6). Therefore, TÂR(f) = OY  is the one as shown in Eq. (8). If PG (t) is equal to 

zero, the validity of Eq. (8) is obvious. 

 

Eq. (8) indicates that if PG (t) is not equal to zero, the ratio of ( TÂR(f) – CG (t + 1) ) to PG (t) 

must be equal to the ratio of ( f – CI (t + 1) ) to PI (t); otherwise, the TAR is the same as CG (t + 

1). And the ratio is always in (0, 1] because of Eq. (7). In the practice of testing and evaluating 

different fingerprint-image matching algorithms executed on different qualities of data sets, 

which generates large sizes of genuine scores and impostor scores, it is found that ties of 

similarity scores at the threshold can often occur. That is, PG (t) and/or PI (t) can be relatively 

large. In some cases, the impact of the second term in Eq. (8) is not negligible. Hence, simply 

choosing CG (t + 1) (i.e., neglecting this term) or CG (t) = CG (t + 1) + PG (t) to be TÂR(f) is 

inappropriate concerning the accuracy of the evaluation. 

 

4. Compute Standard Error and Confidence Interval Using the Nonparametric Two-

Sample Bootstrap [10-13] 

 

As pointed out in Section 1, an ROC curve is determined by the relative relationship between the 

distribution function of genuine scores and the distribution function of impostor scores. 

Moreover, these two distributions are interrelated by the fingerprint-image matching algorithm 

that generates them. The statistic of interest in our practice from the operational perspective is 

the TAR at a specified FAR under the combined impact of these two distributions. Hence, the 

estimates of standard error and 95% confidence interval of the TAR at a specified FAR are 

computed using the nonparametric two-sample bootstrap rather than one-sample bootstrap. 

 

The bootstrap method assumes that an independent and identically distributed (i.i.d.) random 

sample of size n is drawn from a population with its own probability distribution. If some kinds 

of dependence occur among individuals in the sample, for instance, time dependence, origination 

dependence, etc., the sample may need to be regrouped into subsets according to the dependency 

while resampling in the bootstrap [13]. Certainly, how to regroup the sample into subsets will 

have impact on the bootstrap results. In this article, the random sample is assumed to be i.i.d.. If 

this assumption is violated, then the bootstrap objects are the subsets of the sample rather than 
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the individuals in the sample in order to preserve the dependency; however everything else in the 

bootstrap method remains intact. 

 

The statistic of interest TÂR(f) is estimated using Eq. (8). The algorithm of computing the 

accuracy of the estimator TÂR(f) is as follows. 

 

Algorithm I 
 
for i ← 1 to B 
 select NG scores with replacement from NG genuine scores → {new NG genuine scores}i 
 select NI scores with replacement from NI impostor scores → {new NI impostor scores}i 
 {new NG genuine scores}i & {new NI impostor scores}i → statistic TÂRi(f), as FAR = f 
 

(f)ÊS  } B ..., 1,  i | (f)RÂT { Bi →=  and/or ( BQ̂ (α/2, f), BQ̂ (1 - α/2, f)) 

 

where B is the number of two-sample bootstrap replications, NG and NI are the numbers of 

genuine and impostor scores, respectively, and TÂRi(f) represents the ith bootstrap replication at 

a specified FAR = f derived using Eq. (8). SÊB(f) denotes the estimator of the unbiased standard 

deviation. At the significance level α, BQ̂ (α/2, f) and BQ̂ (1 - α/2, f) are the α/2 100% and (1 - 

α/2) 100% quantiles of the distribution formed by all members in the set {TÂRi(f) | i = 1,…,B}, 

respectively. The Definition 2 in Ref. [15] is adopted in this article. That is, the sample quantile 

is obtained by inversing the empirical distribution function of sample with averaging at 

discontinuities. Thus, ( BQ̂ (α/2, f), BQ̂ (1 - α/2, f)) stand for the approximate bootstrap (1 - α) 

100% confidence interval. If 95% confidence interval is of interest, then α is set to be 0.05. 

 

5. Variability of Two-Sample Bootstrap Estimates on Large Fingerprint Data Sets and the 

Number of Bootstrap Replications 

 

1) Variability of Two-Sample Bootstrap Estimates 

 

As pointed out in the literature [11-13], the substantial bootstrap variance is caused by the 

sampling variability as well as the bootstrap resampling variability. The former is because the 

sample size is less than the population size, and the latter is because the number of bootstrap 
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replications is not infinite. In the meantime, the bootstrap variance results in the variances of, for 

example, standard error and confidence interval (i.e., its lower bound and upper bound) of the 

distribution formed by bootstrap replications of the statistic of interest. As a consequence, these 

variances can be functions of the sample size as well as the number of bootstrap replications. On 

the other hand, the sample size and the number of bootstrap replications can be determined by 

studying the variances of standard error and confidence interval of the bootstrap-replication 

distribution. 

 

In our case, the bootstrap is a two-sample bootstrap. The sample sizes include both the total 

number of genuine scores NG and the total number of impostor scores NI. The impact of sample 

sizes NG and NI on the accuracy of measurement of ROC curves in the analysis of fingerprint 

data on large data sets was investigated in Ref. [14]. The studies were carried out in terms of 

both the area under an ROC curve and the TAR at an operational FAR using Chebyshev’s 

inequality in combination with simple random sampling. Thus, it is assumed in this article that 

these two sample sizes are fixed as stated in Section 1. 

 

As pointed out in Section 1, there is usually no underlying parametric distribution function for 

genuine and impostor scores, the distributions of genuine scores and impostor scores are 

considerably different in general, and the distribution functions are substantially different from 

algorithm to algorithm [1]. As a result, it is absolutely inappropriate to assume normal 

distribution for genuine scores and impostor scores generated by fingerprint-image matching 

algorithms. In addition, the statistic of interest in our fingerprint applications is the TAR at a 

specified FAR rather than a simple sample mean.  Moreover, the sizes of fingerprint similarity 

scores are much greater than those that have been encountered in other applications, such as 

medical application, etc.. Therefore, the variances of standard error and confidence interval of 

the bootstrap-replication distribution on large fingerprint data sets will be investigated 

empirically by executing the two-sample bootstrap iteratively with respect to a fixed number of 

bootstrap replications. Thereafter, the number of bootstrap replications can be determined. 

 

2) Compute Coefficients of Variation 
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To take into account the impact of the mean value while dealing with the variability of any 

estimate, the coefficient of variation (CV) is invoked. The algorithm of empirically computing 

CVs for standard error, lower bound and upper bound of confidence interval is as follows. 

 

Algorithm II 
 
for i ← 1 to L 
 

for j ← 1 to B 
  Algorithm I (two-sample bootstrap) 
 
 iiiij f) /2, - (1Q̂ ,f) /2,(Q̂ ,(f)ÊS  } B ..., 1,  j | (f)RÂT { BBB αα→=  
 

f)α/2, - (1Qf)α/2, (Q(f)SE LB,LB,LB, ,,),(V̂CL}..., 1, i |f)/2, - (1Q̂,f)/2,(Q̂,(f)Ê{S LB,iBiBiB =→= κκαα
 

where L is the number of iterations and B is the number of bootstrap replications. 

 

For a fixed number of bootstrap replications B, after L iterations of executing two-sample 

bootstrap, the following three sets are generated, 

}. } L , 1, {  i  | f) α/2, - (1 Q̂ { 

}, } L , 1, {  i  | f) α/2, ( Q̂ { 

}, } L , 1, {  i  | (f) ÊS {           

iB

iB

iB

L

L

L

∈∀=

∈∀=

∈∀=

 f) α/2, - (1 Q

 f) α/2, ( Q    

 (f) SE

L B,

L B,

L B,

 (9) 

Hence, three CVs of standard error, lower-bound and upper-bound of confidence interval, 

respectively, are, 

.  , ,    where,
)( Ê

)( R̂VA
  )( V̂C

L B,

L B,
L B, f) α/2, - (1Qf) α/2, (Q(f)SE L B,L B,L B,== κ

κ

κ
κ

 

(10) 

 

Here, the three CVs are functions of the number of bootstrap replications B and the number of 

iterations L, besides the significance level α and the FAR f. Therefore, the number of bootstrap 

replications B can be determined by the tolerable CV. Then, the question is: How many 

iterations L are required for a fixed number of bootstrap replications B? This issue will also be 

dealt with empirically. 
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Num. of replications B 200 400 600 800 1000 

Min. 0.047524 0.034664 0.027754  0.023912  0.021570 
Max. 0.054346 0.039866 0.031685 0.026866 0.023686 CVSE 

Range 0.006822 0.005202 0.003931 0.002954 0.002116 
Min. 0.000062 0.000044 0.000036 0.000030 0.000026 
Max. 0.000067 0.000047 0.000041 0.000037 0.000031 CVLB 

Range 0.000005 0.000003 0.000005 0.000007 0.000005 
Min. 0.000054 0.000041 0.000032 0.000030 0.000026 
Max. 0.000062 0.000044 0.000036 0.000032 0.000030 CVUB 

Range 0.000008 0.000003 0.000004 0.000002 0.000004 

Table 1 High-accuracy Algorithm 1’s minimum, maximum, and range of CVSEs, CVLBs, and CVUBs, while 
the number of replications B was from 200 up to 1000 for every 200. For each fixed number of replications B, 
the minimum, maximum, and range of CVs were generated from 10 estimates of CVs as the number of 
iterations L ran from 100 up to 1000 for every 100. 

 

Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.021218 0.018613 0.017951 0.016331 0.016040 

CVLB 0.000027 0.000024 0.000023 0.000023 0.000020 

CVUB 0.000024 0.000023 0.000022 0.000020 0.000019 

Table 2 High-accuracy Algorithm 1’s CVSEs, CVLBs, and CVUBs, while the number of replications B was 
from 1200 up to 2000 for every 200 and the number of iterations was fixed at 500. 

 

3) Determine the Number of Iterations and Results of Three Coefficients of Variation 

 

Two fingerprint-image matching algorithms are employed.2 Among them, Algorithm 1 is of high 

accuracy, and Algorithm 2 is of low accuracy. The significance level was set to be 5% and the 

operational FAR = f was specified at 0.001. The estimates of three CVs for standard error, lower 

bound and upper bound of 95% confidence interval are denoted by CVSE, CVLB, and CVUB, 

respectively. In Table 1, it shows high-accuracy Algorithm 1’s minimum, maximum, and range 

of CVSEs, CVLBs, and CVUBs, respectively, while the number of replications B was set to be 

from 200 up to 1000 for every 200. For each fixed number of replications B, the minimum, 

maximum, and range of CVs were generated from 10 estimates of CVs as the number of 

iterations L ran from 100 up to 1000 for every 100, respectively. 

                                                 
2 The algorithms are proprietary. Hence, they cannot be disclosed. 
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Num. of replications B 200 400 600 800 1000 

Min. 0.056895 0.037193 0.031792 0.026763 0.024033 

Max. 0.062609 0.043167 0.034696 0.030500 0.026695 CVSE 

Range 0.005714 0.005974 0.002904 0.003737 0.002662 

Min. 0.000941 0.000677 0.000519 0.000473 0.000442 

Max. 0.001052 0.000734 0.000627 0.000526 0.000478 CVLB 

Range 0.000111 0.000057 0.000108 0.000053 0.000036 

Min. 0.001068 0.000685 0.000637 0.000532 0.000488 

Max. 0.001171 0.000838 0.000738 0.000611 0.000544 CVUB 

Range 0.000103 0.000153 0.000101 0.000079 0.000056 

Table 3 Low-accuracy Algorithm 2’s minimum, maximum, and range of CVSEs, CVLBs, and CVUBs, while 
the number of replications B was from 200 up to 1000 for every 200. For each fixed number of replications B, 
the minimum, maximum, and range of CVs were generated from 10 estimates of CVs as the number of 
iterations L ran from 100 up to 1000 for every 100. 

 

Num. of replications B 1200 1400 1600 1800 2000 

CVSE 0.023673 0.022299 0.021272 0.018918 0.017705 

CVLB 0.000457 0.000397 0.000354 0.000331 0.000318 

CVUB 0.000445 0.000429 0.000420 0.000389 0.000389 

Table 4 Low-accuracy Algorithm 2’s CVSEs, CVLBs, and CVUBs, while the number of replications B was 
from 1200 up to 2000 for every 200 and the number of iterations was fixed at 500. 

 

It is observed from Table 1 that the maximal CVs for the standard error are relatively not too 

small but are getting smaller as the number of replications B increases. The ranges of 10 

estimates of CVs for the standard error change from about 0.007 down to 0.002. The maximal 

CVs for lower bound and upper bound of 95% confidence intervals are less than 0.00007, and 

the ranges are not greater than 0.000008. As a result, to obtain the estimate of CV at a fixed 

number of replications B which is higher than 1000, the number of iterations L does not need to 

run from 100 up to 1000 for every 100. Therefore, the number of iterations L was fixed at 500, 

while the number of replications B varied from 1200 up to 2000 for every 200. The 

corresponding estimates of CVs are shown in Table 2. 

 

The CVs for low-accuracy Algorithm 2 are all greater than those for high-accuracy Algorithm 1, 

correspondingly. This is consistent with the phenomena observed in our previous studies 
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[1,9,14]. Hence, the tolerances for low-accuracy algorithms should be set larger than those for 

high-accuracy algorithms if necessary. Nonetheless, the tendency of changes of CVs with respect 

to the number of replications B as well as the number of iterations L for low-accuracy algorithm 

remains the same as the trend for high-accuracy algorithm. As shown in Table 3, which has the 

same structure as Table 1, for low-accuracy Algorithm 2, the ranges of 10 CVs for the standard 

error vary from about 0.006 down to 0.003. The maximal CVs for lower bound and upper bound 

of 95% confidence intervals are less than 0.0012, and the ranges are less than 0.0002. Thus, the 

number of iterations L could also be set at 500 while creating Table 4. 

 

4) Further Investigation of Three Coefficients of Variation 

 

Further investigation is taken over the cases generated by 500 iterations while the number of 

two-sample bootstrap replications B was set to be 2000 for high-accuracy Algorithm 1 and low-

accuracy Algorithm 2. These two cases are shown in the last column of Table 2 and Table 4, 

respectively. The corresponding six histograms of standard error, lower bound and upper bound 

of 95% confidence interval for two algorithms are shown in Figure 3. The means, standard 

errors, CVs, and 95% confidence intervals of these six distributions are listed in Table 5. 

 

With such numbers of iterations and replications, as shown in Table 5, for Algorithm 1, the 

mean, standard error, and thus the CV are 0.000331, 0.0000053, 0.016040 for the standard error; 

0.992617, 0.0000198, 0.000020 for the lower bound; and 0.993913, 0.0000192, 0.000019 for the 

upper bound of 95% confidence interval, respectively. For Algorithm 2, the mean, standard error, 

and thus the CV are 0.003474, 0.0000615, 0.017705 for the standard error; 0.789746, 0.0002514, 

0.000318 for the lower bound; and 0.804121, 0.0003124, 0.000389 for the upper bound of 95% 

confidence interval, respectively. 
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Figure 3 Histograms of standard errors, lower bounds and upper bounds of 95% confidence intervals, 
generated by 500 iterations, while the number of replications B was set to be 2000, for high-accuracy 
fingerprint-image matching Algorithm 1 (left column) and low-accuracy Algorithm 2 (right column). 
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Algorithm Mean SE CV 95% Confidence interval 

Standard error 0.000331 0.0000053 0.016040 (0.000320, 0.000341) 

Lower bound 0.992617 0.0000198 0.000020 (0.992575, 0.992654) 1 

Upper bound 0.993913 0.0000192 0.000019 (0.993873, 0.993954) 

Standard error 0.003474 0.0000615 0.017705 (0.003362, 0.003618) 

Lower bound 0.789746 0.0002514 0.000318 (0.789244, 0.790220) 2 

Upper bound 0.804121 0.0003124 0.000389 (0.803522, 0.804700) 

Table 5 Means, standard errors (SE), CVs, and 95% confidence intervals of distributions of standard errors, 
lower bounds and upper bounds of 95% confidence intervals for Algorithm 1 and 2, respectively, generated 
by 500 iterations, while the number of replications B was set to be 2000. 

 

Thus, it is demonstrated that the distribution of standard errors is of less dispersion than the 

distributions of lower bounds and upper bounds of 95% confidence intervals, respectively, 

regardless of whether the accuracy of algorithm is high or low. However, the mean of standard 

errors is much less than 1, and on the contrary the means of lower bounds and upper bounds of 

95% confidence intervals are very close to 1 for high-accuracy algorithms and quite close to 1 

for low-accuracy algorithms. This causes that the CV for standard errors is much larger than the 

CVs for lower bounds and upper bounds of 95% confidence intervals for each algorithm. As a 

consequence, the tolerance for CV of standard errors may be set larger than those for CVs of two 

bounds of 95% confidence intervals. 

 

The 95% confidence intervals shown in Table 5 were computed using the Definition 2 of 

quantile in Ref. [15]. They do match the 95% confidence intervals by at least five decimal places 

for high-accuracy Algorithm 1 and four decimal places for low-accuracy Algorithm 2, which are 

calculated if the distributions generated by 500 iterations while the number of bootstrap 

replications is fixed at 2000 are assumed to be normal. 

 

5) Determine the Number of Bootstrap Replications 

 

All CVs shown in Table 1 through Table 4 are depicted in Figure 4 through Figure 6. They are 

CVSEs, CVLBs, and CVUBs for Algorithms 1 and 2, respectively. As stated in Section 5.3, for 

each fixed number of bootstrap replications running from 200 to 1000 for every 200, all CVs 

were referred to the maximal CVs taken from 10 CVs that were generated while the number of 
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iterations L was set to be from 100 up to 1000 for every 100. For higher numbers of bootstrap 

replications, all CVs were created while the number of iterations L was fixed at 500. 

 

As illustrated in Figure 4, all CVs for standard errors of Algorithm 1 and 2, respectively, 

decrease as the number of replications B increases. If the tolerance is set to be at 0.02, 1400 two-

sample bootstrap replications are sufficient for high-accuracy Algorithm 1, and 1800 replications 

are enough for low-accuracy Algorithm 2. This is consistent with what was learned before 

[1,9,14], that is, to achieve the same level of accuracy, high-accuracy fingerprint-image matching 

algorithms always require less execution than low-accuracy algorithms do. 

 

The CVs for lower bound and upper bound of 95% confidence interval for Algorithm 1 are 

shown in Figure 5. As indicated in Section 5.4, the tolerances for CVs of lower bounds and upper 

bounds of 95% confidence intervals should be set smaller. Hence, if the tolerance is set to be at 

0.000025, 1400 replications can meet the requirement. Those for Algorithm 2 are depicted in 

Figure 6. As pointed out in Section 5.3, the tolerance for low-accuracy algorithms could be set 

larger. Thus, if the tolerance is set to be at 0.000450, 1400 replications can satisfy the restriction. 

 

Figure 4 CVs of standard errors for high-accuracy Algorithm 1 and low-accuracy Algorithm 2, respectively, 
as a function of the number of replications, along with the tolerance line that is set to be at 0.02. 
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Figure 5 CVs of lower bound and upper bound of 95% confidence interval for high-accuracy Algorithm 1, 
respectively, as a function of the number of replications, along with the tolerance line that is set to be at 
0.000025. 

 

Figure 6 CVs of lower bound and upper bound of 95% confidence interval for low-accuracy Algorithm 2, 
respectively, as a function of the number of replications, along with the tolerance line that is set to be at 
0.000450. 
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Although the tolerance set for the CVs for standard error is much larger than those for lower 

bound and upper bound of 95% confidence interval, the tolerance 0.02 for CVs is acceptable 

concerning our fingerprint application. Therefore, 1400 replications are sufficient for high-

accuracy algorithm, and 1800 replications are enough for low-accuracy algorithm. To reconcile 

numbers of replications for different qualities of fingerprint-image matching algorithms, and 

further to be more conservative, it is suggested that 2000 two-sample bootstrap replications be 

required in order to achieve certain statistical accuracy. 

 

Algorithm TÂR(f) SÊ 95% Confidence interval 

1 0.993255 0.000333 (0.992589, 0.993905) 

3 0.994322 0.000337 (0.993679, 0.994962) 

2 0.796753 0.003452 (0.789878, 0.803920) 

4 0.871757 0.002265 (0.867283, 0.876270) 

Table 6 The estimates of TARs, standard errors (SE), and 95% confidence intervals for high-accuracy 
Algorithms 1 and 3, and low-accuracy Algorithms 2 and 4, respectively, while the number of two-sample 
bootstrap replications was set to be 2000 and FAR was specified at 0.001. 

 

6. Results 

 

Two more fingerprint-image matching algorithms are taken as examples.3 Among them, one is of 

high accuracy named as Algorithm 3, and the other is of low accuracy called as Algorithm 4. In 

Table 6 shown are the estimates of TARs, standard errors (SE), and 95% confidence intervals for 

high-accuracy Algorithms 1 and 3, and low-accuracy Algorithms 2 and 4, respectively, while the 

number of two-sample bootstrap replications is set to be 2000 and FAR is specified at 0.001. The 

95% confidence intervals were calculated using the Definition 2 of quantile in Ref. [15]. They do 

match the 95% confidence intervals up to the fourth decimal place for high-accuracy Algorithms 

1 and 3 and the third decimal place for low-accuracy Algorithms 2 and 4, if the distribution of 

2000 bootstrap replications of the statistic TÂR(f) for each algorithm is assumed to be normal. It 

is found that the higher the accuracy of the algorithm is, the smaller the standard error is, and 

                                                 
3 The algorithms are proprietary. Hence, they cannot be disclosed. 
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thus the narrower the 95% confidence interval is. This is consistent with the observations in Ref. 

[1,9,14]. 

 

For Algorithms 1 and 2, while the number of bootstrap replications B is fixed at 2000, 500 

iterations had been run and the resultant 95% confidence intervals of standard error, lower bound 

and upper bound of 95% confidence interval, respectively, are shown in Table 5. The results 

shown in Table 6 were generated by a random run (i.e., which is not one of the above 500 runs) 

of each algorithm while the number of bootstrap replications was fixed at 2000. It is worth 

pointing out that for Algorithms 1 and 2, the standard errors, lower bounds and upper bounds of 

95% confidence intervals shown in Table 6 all fall in the corresponding 95% confidence 

intervals shown in Table 5. For instance, 0.000333, the estimate of the standard error of 

Algorithm 1 in Table 6, falls in the 95% confidence interval (0.000320, 0.000341) of the 

standard error for Algorithm 1 in Table 5. Noticeably, these 95% confidence intervals shown in 

Table 5 are very narrow with respect to different qualities of algorithms. This indicates that the 

computation in this article is quite self-consistent. 

 

7. Conclusion and Discussion 

 

On large fingerprint data sets, the ties of genuine and/or impostor scores at a threshold can often 

occur. The method of calculating the estimator TÂR(f) at a specified FAR from operational 

perspective for an ROC curve generated by a fingerprint-image matching algorithm was 

provided. The two-sample bootstrap was applied to computing the accuracy of the measure 

TÂR(f) at a fixed FAR in terms of standard error and confidence interval. The variability of two-

sample bootstrap with respect to large fingerprint data sets was extensively studied empirically. 

It is suggested that 2000 two-sample bootstrap replications be sufficient to meet the acceptable 

tolerances that are set, respectively, for the CVs of standard error, lower bound and upper bound 

of 95% confidence interval, as well as for both high-accuracy and low-accuracy fingerprint-

image matching algorithms. Finally, four algorithms, among which two were high-accuracy and 

two were low-accuracy, were taken as examples. The same approach can be applied to 

investigating the estimate of threshold and its accuracy. 
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In this article, the statistic of interest is TAR at a specified FAR. In some literature [2], to 

measure an ROC curve, the false non-match rate (FNMR), which is equal to 1 – TAR given the 

same FAR, was employed. It is trivial to show that under the same conditions (i.e., with respect 

to the same series of two bootstrap samples selected with replacement from genuine scores and 

impostor scores, respectively, as described in Algorithm I of Section 4) the standard error of 

FNMR is the same as that of TAR, and the lower bound and upper bound of 95% confidence 

interval for FNMR can be obtained by interchanging two bounds for TAR and subtracting them 

from 1, respectively. 

 

In terms of FNMR, two bounds of 95% confidence intervals are very close to 0 for high-

accuracy algorithms and quite close to 0 for low-accuracy algorithms. Such a behavior is 

different from that in terms of TAR, and this can have impact on CVs, as pointed out in Section 

5.4. Under the same conditions of Table 5, generated by 500 iterations while the number of 

replications was set to be 2000, the CVs of lower bound and upper bound of 95% confidence 

interval were 0.003152 and 0.002687 for Algorithm 1, and 0.001595 and 0.001196 for Algorithm 

2, respectively. Therefore, the assertion that the number of two-sample bootstrap replications is 

2000 is still valid if FNMR is invoked. These numbers also indicate that the CVs for two bounds 

of 95% confidence intervals increase while using FNMR as opposed to TAR. To determine the 

uncertainties of the FNMR measure, everything else related to TAR presented in this article 

holds good for FNMR. 

 

Different accuracies of fingerprint-image matching algorithms have different standard errors and 

thus different confidence intervals under the same circumstances. Generally speaking, the higher 

the accuracy of the algorithm is, the smaller the standard error is, and the narrower the 

confidence interval is. It is for sure that there is no universal standard error which can hold good 

for all algorithms. In addition, the higher-accuracy algorithms have less bootstrap variance as 

well. 

 

As pointed out in Section 5.1, the variance of two-sample bootstrap is also caused by the sample 

size. In our fingerprint applications, the total number of genuine scores was a little over 60 000 

and the total number of impostor scores was as high as about 120 000. What if the number of 
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similarity scores changes? As demonstrated in our previous studies [14], if the sizes of similarity 

scores get larger than what are used here, the accuracy of the measure of statistic TÂR(f) at a 

fixed FAR will not obtain substantial improvement. Indeed, after the sizes get greater than a 

certain level, there is little improvement in accuracy. If the sample sizes in other biometric 

applications are different from the ones used here as well as the normality cannot be assumed for 

the population from which the sample is selected, etc., the number of bootstrap replications may 

need to be reinvestigated. Nonetheless, the empirical methodology developed in this article 

should remain the same. 

 

The alternative measure of statistical accuracy for the estimator TÂR(f) besides standard error 

and confidence interval is using bias. A bootstrap estimated bias can be defined as the absolute 

difference between the average of bootstrap replications and the estimate of the statistic of 

interest [13]. If the bias is too large in comparison with the standard error, then TÂR(f) might not 

be an appropriate estimator. For the examples as shown in Section 6, the means out of 2000 

bootstrap replications for Algorithms 1, 3, 2, and 4 are 0.993264, 0.994324, 0.796746, and 

0.871733, respectively. Thus, the corresponding bootstrap estimated biases are 0.0000081, 

0.0000019, 0.0000063, and 0.0000237. And the ratios of the bootstrap estimated bias to the 

standard error for these four algorithms are 0.024, 0.006, 0.002, and 0.010, respectively. Indeed, 

these ratios are substantially small. 

 

Using the area under an ROC curve as a metric to evaluate the performance of an algorithm and 

thus the variance of the Mann-Whitney statistic to measure the standard error of area is a 

deterministic process. However, using the two-sample bootstrap to compute the accuracy of the 

measure from the operational perspective is a stochastic process of a Monte Carlo simulation. 

Therefore, standard error, lower bound and upper bound of 95% confidence interval of the 

statistic of interest may fluctuate every time when they are calculated by a random run of two-

sample bootstrap. Nonetheless, as has been studied in Sections 5.4 and 6, such standard error, 

lower bound and upper bound of 95% confidence interval may fall into the confidence intervals 

with 95% probability, which are generated by many iterations of executions of two-sample 

bootstrap. Moreover, these confidence intervals are so narrow from the practical point of view. 
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As pointed in Section 1, if the area under an ROC curve is used to measure the performance of 

fingerprint-image matching algorithms, the Z statistic can be used to test the significance of the 

difference between two ROC curves. In this article, from the operational perspective, the metric 

of evaluating matching algorithms is using the statistic TÂR(f) at a specified FAR. So far, 

standard error and confidence interval have been studied. However, the associated significance 

test has not been investigated yet. In order to compare two fingerprint-image matching 

algorithms or compare an algorithm against a criterion, the 95% confidence interval can be 

invoked to some extent. The work of the significance test in this regard is underway. 
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