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Highlights

1. Fusion of four scores from five images per person cuts verification error rates by about half,[Section 6.3].

2. Fusion of two leading FRVT systems also reduces verification errors by about 50%, [Section 6.4].

3.
In combination, fusion of scores from additional imagesand from three systems gives 99.7%
true match rate at 1% false match rate, a ten-fold reduction in false non-match rate over the
comparable single score result from the best system.

[Section 6.7].

4. The Chinese sub-population of the FRVT corpus is markedly easier to recognize, [Section 3.1].

5.
Performance varies little for eye-to-eye distances on the range 40 to 100 pixels, but does de-
grade with discrepancy between enrolled and test images,

[Section 4.1].

6.
Although performance varies little with JPEG file size, (from 6k to 11k, image size 300 x 252
pixels), there is considerable degradation with compression-ratio computedon the face,

[Section 4.2].

7.
The median inter-pupil FRVT image distance, 73 pixels, exceeds the minimum resolution of
the tokenimage in the draft face recognition interchange format. In addition the on-face com-
pression ratio is 18 which is lower than the allowed maximum of 20,

[Section 4.2].

8.
Performance is insensitive to in-plane head rotation up to±12 degrees, but degrades mildly
with discrepancy,

[Section 4.3].

9.
Normalization is a legitimate means of boosting verification and open-set identification perfor-
mance, by using background images. It’s action is equivalent to setting user-specific thresh-
olds,

[Section 5.3].

10. Normalization is efficient, achieving its full effectiveness on background galleries as small 30,[Section 5.5].

11.
z-Normalization is a simple, effective normalizer proven in speech, fingerprint and gait tests.
For face, its performance approaches that of the vendors’ normalizers,

[Section 5.2].

12. Theperfectimpostor is defined and used to model worst case security performance, [Section 3.4].

13.
Generalized rocs are defined and used as the canonical means of displaying open-set 1:N iden-
tification performance, forN ≥ 1,

[Section 2.2].

14.
In closed-set 1:N identification, the rate at which a user’s match is found in the topp % of the
enrolled population is largely independent ofN ,

[Section 2.3].

Note: The identification of any commercial product or trade name does not imply endorsement or recommen-
dation by the National Institute of Standards and Technology, or any other FRVT 2002 sponsor or supporter.
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1 Introduction

This report1 is intended to supplement the primary FRVT 2002 reports and to be relevant to more specialized audiences,
particularly standards makers, policy makers, and developers in face recognition and other biometric fields including
fusion. In addition some aspects have been included in response to the many comments received since the primary
report was published in March 2003. Although the author acknowledges that the utility of performance numbers
themselves is being eroded by technologocial advances through time, the report intends to highlight other relevant
issues. For instance, certain elements of best practice evaluation methodology are advocated. In addition the material
here is just a small subset of the analyses that could be conducted using the archived FRVT 2002 data, (for example,
in the areas of database segmentation, independence, the biometric zoo) but equally there are gaps that can only be
filled by further tests (for example, global ethnic variations, persons under the age of 18, image quality). Indeed
several results in this paper are included to spur further investigation. This is particularly true on the statistical side,
the assumption being that progress on the technology side is adequately active already.

The contents of the report is broadly categorized into four areas: subject-specific effects, image-specific effects, nor-
malization, and fusion.

2 FRVT 2002, Definitions, Metrics and Datasets

This section summarizes the FRVT definitions and performance metrics.

2.1 Definitions

Several terms are used throughout this paper:

1. FRVT 2002:TheFace Recognition Vendor Test 2002, conducted in July and August 2002, presented images to
vendors who ran their systems and returned results back to NIST for analysis.

2. FRVT Report:Shorthand here forFace Recognition Vendor Test 2002, Evaluation Report[11] published in
March 2003, available fromhttp://www.frvt.org .

3. Vendor:Any of the companies participating in FRVT 2002; the terms algorithm and recognition system refer to
the company’s face recognition system.

4. High Computational Intensity Test:Part of the FRVT study that utilized 121589 images from 37437 persons, as
extracted from an operational U.S. Department of State Non-immmigrant visa database collected in Mexico.

5. Legitimate user:A person previously enrolled in a biometric system.

6. Gallery: The imagery from a set of legitimate users who are enrolled in a system. There is always one entry per
individual in the gallery.

7. Impostor:A person not known to a recognition system.

8. Verification attempt:The recognition of a legitimate user or an impostor image with the enrolled image of the
person they claim to be.

9. Identification attempt:The presentation of an unknown sample for comparison with all enrolled persons.

10. Probe: Generic term for the imagery used in a verification or identification attempt.

11. Match: The entry in the gallery belonging to the same individual as a probe. As an adjective it implies “from
the same individual”.

12. Fixed Threshold:A value representing the similarity threshold above which users and impostors are accepted.
It is conceptually fixed for all users for the life of a deployed system.

1Keywords: Face Recognition, Biometrics, Performance Evaluation, Fusion, Identification, Negative identification, Compression, Resolution,
Vulnerability Analysis, Demographics
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Verification Identification
PV atPFA = 0.01 PI at Rank 1

System Small Gallery Small Gallery Large Gallery
Chinese Worldwide Chinese Worldwide Chinese Worldwide

Cognitec 0.93 0.90 0.92 0.86 0.91 0.73
C-vis 0.72 0.65 0.52 0.48 0.44 0.26
Dreammirh 0.39 0.33 0.29 0.25 0.23 0.11
Eyematic 0.91 0.86 0.84 0.79 0.81 0.65
Identix 0.94 0.90 0.91 0.83 0.88 0.70
Imagis 0.66 0.59 0.65 0.57 0.62 0.40
Visage 0.60 0.67 0.47 0.51 0.41 0.31
Visionsphere 0.67 0.53 0.61 0.46 0.58 0.29

Table 1: Comparison of identification and verification performance on the Chinese population vs. the general FRVT
population.

2.2 Metrics

The formal description of the metrics used in FRVT 2002 [5], definesopen-set1:N identification as the most general
biometric task and posesclosed-setidentification andverificationas special cases of it. Performance on the open-set
problem should be quantified over two populations. First the impostors, those persons who are not present in the
gallery, are used to compute thefalse match rate, PFA, which is needed to quantify rejection capability:

PFA(N, t) =
Number of impostors matchinganyof N enrollees above thresholdt

Number of impostors
(1)

Second, for those persons who are “known” (i.e. previously enrolled) to a system, the open-setidentification rate,
PTA, is used to quantify user performance:

PTA(N, t) =
Number of known users whose match is above thresholdt

Number of known users
(2)

A test quantifies performance using operating characteristics computed solely from all similarities,sij , corresponding
to the comparison of imagesi andj. Formally, thefalse match rateis the fraction of probes,pj , from an imposter set,
PN , who are more similar thant to any(i.e. one or more) gallery entries,gi from gallery,G:

PFA(t) =
|{pj : maxi sij ≥ t}|

|PN |
∀pj ∈ PN ∀gi ∈ G (3)

The definition ofidentification rateis the fraction of probe imagespj from the user set,PG , whose matching gallery
image,gi, from enrolled populationG, has similarity score at or above an operating threshold,t:

PTA(t) =
|{pj : sij ≥ t, id(pj) = id(gi)}|

|PG |
(4)

where the operatorid() represents the identity of the one person appearing in the image. Note thati andk subscript
gallery elements (rows) of the similarity matrix, andj indexes probes (columns).

2.2.1 Autonomous Operation

Rank based criteria may be included in the true match rate definition. This is particularly appropriate in situations
where a system is unattended, that is with automated, not manual, secondary processing.

PTA(N, t, k) =
Number of known users whose match is above thresholdt and at rankk or better

Number of known users
(5)

The most common application is the casek = 1 representing a single forced choice, best guess, decision. In any case
the formal definition is:
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Eyematic Cvis

Identix Visage

Cognitec Dreammirh

Imagis Visionsphere

Figure 1: Open-set 1:N identification performance. Each generalized ROCs shows the tradeoff between true and
false match rates for various enrolled population sizes,N . The top trace gives the degenerate 1:1 verification case.
The upper (red) trace ignores rank (eqs. 1 and 2), and the lower (blue) trace gives true matching at rank 1 (eq. 5).
Normalization (sec. 5) was not used. Note the differing y-axis scales.
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Figure 2: Open-set identification performance plotted as generalized ROC, for the Cognitec system. The axes plot
identification rate, versus false match rate, and enrolled population size.

PTA(k, t) =
|{pj : R(pj) ≤ k, sij ≥ t, id(pj) = id(gi)}|

|PG |
(6)

where the rankR (for non-tied scores) is the number of gallery images, including the match, that have similarity
greater than or equal to the match:

R(pj) = |{gk : skj ≥ sij , id(gi) = id(pj)}| ∀gk ∈ G.

In the case ofN = 1 rank is moot. Note thati andk subscript gallery elements (rows) of the similarity matrix, andj
indexes probes (columns).

2.2.2 Degenerate Cases

The 1:N open-set task is the general case. In FRVT 2002 it was referred to as the watch-list problem and was presented
after the two more commonly quoted special cases:

1:1 Verification This is the situation in which a user claims one particular identity and it corresponds to open-set
identification in a gallery size of one [5]. Using|G| = 1 in (6) and (3) causes the rank inequality to disappear and the
equations give simply the fractions of matches and non-matches above threshold.

Many of the results in this paper quantify performance by quoting the true match rate and false match
rate against some variable of interest (resolution, compression, etc.). This is done ata fixed threshold
chosen to give a false match rate of 5% (unless noted otherwise) near the middle of the range of the
variable of interest. The use of fixed thresholds is a necessary requirement of operation; particularly it
is not sufficient to quote, for example, justPTA at fixedPFA because those true match rates would be
realized at different thresholds for different, say, compression ratios.
One-to-one verification is used in this role for two reasons. First it is relevant to access control ap-
plications, and it is a well understood measure of biometric strength, that is a measure of a system’s
capability.

FRVT 2002 Supplemental Report 7 IG / IAD / ITL / NIST



1:N Closed-set Identification On the other hand, closed set identification is the 1:N comparison of an image whose
match isknownto be in the gallery. This is a special case that renders false match moot, which can be achieved by set-
ting the thresholdt = −∞ in (3). Closed-set identification is only occasionally applicable to real-world applications,
but is notable as an academic construct because prior probabilities are not subsequently required.

2.3 Graphical Statements of Performance

Open-set Identification The receiver operating characteristic (ROC) is the most common and important statement
of biometric performance. It depicts the trade-off between false and true match rates by plotting them parametrically
with thresholdt. It thereby cleanly devolves recognition performance from policy decisions involving priors and costs.

This document advocates the use of the ROC as the canonical means of displaying open-set identification
performance for arbitrary gallery sizes. Both 1:1 verificationand 1:N identification performance are
plotted on the same axes. Figure 1 presents such ROCs for eight FRVT systems on open-set populations
of sizeN = 1, . . . , 3000, for both the rankless (eqs. 3 and 4) and rank one cases (eqs. 3 and 5).

Figure 1 is a more compact presentation of the data presented in Figure 2, which includes its ROCs as vertical slices
of the 3D surface obtained by plotting identification rate as a function of both false match rate and populations size.

Closed-set Identification Figure 1 shows that the inclusion of a rank condition practically has an effect only for
larger false match rates, i.e. those that are usually of less operational relevance. In the closed-set limitPFA = 1 the
rank effect is significant. Without itPTA = 1 atPFA = 1.

The primary FRVT report plotted closed-set identification rates in two ways, first as a function of rank for a specific
gallery size givingcumulative match characteristics, and second as a function of gallery size for rank one. In this
report we modify the latter by plotting the identification rate versus gallery size for variouspercentage ranks: Figure
3 shows the expected fraction of users that are recognized within the topk = pN/100 ranks, for various percentages,
p, as a function ofN . That the identification rate is approximately constant for largeN is an indication that the 1:N
closed-set model [6] is reasonable, at least for large gallery sizes. The model is

PI(N, k) = 1−M

(
F−1

(
1− k

N

))
(7)

whereM is the cumulative distribution function (CDF) of the match scores andF−1 is the inverse CDF of the non-
match scores. The CDFs are rarely known and so must be estimated over some (large) population.

2.4 Metrics in Deployed Systems

Operational installations of biometric identification systems usually report just the closest few gallery members. Indeed
it is common in AFIS systems to returncandidate liststhat contain zero or more entries. The logic used in the
construction of a candidate list is generally proprietary and unknown, and may not even be fixed. Most often the list is
a function of the scores returned in relation to a decisionthresholdand on somerankcondition. For example a system
might return no more than 10 gallery elements whose score to the user image is above 900. Nevertheless, performance
in this paper is reported using equations (1) and (2), which areattempt-based rather than score-based, eqs. (3) and (4).

3 Subject-specific Effects

3.1 Ethnicity

Ethnic variation is clearly a potential source of performance variability for biometric technologies, particularly for
visible face recognition. The effect of ethnicity on face recognition engines has not been documented publicly in any
systematic and large scale way, so the Chinese result is included below to give one instance of an apparently significant
population effect on recognition performance, and thereby to imply a need for testing on other populations.

The State Department imagery used in FRVT 2002 is annotated with demographic information, and while the primary
FRVT report detailed the effects of sex and age on performance, it did not address dependence on ethnicity. Indeed
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Eyematic Cvis

Identix Viisage

Cognitec Dreammirh

Imagis Visionsphere

Figure 3: Closed-set identification performance versus gallery size, for various ranks expressed as a percentage of the
gallery size.
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Eyematic Cvis

Identix Viisage

Cognitec Dreammirh

Imagis Visionsphere

Figure 4: ROC curves for the general population (with ellipses) and for the Chinese sub-population. In all but one case
(Viisage) the general population is more difficult to recognize than the Chinese sub-population. Normalization (sec.
5.4) was used.
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because 98.4% of the imagery used is of persons whose birthplace is in Mexico a formal study of this effect was
beyond the scope of the FRVT 2002 design. However we are able to report on the next largest ethnic component,
namely the 639 Chinese individuals who sought visas in Mexico, and who were included in the FRVT image set.

Although birthplace information is only a proxy for ethnicity, manual inspection of the images confirmed that in this
case birthplace does indeed imply east asian ethnicity. Such an association is generally suspect, especially in developed
nations, but is reasonable here because of the low levels of immigration to China in recent decades. Nationality
information was also available but, for obvious reasons, was ignored as a less reliable indicator of ethnicity.

To assess the recognizability of this group we compare a standard performance measure for the Chinese group with
the population as a whole. The FRVT Evaluation Report gave, in Figure 8, verification performance for twelve
disjoint populations of size 3000, usingerror ellipsesto show the joint variation in the true-, and false-match rates,
(PFA, PTA). Figure 4 uses the same approach to quantify population performance variation. It shows for each FRVT
system the receiver operating characteristic for the Chinese population and also for the general population, the latter
being computed over 12 disjoint populations of size 639 (i.e. the size of the available Chinese population) and plotted
as their mean with their error ellipses. The overall result is that the Chinese population is substantially easier to
recognize; this cannot be attributed to age nor sex2 because the population is only three months older with a 56.8%
males rather than the overall 50.5% used in FRVT.

The single point corresponding to 1% false match rate from the ROCs is repeated in columns 2 and 3 of Table 1. In
addition the table gives results for 1:N closed-set identification for two galleriesN = 639 (i.e. small) andN = 37437
(large). Note that the identification rate for the Chinese population declines very little (0.91 vs. 0.92 for Cognitec)
compared to the general population (0.86 vs. 0.73). This is due to adatabase segmentationeffect: when an individual
from one class is used in a 1:N search of a gallery made up mainly of individuals of a different class, the recognition
process is much easier because the gallery iseffectivelymuch smaller than its nominal size, in this case 37437. Thus
columns 4-5, and 2-3, more appropriately contrast the two populations.

Database segmentation effects have been observed for sex and for age, and although these variables were addressed in
the FRVT 2002 primary report, a more formal analysis of segmentation is warranted.

Performance of face recognition systems is dependent on the ethnicities of the human subjects. By conducting a larger
study across many ethnicities, performance of a deployed face recognition system can be simulated if a specification of
the local ethnic composition is available. The method should not be considered a replacement for good experimental
design [9] however.

3.2 Impostor Models

One to one verification is arguably the archetypal biometric application, and is ubiquitously deployed as an access
control mechanism. It is incumbent on recognition systems to correctly accept legitimate users, and without reconfig-
uration, and to reject impostors. This section discusses two means of measuring reject performance.

3.3 Zero-effort Impostors

Although false acceptance is a natural hazard in human populations classified with imperfect algorithms, the existence
of anactiveimpostor is a primary security concern. Active here implies that the impostor has taken steps to mimic a
legitimate user’s biometric, the obvious examples in face recognition being cosmetic, subdermal or surgical disguises.
However performance of biometric systems faced with active impostors is difficult to test on a large scale. Instead
most research efforts use randomly selected members of the available data aszero-effort impostors. This essentially
quantifies the natural inter-personal variation in the human population, and is representative of real world performance
only in as much as an algorithm capable of differentiating zero-effort impostors from legitimate users can repeat the
feat for persons actively making an effort. The primart FRVT 2002 report considered only zero-effort impostors.

3.4 Perfect Impostors

Although the FRVT 2002 test was not designed to address active impostors, a worst case one-to-one false match
performance can be computed by emulating theperfectimpostor - i.e that impostor who most closely matches the
claimed identity. Verification performance, stated as an ROC, is obtained by computing the non-match distribution

2The primary FRVT report shows evidence that older people and males are easier to recognize.
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Cognitec
nonorm

Cognitec
znorm

Dreammirh
nonorm

Dreammirh
znorm

Imagis
nonorm

Imagis
znorm

Visionsphere
nonorm

Visionsphere
znorm

Figure 5: The effect on ROC of different non-match sampling schemes and the effect of normalization. Three plots
are shown on each graph. The lower curve results from the worst case impostor, the other two, which largely overlap
use all impostors and single randomly selected impostors. The systems shown provided no native normalization
functionality.
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Cvis
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Cvis
znorm

Cvis
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Eyematic
nonorm

Eyematic
znorm

Eyematic
norm

Identix
nonorm

Identix
znorm

Identix
norm

Viisage
nonorm

Viisage
znorm

Viisage
norm

Figure 6: The effect on ROC of different non-match sampling schemes and the effect of normalization. Three plots
are shown on each graph. The lower curve results from the worst case impostor, the other two, which largely overlap
use all impostors and randomly selected impostors.
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from thetop non-match score. This represents a worst case scenario in which all impostors make optimal decisions
about whom to pretend to be, or equivalently, who benefit from having someone with a resemblance in the database.
This latter aspect is predicated on the algorithm in question, and it should be emphasized that the perfect impostor for
one system may not be for another. Thus the perfect impostor ROCs that appear in Figures 5 and 6 are computed from
non-match distributions that are themselves computed from generally not identical image sets. The match distributions
are the same in all cases, but the impostors differ. The figures include the effect of normalization which is discussed
in section 5.

Not shown in those figures is the effect ofincompetentimpostors who consistently claim to be precisely the wrong
person. The probabilty of verification in such cases is essentially1 for all false match rates.

3.4.1 Relation to Watch List Metric

Unfortunately the perfect impostor in 1:1 verification trials is not just a theoretical construct. The primary FRVT 2002
report included a lengthy treatment of the watch list application. This pertains to the situation in which a general
population, passing through an airport concourse perhaps, are compared with a set of enrolled individuals, the persons
on the watch list. This is perhaps the classic example of open-set negative identification, where the word negative is
used to indicate that subjects claim implicitlynot to be known to the system. The difficulty of the watch list task for
large populations is that if a passer-by, a person not on the watch list, matchesanyof the watch list members above the
system threshold an alarm is thrown. The computation of the false match rate is then precisely the same calculation
(equation 3) as that for the perfect impostor shown above.

3.4.2 Extreme Non-Match Values

The non-match scores that define false match rates for the watch list are the extreme values of the non-match distri-
bution. In practice if this extreme value distribution is estimated from similarity data, the sample mean will generally
increase with the number of samples, i.e. the enrolled population size, considered. This arises because the expectation
value of the maximum non-match score is a function of the number of samples drawn from the distribution. From
order statistics the dependency on the population size is obtained by considering the expected value of the largest of
G samples drawn from the non-match distribution.

E(xmax) =
∫ ∞

−∞
GsN(s)G−1n(s)ds (8)

wheren(s) andN(s) are, respectively, the density and the CDF of the non-match distribution.

4 Image-specific Effects

This section addresses the variation in face recognition performance with the image-specific quantities, compression
ratio, resolution and head rotation. Because the recognition process involves both the user’s probe image and the
enrolled gallery image, performance is a function of whatever quantity is under investigation. The most general way
of presenting the result is to plot performance as a function of both the gallery and probe’s variable values on a 3D
scatter plot. However in the sections that follow alternative, the two values are combined to make plots more readable.

4.1 Resolution

The amount of information available to a recognition engine is related to the size of the face in the image. This is
usually quantified by the number of pixels between the pupils.

The FRVT images are loosely conformant to the specification of the canonicaltoken imageset forth in the draft
international standard (SC37 - [4]), particularly: the size of the image, 252 x 300, is close to the specification of 240
x 320; the median inter-pupil distance of 72 exceeds the standard’s mandated minimum value of 60. However given a
standard deviation of9.4, some7.3% of the images have an inter-pupil distance less than the standard’s minimum.

Figures 7 and 8 show verification performance as functions of the average of gallery and probe inter-pupil distance,
and of the discrepancy between the gallery and probe’s inter-pupil distance. The distances were obtained either by
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Distance 43.5 47.5 51.5 55.5 59.5 63.5 67.5 71.5 75.5 79.5 83.5 87.5 91.5
Count 16 119 458 1146 2509 4629 6697 7971 7001 4243 1896 578 184

Figure 7: Performance as a function of mean inter-pupil distance. At left the true match rate at a fixed threshold and, at
right, the false match rate at that same threshold. Normalization was not used. The table shows the number of images
in each bin,|G| = |PG |. Note the small numbers at left.

Disparity 1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46
Count 1621 5322 6840 6485 5519 3931 2892 1934 1166 801 441 255 139 66 40 17

Figure 8: Performance as a function of the discrepancy between inter-pupil distances. At left the true match rate at a
fixed threshold, and, at right, the false match rate at that same threshold. Normalization was not used. The table shows
the number of images in each bin,|G| = |PG |. Note the small numbers at right.
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manual location of the eyes, or from an implementation of the Schneiderman algorithm [14]. The result is a stronger
dependency on the discrepancy between images than on the absolute value. This is somewhat counter-intuitive since
recognition systems will inevitably degrade at low enough inter-pupil distances, and because theydo take steps to
normalize out geometrical variations.

4.2 Compression Ratio

The Department of State images used in FRVT are JPEG compressed. The images, having size 300 x 252 pixels
with three color channels and a mean file size 9467 bytes, depart from the draft standard specification [4] in that
the compression ratio of 24:1 exceeds the mandated maximum of 20:1. High compression ratios, like low resolution
values, will ultimately lead to a degradation in recognition performance. This has previously been quantified [4] on a
smaller data set, and on a set of originallyuncompressedimages [7]. Although the FRVT imagery was not designed
to allow a similar controlled test of the effect of compression, the results that follow are included because of the large
number, and operational nature, of the images used. Also by computing the compression ratio calculation over just
the area that approximates theInner Region, (i.e. the face plus minimal border; see Figure 13) as specified in the
draft standard, the mean compression ratio, at 18:1, is within specification. The on-face ratio is computed by first
determining the JPEG quality applied to the original image, and then using the JPEG compressor on the cropped
image at that quality.

Figure 9 shows, at left, a decline in true match rate as filesize is decreased, and, at right, a larger increase in false match
rates. The computation is suspect because the filesize incorrectly includes the easy-to-compress uniform background,
and should be considered a worse indicator of the effect of compression than that appearing in Figure 10 which shows
that both true and false match rates suffer at compression ratios above about 21. This is congruent with the effect noted
in the draft standard [4]. The Identix system is apparently alone in its successful suppression of false accepts at low
compression ratios. Whether the other systems are tuned for moderate compression ratios is not inferable from these
figures.

The figures do not show performance as a function of the discrepancy between compression in gallery and probe
images.

4.3 In-plane Rotation

Although left to right head tilt (about optical axis) is a far less pernicious problem than out-of-plane rotations (facing
down, or facing left, for example) it is generally removed by in-plane rotation prior to formal recognition. We therefore
compute the effect of head tilt using the available FRVT data. A minority of the FRVT images depart from the proposed
face recognition interchange format [4] in that the images exhibit some rotation. We therefore bin these by the tilt
angle, as computed from the eye coordinates, and, as before, plot performance as functions of the mean in-plane head
rotation angle, and the discrepancy. Figures 11 and 12 show an insensitivity to rotation up to 8 degrees. Beyond that
there is generally an increase in error rates. However the overall variation over the available range of angles is small
in comparison to the resolution and compression studies above. One exception, when there is a discrepancy between
gallery and probe tilts, is that a drop in verification rate is partially offset by adrop in false match rate. This anomaly
doesn’t apply for the leading systems however.

4.4 Mixed Effects

It must be noted that the single-effect analyses given in this section will miss correlated covariates. For example the
on-face compression ratio is positively correlated with the distance between the eyes. In that case formal statistical
methods for failure analysis are warranted. These should generally include both subject and image specific covariates.
Recent work [3, 2] along these lines uses generalized linear models in the analysis.

5 Normalization

The use of the normalization in FRVT 2002 has generated considerable discussion since the primary report. This
section defines the operation, restates its use in FVRT, addresses its realizability and operational use, asseses it’s utility
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File Size 5874 6124 6374 6624 6874 7124 7374 7624 7874 8124 8374
Number 167 242 332 486 582 792 995 1190 1498 2128 2871
File Size 8624 8874 9124 9374 9624 9874 10124 10374 10624 10874 11124 11374
Number 3743 4186 4339 3736 3131 2290 1708 1111 764 437 271 174

Figure 9: Verification performance as a function of the JPEG file size in bytes as it resides on disk. The left figure
gives the true accept rate at a fixed threshold, and at right is the false match rate at that same threshold. The table
shows the number of images used to compute performance; in each case|G| = |P|.

Comp. Ratio 14 15 16 17 18 19 20 21 22 23 24 25 26
Number 248 958 2511 4829 7112 7481 5689 3496 2011 1263 843 478 253

Figure 10: Verification performance as a function of the compression ratio computed over just the rectangle that
bounds the face itself. The left figure gives the true accept rate at a fixed threshold, and at right is the false match rate
at that same threshold. The table shows the number of images used to compute performance; in each case|G| = |P|.
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Angle 0 1 2 3 4 5 6 7 8 9 10 11
Number 6436 5199 4176 3549 2287 1502 859 483 227 121 57 34

Figure 11: Verification performance vs. mean value of gallery-probe in-plane head rotation in degrees. The left plot
shows true match rate at a fixed threshold; the right plot gives false match rate at that same threshold. The table gives
the number of images,|G| = |P|, used for that angle.

Angle 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Number 2357 3504 4843 6624 5809 3702 2990 2815 1759 998 730 516 342 155 127 82

Figure 12: Verification performance vs. discrepancy between gallery and probe in-plane rotation angles. The left plot
shows true match rate at a fixed threshold; the right plot gives false match rate at that same threshold. The table gives
the number of images,|G| = |P|, used for that angle.

Figure 13: An image representative of the kind used in FRVT 2002, and a cropped version used to estimate the on-face
compression ratio.
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Figure 14: Normalization occurs inside a black box. Additional background images in an internal gallery are used to
normalize the score of the image against the claimed identity.

in improving performance, and shows how it renders 1:1 verification a 1:N operation. In addition the vendor-provided
nativenormalization functions are compared with a simple and generic yet effective normalizer.

5.1 Overview

Normalization is a technique that aims to improve performance by implicitly setting a sample-specific threshold level.
Various methods have been discussed and originate mostly in the speech community [13] where it is used to compen-
sate for environmental variations. Normalization proceeds by comparing the user’s image to the claimed match image
and to other non-matching images, and adjusts the raw score on the basis of the extra scores. Although normalization
is used here as a post-processing operation conducted at the similarity score level, it is more generally applicable in
higher dimensions in preceeding recognition stages. It’s mode of action is to reduce false match rates and it is therefore
effective only for open-set tasks.

5.2 z-Normalization

A simple, yet effective normalizer, z-normalization [1], is described here as an example. If a user’s image is compared
with G images, which may include one from the same user, a vector ofG scores is produced. Normalization is a
real mapping,f : RG → RG. In the case of z-normalization each element,xi of a vector ofG scores, obtained by
comparing a probe image with an internal gallery ofG images, is transformed according to:

zi =
xi −m

s
(9)

wherem ands are the sample mean and standard deviation estimated solely from the elements ofx:

m =
1
G

G∑
i=1

xi , s2 =
1

G− 1

G∑
i=1

(xi −m)2 (10)

Thus z-normalization standardizes each user’s non-match distributions to approximately zero mean and unit deviation.
The effect on performance is given in column two of Figures 5 and 6 the latter of which compares it with vendors’
native normalizers. Some systems (Eyematic, Imagis, Dreammirh, Cvis, Identix, and Viisage) show improvement
with z-normalization, although this is not always the case for the worst-case ROC. Other systems, Cognitec and
Visionsphere, exhibit degraded performance. Particularly the case of Cognitec is interesting in that the variance of the
post-normalized scores is large.

5.3 Operational Legality

The essential requirement of any normalization method is that the input is the vector of similarities obtained fromone
probe against some gallery. Simultaneous use of multiple probes’ similarity data is invalid because operational realism
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dictates that decisions on whether to accept or reject users are inherently sequential and separate3.

A second qualification is that because normalization involves comparisons with extra images, a throughput perfor-
mance penalty is incurred. In this sense the use of normalization in the primary FRVT 2002 report was optimistic in
that a full gallery (of size 3000, in Figure 8) was used as the background. The addtional benefit of this is covered in the
next sections, specifically Table 2. However the full benefit of normalization is legitimately realizable if the application
of interest includes a 1:N identification search, in which allN similarity scores are generated and normalization could
be computed at “full” size. Thus the relevant metric for quantifying the effect of normalization is the 1:N open-set
identification rate (as shown in Figure 1).

5.4 Normalization in FRVT 2002

The use of normalization should be invisible to the operator as it is just another processing step that embeds a vendor’s
intellectual property. Configuration and use are properly vendor responsibilities. In FRVT 2002, however, normaliza-
tion functions were provided for post-test execution by NIST. This was done because the FRVT test requiredtarget
andquerysets of size 121589 to be compared (see primary report), such that scoreable extracts, corresponding to
properly formedgalleries against user and impostor sets, could be normalized and scored separately. The break-out
results addressing for example, ethnicity, sex, inter-pupil distance et cetera, are computed from such extracts. In all
cases therefore normalization was applied to each column of such a submatrix.

FRVT 2002 allowed two normalization variants termedF1 andF2 each in three roles:ident, verif andwatch. TheF2
variant, takes the matrix of similarities of the gallery elements against themselves, as additional input. Theidentfunc-
tion was applied when computing closed-set identification performance; no significant improvement was observed,
usually because the functions do not re-order the similarity values, thereby leaving rank-based measures, such as cu-
mulative match characteristic, invariant. Theverif andwatchmethods showed efficacy, because the open-set problems
are sensitive to the distributions of the scores.

5.5 Efficiency

FRVT 2002 quantified the performance gains available from normalization. Specifically the verification results were
obtained from vectors of normalized scores of dimension3000, i.e. normalization was applied to a long vector. Given
that normalization on a vector of dimension1 is ineffective this begs the question: how big a background population
is needed to realize normalization’s full benefit?

This efficiency issue has considerable implications on the processing time needed for its use. The technique can
improve the 1:1 verification but at the expense of making it a 1:N operation. The finding thatN can be much smaller
typically than an enrolled population is important. Precisely which images should be used in the internal gallery is not
addressed here, but clearly could be of considerable importance.

The procedure below was used to assess the effect of normalization for a given internal gallery size. It is broken into
two parts, estimating, respectively, the cumulative distribution functions of the match and non-match scores,M(x)
andN(x). The ROC follows simply as a plot ofPTA = 1−M(x) vs. PFA = 1−N(x).

1. Select a setP of legitimate users

2. Select a setI of impostors

(a) Generate a setB containingK randomly selected background images

(b) For eachp ∈ P
i. Let x1 be the similarity ofp with its actual match

ii. Let xk be the similarity ofp with the background elementsbk ∈ B, k = 2 . . .K + 1
iii. Normalize the vector(x1, x2 . . . xK+1), store the result as vectory
iv. Extract the normalizedmatch score,y1 and retain it inSM .

(c) For eachp ∈ I
i. Let x1 be the similarity ofp with some a claimed match (actually a non-match)

3Some unusual applications may exist in which a closed population is classified against itself: for example, a roll-call inside a properly access-
controlled facility.
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G Eyematic Cvis Identix Viisage
native znorm native znorm native znorm native znorm

0 0.809 - 0.595 - 0.878 - 0.637 -
1 0.713 0.811 0.017 0.595 0.879 0.879 0.523 0.635
2 0.808 0.087 0.062 0.062 0.882 0.071 0.544 0.066
4 0.838 0.535 0.217 0.217 0.880 0.181 0.579 0.313
8 0.839 0.758 0.444 0.444 0.880 0.143 0.587 0.500
16 0.844 0.824 0.551 0.551 0.885 0.488 0.589 0.590
32 0.863 0.853 0.618 0.618 0.885 0.725 0.611 0.630
64 0.864 0.856 0.632 0.632 0.876 0.817 0.603 0.637
96 0.859 0.860 0.649 0.650 0.879 0.863 0.622 0.642
128 0.869 0.863 0.649 0.649 0.896 0.868 0.626 0.646
256 0.868 0.864 0.630 0.630 -1 0.887 0.641 0.656
512 0.873 0.871 0.653 0.653 -1 0.896 0.652 0.660
3000 0.870 0.870 0.645 0.645 0.903 0.901 0.656 0.655

Table 2: Dependence of 1:1 verification performance, at 1% false match rate, on the size of the internal gallery used
for normalization. The first line,G = 0, gives the un-normalized result; the last lineG = 3000 is the FRVT 2002
result. Thenativecolumns refer to the vendor’s own normalization algorithm.

Figure 15:Left. Score level multi-image fusion architecture, as used in this paper, top, and the proper architecture in
which the testing organization does not contribute technology to the recognition problem.

Figure 16:Right. The dashed red box defines the hybrid system formed by internally merging multiple independent
recognition systems, via score level fusion. The input-output relationship, and the performance metrics are identical.
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ii. Let xk be the similarity ofp with the background elementsbk ∈ B, k = 2 . . .K + 1
iii. Normalize the vector(x1, x2 . . . xK+1), store the result as vectory
iv. Extract the normalizednon-matchscore,y1 and retain it inSNM .

(d) increment trial counter, stop if 200, otherwise go to 2a

3. Produce ROC from the retained match and non-match scores,SM andSNM .

A caveat to this approach is thatit is not known to what extent normalization has already been applied to the
scores. In particular z-normalization actually degrades the Cognitec scores, which may suggest they were normalized
at source.

The results are presented in Table 2. The first row, for gallery size zero, is the verification rate (PTA at PFA = 1%)
without any external normalization, and the last row, for gallery size3000, is the result presented in the FRVT report.
All the other values are obtained using the sampling method given above. The commercial normalizers attain their
benefits within a background gallery of fewer than 100. The z-normalization method underperforms the leading
systems’ normalizers. Particularly the NIST implementation has no special handling for small background galleries
(except forN = 1, 2). However for large background galleries z-normalization achieves almost identical performance
to all of the supplied native normalizers.

6 Fusion

The benefits available from biometric fusion have been extensively documented for many applications. Indeed with
renewed emphasis on very high performance and robustness fusion is attracting considerable attention. The term
fusion can be applied in at least three ways:

1. SamplesSeveral instances of a given individual are processed by one system.

2. SystemsSeveral algorithms processing the same input.

3. ModesMultiple biometric modalities are presented to a suitable system. For example: face and fingerprint; iris
and hand geometry; and face, iris, and fingerprint.

FRVT 2002 only included face imagery so the third category is beyond study here. But instead system level fusion is
reported below for all pairs of FRVT participants, for the three leading systems, and for single systems operating on
multiple images. The fusion methods used here were developed by NIST, without input or comment from the vendors.

6.1 Score Level Fusion

Fusion can be conducted at, at least, the image, feature, score, rank or decision stages. It is widely known that
early stage fusion, in higher dimensional spaces, offers the most benefit, and for this reason fusion is properly the
responsibility of the algorithm developer. Indeed the only role of the tester seeking to demonstrate the utility of fusion
is to design it into the test structure.

1. Multiple Samples: The tester should arrange to supply a system with multiplesignatures(i.e. arbitrary collec-
tions of biometric samples from a person) [10]. The architecture depicted in Figure 15 shows this for face, but
could equally apply to the multi-modal case too.

2. Multiple Systems: The tester should arrange to obtain a single similarity value from a common input. This
requires no special treatment by the tester because, as Figure 16 shows, multiple systems, working in concert,
essentially form a single black box system.

The Human ID Evaluation Framework [10], an XML infrastructure used in the administration of FRVT 20024, sup-
ports multiple, arbitrary biometric, image sets as input. This capability was only exploited in FRVT 2002 for video
sequences and not for the High Computational Intensity Tests considered here. It is therefore not clear to what extent
the systems tested in FRVT 2002 were capable of fusion at any level. Thus, although the score-level fusion reported
below should be deprecated in standard testing protocols, it is nevertheless reported here because of its policy impli-
cations, and because it establishes an empirical lower bound baseline that vendors should, at least, be able to match.

4And the Fingerprint Vendor Test (FPVTE): Report due early 2004.
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6.2 Scaling

When fusing scores frommultiple systems, the first step is to map disparately distributed scores from the systems
onto a common range. Several methods of doing this are ubiquitous: linear scaling either via maximum and minimum
values, or sample mean and variance estimates, and various non-linear scalings [8]. The method used here employs an
estimate of each system’s match-score distribution, and is not described in the literature surveyed by the author. For
fusion of scores frommultiple imagesprocessed by a single system, scaling is optional. Here we compare recognition
performance obtained from fusion of scaled and unscaled scores.

Formally thei-th score from thek-th system is transformed using an empirical estimate of the cumulative distribution
function of the match scores,Mk,

yki = Mk(xki) (11)

The resulting match scores will be approximately uniform on[0, 1]. The non-match scores by contrast have some
unknown distribution with a peak at zero corresponding to any score lower than the lowest match score used in the
estimation ofMk. That some match scores, too, are at or near zero is not intrinsically deleterious to successful fusion.
This may be avoided by usingMk(x) + Nk(x) as the scaling function, withNk the CDF of the non-match scores.
However this, and the linear scaling methods, were found to be consistently inferior.

6.2.1 Learned Scaling

The legitimacy of usingMk(x) merits some discussion. Its use is predicated on the assumption that a reasonable
estimate of the match scores can be obtained for a systembeforedeployment. If this is possible, for example by using
a representative volunteer corpus, or by using early users of the deployed system, then the method is legitimate. Indeed
it is not clear to what extent a vendor will know the statistics (even to low order) of the match scores, and be able to
exploit them. That is, the same legitimacy question arises for linear scalers too, where low order statistics (minimum
and maximum, or mean and standard deviation) are used, because they too must be estimated empirically. Also the
usual caveat, that the distributions may change over time because of sensor or illuminations changes, applies.

6.3 Multi-image Fusion

This section considers the utility of fusing one system’s scores from several probe-gallery image comparisons. Two
methods of fusing are considered. First is the addition ofK similarity scores fromK + 1 images:

s†k =
K∑

k=1

sk (12)

Second is the summation of scaled scores:

s†k =
K∑

k=1

M(sk) (13)

whereM is the cdf of the match scores. We also include the effect of z-normalizing the fused scores:

z†k = Z(s†k) (14)

whereZ represents the operation defined in eq. (9).

We report multi-sample fusion results on two subpopulations of the FRVT corpus. First is the 1678 persons with five
or more images; second is the 4678 persons with four or more images. The former is a subset of the latter. This
allowed fusion of, respectively,1 . . . 4 and1 . . . 3 scores to be conducted, i.e. those similarity values resulting from
the comparison of a probe to each of four and three gallery images. The results of using the various combinations of
scaling and normalization are shown in Table 3, notes on which follow:

1. Population The two subpopulations are comprised of a significantly different population than that of the whole
FRVT 2002 corpus. Note that forK = 1, i.e. no fusion, the verification rates are significantly higher than those
observed in FRVT 2002 which are included in this report in Figures 1 (N = 1) and 5. This arises because the
frequent visa applicants, those with five or more images, are more often men (65.8% here compared with 48.8%
in the 37437 person FRVT corpus) and more ethnically diverse (10.3% are Chinese here versus 1.7% in FRVT
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Cognitec Cvis

Dreammirh Eyematic

Identix Imagis

Viisage Visionsphere

Figure 17: Verification performance after fusion of multiple images’raw scores, with post-fusion z-normalization.
The four curves in each plot correspond to the fusion of 1, 2, 3 and 4 scores. Note the different y-axis scales.
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Cognitec Cvis

Dreammirh Eyematic

Identix Imagis

Viisage Visionsphere

Figure 18: Verification performance after fusion of multiple images’M scaled scores, with post-fusion z-
normalization. The four curves in each plot correspond to the fusion of 1, 2, 3 and 4 scores. Note the different
y-axis scales.
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K ΣK
k xk ΣK

k M(xk) z
(
ΣK

k xk

)
z
(
ΣK

k M(xk)
)

Cognitec
1 0.941 0.941 0.946 0.956
2 0.963 0.971 0.971 0.985
3 0.962 0.977 0.970 0.990
4 0.964 0.979 0.976 0.994

Cvis
1 0.707 0.707 0.732 0.736
2 0.773 0.788 0.833 0.848
3 0.793 0.811 0.851 0.875
4 0.789 0.823 0.860 0.893

Dreammirh
1 0.447 0.447 0.500 0.491
2 0.458 0.449 0.546 0.555
3 0.455 0.442 0.583 0.587
4 0.432 0.430 0.581 0.605

Eyematic
1 0.888 0.888 0.920 0.932
2 0.908 0.930 0.947 0.963
3 0.914 0.939 0.958 0.976
4 0.916 0.945 0.970 0.983

Identix
1 0.920 0.920 0.931 0.946
2 0.940 0.957 0.948 0.975
3 0.938 0.969 0.952 0.986
4 0.947 0.975 0.962 0.989

Imagis
1 0.706 0.706 0.779 0.788
2 0.714 0.743 0.798 0.834
3 0.707 0.752 0.808 0.863
4 0.697 0.762 0.819 0.880

Viisage
1 0.733 0.733 0.747 0.750
2 0.781 0.802 0.802 0.823
3 0.787 0.819 0.815 0.842
4 0.812 0.837 0.836 0.861

Visionsphere
1 0.638 0.638 0.618 0.677
2 0.610 0.693 0.620 0.735
3 0.590 0.689 0.617 0.743
4 0.578 0.696 0.616 0.756

K ΣK
k xk ΣK

k M(xk) z
(
ΣK

k xk

)
z
(
ΣK

k M(xk)
)

Cognitec
1 0.930 0.930 0.942 0.951
2 0.955 0.961 0.967 0.980
3 0.960 0.970 0.972 0.986

Cvis
1 0.682 0.682 0.724 0.730
2 0.739 0.760 0.809 0.830
3 0.762 0.785 0.836 0.862

Dreammirh
1 0.426 0.426 0.489 0.484
2 0.425 0.417 0.528 0.538
3 0.429 0.427 0.538 0.558

Eyematic
1 0.864 0.864 0.908 0.913
2 0.888 0.919 0.936 0.958
3 0.893 0.925 0.948 0.969

Identix
1 0.919 0.919 0.934 0.938
2 0.937 0.958 0.951 0.973
3 0.938 0.972 0.952 0.984

Imagis
1 0.672 0.672 0.762 0.768
2 0.670 0.718 0.793 0.837
3 0.668 0.721 0.796 0.855

Viisage
1 0.702 0.702 0.719 0.720
2 0.749 0.769 0.764 0.787
3 0.769 0.792 0.792 0.817

Visionsphere
1 0.611 0.611 0.589 0.641
2 0.553 0.651 0.572 0.693
3 0.529 0.657 0.575 0.712

Table 3: Verification performance at a fixed 1% false match rate, for various combinations of scaled and z-normed
summations of similarity scores. The left and right tables pertain, respectively, to the 1678 and 4678 person populations
with five and four or more images per person. The number of fused scores,K, corresponds to the comparison of a
single probe withK gallery entries. The four math expressions at the head of the columns refer, respectively, to
summation of raw scores, summation of M-scaled scores, z-normalization of the summation of raw scores, and z-
normalization of the summation of M-scaled scores.
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Time 1 61 121 181 241 301 361 421 481
Number 1560 1533 1673 2193 2389 2836 3499 2869 2820
Time 541 601 661 721 781 841 901 961 1021 1081
Number 2594 2429 2515 2626 1559 1209 965 605 533 497

Figure 19: The effect of time delay on the efficacy of multi-sample fusion. The curve plots true match rate at a fixed
threshold as a function of the time elapsed between the gallery image and the probes. For the fused result the time
refers to the latter of the two that were fused. The false match rate, shown at right, varies little from its nominal 1%
value. The results were computed from normalized similarity values, except for Cognitec.

generally), both of which help most of the systems. The same is true, but to a a lesser extent for the four-image
persons. Nevertheless the benefits of fusion,stated relative to the unfused, single-image case, are significant.

2. Effect of K Performance improves substantially withK. Only Visionsphere shows an anomalous decline in
performance. For the leading systems much of the improvement is realized forK = 2. Thereafter returns
typically diminish. For example, looking at the Identix system for summed raw scores, for the five image
population, the false non-match rate (i.e.1 − PTA) decreases from 8% (K = 1) to 6% (K = 2) with only a
further reduction of0.7% for two more scores.

3. Effect of ScalingPerformance without fusion,K = 1, is unchanged by the scaling operation becauseM(x) is
a monotonic function ofx. However the distribution of the scores does change and therefore z-normalization
does change the result forK = 1.

With multiple scores, i.e.K ≥ 2, the use of scaling improves performance except in the case of Dreammirh.
This is to be expected on the basis thatM is adding information.

4. Effect of z-Normalization The best results are obtained with z-normalization. The highest verification rate,
PTA = 99.4% atPFA = 1% , is obtained from the Cognitec system after z-normalization of the sum of four
scaled scores. The technique is effective for scaled and unscaled scores.

5. Mechanism of Action Fusion essentially integrates information from multiple images. The process can po-
tentially average away any abnormally low match values arising from single-image quality defects. However
the likely reason for the success of the technique stems from the fact that face recognition systems depend on
accurate localization of facial features, in particular the eyes. The incorporation of multiple images effectively
reduces localization errors via averaging. Systems based on eigenface techniques should reap significantly more
benefit from such information than other published algorithms such as LFA.

The extent to which a single high resolution image would solve the localization difficulties in small images is
not known. Certain performance improvements may be available by giving greater weight to recent images, or
by factoring in per-image assessments of image quality.

6. Full ROCs Figures 17 and 18 show the full ROCs for the two kinds of scaling. Both include z-normalization.
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Vendor Eyematic Cognitec Identix Cvis Viisage Dreammirh Imagis Visionsphere

Eyematic 0.809
0.870 0.949 0.937 0.835 0.852 0.731 0.849 0.793

Cognitec 0.905 0.901
0.899 0.954 0.860 0.867 0.757 0.879 0.822

Identix 0.901 0.932 0.878
0.903 0.851 0.862 0.754 0.873 0.814

Cvis 0.773 0.812 0.810 0.595
0.645 0.770 0.633 0.765 0.704

Viisage 0.825 0.850 0.847 0.727 0.637
0.656 0.634 0.767 0.712

Dreammirh 0.638 0.669 0.676 0.545 0.559 0.335
0.389 0.630 0.554

Imagis 0.756 0.799 0.805 0.678 0.711 0.516 0.591
0.689 0.688

Visionsphere 0.744 0.788 0.781 0.644 0.681 0.462 0.604 0.530
0.495

Table 4: Verification performance atPFA = 0.01 for systems fused in pairswithout weighting. The inputs to all
fusions are non-normalized scores. The above diagonal elements are computed from similarities that have been z-
normed after fusion. The on-diagonal elements give the plain verification scores with no pre- or post-normalization.
Bold entries indicate an improvement overbothsystems run alone.

6.3.1 Effect of Elapsed Time

The multi-sample fusion studies above make use of images obtained over a period of several years. Many applications,
however, would benefit if the same performance improvements were all obtained on the same day. Although a full
study of this is beyond the FRVT 2002 design, Figure 19 shows the relative benefit of fusion for increasingly time
lapsed gallery and probe-pair images. It plots 1:1 verification performance against the time elapsed between the
gallery image and thelatter of the two probe images whose two scores are fused. It compares this with the result
reported in the FRVT primary report showing single probe (i.e. no fusion) verification as a function of time. The
conclusion is that the benefit, i.e. the fractional reduction in false non-match rate1 − PTA, is marginally higher for
short elapsed times.

6.4 Multi-system Fusion

The issue of whether recognition systems fail on the same images is worthy of some investigation. For now, we assume
that there is limited overlap in the failures and proceed to fuse the scores from multiple systems, first pairwise and
then in a triple. Scaling is necessary so the fusion ofK systems extends the multi-sample equations (13) and (14) to
include system-specific scaling functions:

z† = Z

(
K∑

k=1

Mk(sk)

)
(15)

Figure 4 shows the effect of pairwise fusion of the FRVT 2002 systems participating in the High Computational
Intensity test. Because the fusion is symmetric, the above diagonal elements would be redundant and are therefore
replaced by those that result if the fused scores are z-normalized. The data sets used for this study are eleven disjoint
sets each of size|G| = 3000, |PG | = |PN | = 6000. The best result, from Identix and Cognitec, with post-fusion
z-normalization, hasPTA = 95.4% atPFA = 1% representing a reduction in verification errors of more than a factor
of two over the best FRVT 2002 result,PTA = 90.1%.

6.5 Weighted Fusion

When certain systems are more capable than others a weighted fusion is one method of accounting for this:
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Vendor Eyematic Cognitec Identix Cvis Viisage Dreammirh Imagis Visionsphere

Eyematic 0.809
0.870 0.953 0.936 0.891 0.899 0.878 0.884 0.879

Cognitec 0.919 0.901
0.899 0.957 0.936 0.938 0.931 0.933 0.932

Identix 0.906 0.934 0.878
0.903 0.910 0.916 0.908 0.910 0.908

Cvis 0.815 0.902 0.881 0.595
0.645 0.770 0.670 0.770 0.710

Viisage 0.848 0.911 0.894 0.729 0.637
0.656 0.669 0.771 0.716

Dreammirh 0.809 0.901 0.878 0.604 0.642 0.335
0.389 0.708 0.571

Imagis 0.809 0.900 0.879 0.678 0.711 0.591 0.591
0.689 0.716

Visionsphere 0.809 0.900 0.878 0.647 0.686 0.532 0.610 0.530
0.495

Table 5: Verification performance atPFA = 0.01 for systems fused in pairswith weighting. The inputs to all fusions
are non-normalized scores. The above-diagonal elements are computed from similarities that have been z-normed after
fusion. The lower triangle uses the un-normalized fused results. The on-diagonal elements give the plain verification
scores with no pre- or post-normalization. Bold entries indicate an improvement overbothsystems run alone.

Vendor Eyematic Cognitec Identix Cvis Viisage Dreammirh Imagis Visionsphere
Eyematic 1 3.01 1.61 0.12 0.19 0.07 0.11 0.09
Cognitec 3.14 1 0.47 0.08 0.08 0.01 0.11 0.02
Identix 1.85 0.73 1 0.15 0.10 -0.03 0.10 -0.02
Cvis 0.12 0.07 0.11 1 0.92 0.38 1.48 0.60
Viisage 0.46 0.21 0.20 1.12 1 0.31 1.50 0.74
Dreammirh 0.00 -0.07 -0.00 0.23 0.13 1 6.91 4.00
Imagis 0.05 -0.05 0.13 1.07 1.03 9.69 1 0.28
Visionsphere 0.03 -0.05 0.01 0.82 0.77 8.53 0.44 1

Table 6: Weights applied in equation 13 to the pairwise system fusion. For entries below the diagonal the weight
applies to the system given in that row, the other system has weight 1. For entries above the diagonal the weight is
applied to the system indicated by the column name, the other system has weight 1. The above-diagonal elements
applies to the scores that have been z-normed after fusion. Those below the diagonal do not use post normalization.

FRVT 2002 Supplemental Report 29 IG / IAD / ITL / NIST



Pre-normalize = No
Post-normalize = No

Pre-normalize = No
Post-normalize = Yes

Figure 20: Multi-System Fusion: Verification performance of the system that results from the weighted sum-rule fusion
of the Cognitec, Eyematic and Identix scores. The ROCs are computed from 11 disjoint sets of|G| = 3000, |P| = 6000
images.

z† = Z

(
K∑

k=1

wkMk(sk)

)
(16)

where, without loss of generality,wK = 1. The weightswk are obtained as that set that minimizes the area under the
ROC curve

A =
∫ ∞

−∞
N(x)m(x)dx (17)

whereN(x) is the cumulative distribution function of the fused non-match scores andm(x) is the density of the
matches. In practice these are not known so the area is approximated by numerical integration of the above using
empirical estimates for the distributions. The optimizer itself is the 1D Brent optimization algorithm [12]. For three
or more systems a multidimensional principal axis method known aspraxis 5 is used. In neither case is derivative
information required.

A distinct set of3000 x 6000 images is used for this training. The results, shown in Table 5, are only moderately better
than for the unweighted fusion, except for those many cases where one of the leading systems is fused with one of the
less capable systems. Table 6 shows the weights applied.

6.6 Three System Fusion

Taking this approach further, Figure 20 shows ROCs for the weighted fusion of the scores from the three leading FRVT
participants, Eyematic, Identix and Cognitec. The verification result,PTA = 0.962 atPFA = 0.01, is superior to that
obtained by pairwise fusion of Identix and Cognitec, namelyPTA = 0.957.

6.7 Multi-system and Multi-image Fusion

The method of fusion generalizes to the fusion of multiple imagesand multiple systems. Several strategies may be
entertained for doing this: straightforward fusion of all image scores from all systems; of imagesthensystems; and
finally of systemsthen images. With unweighted additive models these schemes are equivalent, but in the general
case the results differ. Although the results described below were obtained with the first “all in” strategy, a more
realistic integration would be to form a black box hybrid system, which internally would direct an image through the
separate systems in parallel, fuse the output scores, and emit only the one result. This architectural difference does not
significantly alter the results.

The result, shown in Figure 21, gives the verification result obtained by fusing scores from the three leading systems,
i.e. Cognitec, Eyematic and Identix. The four traces on each graph correspond to the use of one, two, three and four

5Code and documentation is via http://gams.nist.gov
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Scaling = None
z-normalization = No

Scaling = None
z-normalization = Yes

Scaling = M CDF
z-normalization = No

Scaling = M CDF
z-normalization = Yes

Figure 21: Multi-System and Multi-Image Fusion. Verification performance obtained after scaled, unweighted, sum-
rule fusion of the Cognitec, Eyematic and Identix scores from the comparison of a single gallery image with 1,2,3 and
4 probe images per user.

probe images compared with the gallery. The fusion is unweighted. It cannot be compared with the pairwise fusion in
Table 4 because here only the 1678 person population has been used. Instead the results are comparable with the multi-
image, single-system results shown in Table 3. The conclusion is that the three systems together usually outperform
any one system alone. The best result, a true match rate of 99.7% at 1% false match rate, obtained with four-score
fusion, scaling and z-normalization, is an improvement from 99.4% for Cognitec alone. The extent to which weighting
the systems would improve this further is not known at this time.

7 Correction

The primary FRVT report [11] presents a watch list ROC (cf. Figure 1 here) in Figure 12. The caption, and the relevant
passage in the main text, should reflect a gallery size of 800, not 3000.
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Appendix P 
 

Participant Comments on FRVT 2002:  Supplemental Report 
 
 
 
FRVT 2002 Participants were provided a pre-release copy of the FRVT 2002:  
Supplemental Report, and were invited to submit a 2-page (maximum) document that 
serves as their “position paper” on the supplemental report.   
 
Participant documents are the opinions of the Participants and are provided in this text for 
reference.  Inclusion of these documents does NOT imply that FRVT 2002 
Authors/Sponsors/Supporters agree with any statements or derivative results within those 
documents.  The identification of any commercial product or trade name does not imply 
endorsement or recommendation by the National Institute of Standards and Technology 
or any other FRVT 2002 Author/Sponsor/Supporter. 
 



 

Suite 1630 
1075 W. Georgia Street 
Vancouver, BC, Canada  V6E 3C9 
Tel: +1.604.684.2449   
Fax: +1.604.684.9314 
URL: www.imagistechnologies.com 

 
February 27, 2004 

 
Attn:  Mr. Patrick Grother 
 Face Recognition Vendor Test Committee 
 
RE:  Response to Face Recognition Vendor Test 2002 Supplemental Report NISTIR 7083 
 

Imagis Technologies Inc. is pleased to comment on the recent supplemental FRVT 2002 report. In 

particular, we were encouraged to read the findings of the report indicating that the fusion of multiple FR 

systems leads to (sometimes markedly) improved scores. These findings validate our strategy of enabling 

biometric fusion within our Briyante Integration Server, which will allow our customers to implement 

supplemental biometrics and logic to create streamlined, hybrid systems in a web-service environment. 

 

We were intrigued by the findings of the report indicating that accuracy can depend on ethnicity. The 

results of tests on the Chinese sub-population were quite interesting. It would be, in our view, highly 

valuable to try and isolate some of the main physical attributes that contribute to this accuracy 

improvement. Perhaps the architecture of the Chinese face reduces the effects of surface rendering 

under changes in light source position. Furthermore, the consistent dark iris, surrounded by a consistent 

skin tone may also be a factor, since these conditions are quite friendly to any system employing circular 

gradient detectors over the iris. 

 

Imagis would like to thank the FRVT organizers for highlighting the effectiveness of match score 

normalization. We appreciate that normalization, implemented at runtime during matching, can be a 

lengthy operation due to sample mean and std. dev. calculation. However, we expect that normalizing at 

runtime will not be necessary since there are opportunities to normalize the data earlier in the process. 

This effectively avoids any runtime speed degradation during matching. 

 

Imagis continues to improve our facial recognition technology and solutions, both in their ability to operate 

independently, and in their ability to fuse multiple biometrics and disparate data in a Web Service 

environment.  

 

Regards, 

 

“Andy Amanovich” 

Senior Technology Strategist 

Imagis Technologies Inc. 


