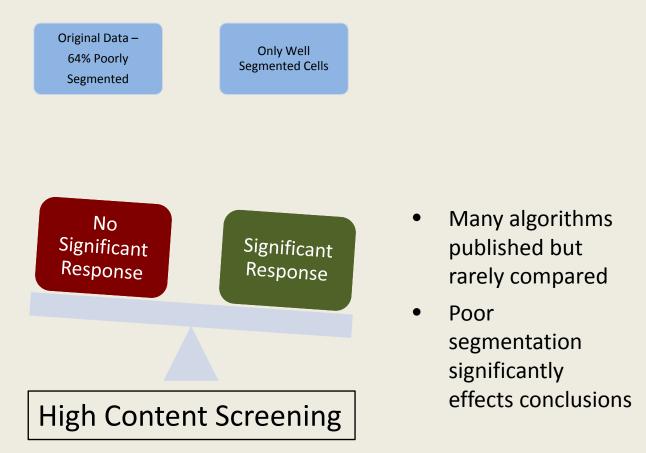
Computational Biology: A Measurement Perspective

Alden Dima Information Technology Laboratory alden.dima@nist.gov

Problem


- High-throughput technologies are generating large amounts of complex data that is difficult to process and convert into knowledge
- Issues exist throughout data lifecycle:
 - Acquisition
 - Analysis
 - Archiving
 - Interchange

Imaging Technologies

- Imaging technologies are increasingly being used both as diagnostic tools and as research tools in the biosciences
 - Novel methods are needed for automated analysis and comparisons
 - Correlation among studies is difficult at best
 - Off-the-shelf methods are not well characterized and can contribute significantly measurement uncertainty
 - Need to combine features from images with other biological or medical sources

Example from Literature

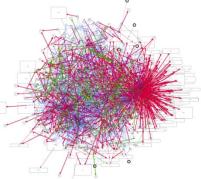
- Relies heavily on cell imaging
- Gigabytes of images collected
- Algorithms treated as "black boxes"

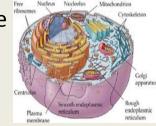
Source:

Hill, LaPan, Li, Haney (Wyeth Research) Impact of image segmentation on high content screening data quality for SK-BR-3 cells BioMed Central Bioinformatics 2007

Computational Biology: Single Cell Analyses

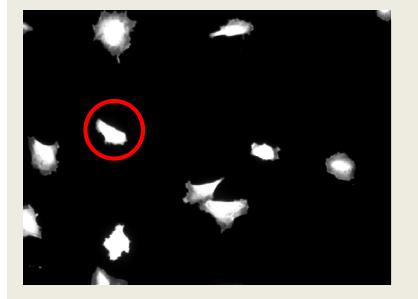
Intracellular molecular reactions and interactions that control the response and fate of cells and organisms cannot be unambiguously compared and combined due to a lack of standards and validated protocols


NIST Role


- Provide the measurement tools and standards that enable quantifiable and reproducible measurements of cells and their interactions through:
 - Standard data/metadata format for image capture, storage, retrieval, analysis
 - Software to enable high throughput cell image analysis and interoperability
 - Standards and validation required to ensure reproducible image analysis
 - Multi-site experiments to test software and validation protocols

Technical Approach

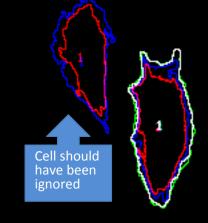
- Create and evaluate an integrated data collection, organization and analysis infrastructure for cellular imaging
- Experimentalists and computational scientists focus on the physical standards and protocols for data collection, image processing and analysis, storage of data and metadata, and evaluation of results

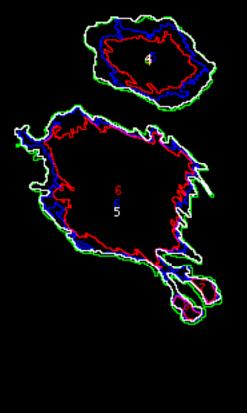

Segmentation Evaluation

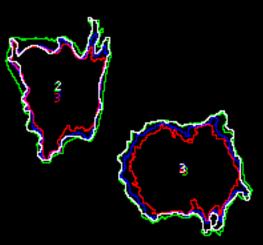
 Determine which segmentation technique and associated parameters can be used to reliably determine the morphology of cells for the purposes of comparing cell lines as part of a new standard procedure under development

Variability Across Methods

Different segmentation techniques can change results


Cell Area Pixels




Comparison of Cell Area Measurements by Segmentation Algorithm

		Reference Cell			Portrobolical Algori
		Area Value			al pilo
Method ID	Person	(pixels) Tool		Method	dogic
	John Elliot		ImageJ	Simple Threshold, threshold value = 779	NOTOTIC
	Asim Wagan	1436	Matlab	Otsu Segmentation	<i>e.</i>
3	Asim Wagan	1426	Matlab	Isodata Segmentation	
4	Asim Wagan	1741	Matlab	K-Means Segmentation, k = 4	
5	Asim Wagan	2482	Matlab	Expectation Maximization	
6	Marcin Kociolek	2593	C++	Background Subtraction, Gaussian 3 Std. D	lev.
7	Marcin Kociolek	2610	C++	Background Subtraction, Gaussian 99%	
8	Marcin Kociolek	1582	C++	Background Subtraction, Maximum Backgro	ound Value
9	Xiao Lan Li	1489	Matlab	Level Set	
10	Xiao Lan Li	1067	Matlab	Edge Based, Dilation and Erosion	
11	Rui Fang	1132	Matlab	Morphological Algorithms with OTSU Segme	entation
12	Jim Filliben	1396	Dataplot	K-Means Segmentation, $k = 2$	
13	Adele Peskin	1500	C++	Biweight Estimation	
14	Javier Bernal	1650	FORTRAN	K-Means Segmentation, $k = 7$	
15	Javier Bernal	2749	FORTRAN	Maximum Entropy	
16	Javier Bernal	1713	FORTRAN	Otsu Segmentation	

Red= k-means (k = 2)Blue= OtsuGreen= Maximum EntropyWhite= Ground Truth

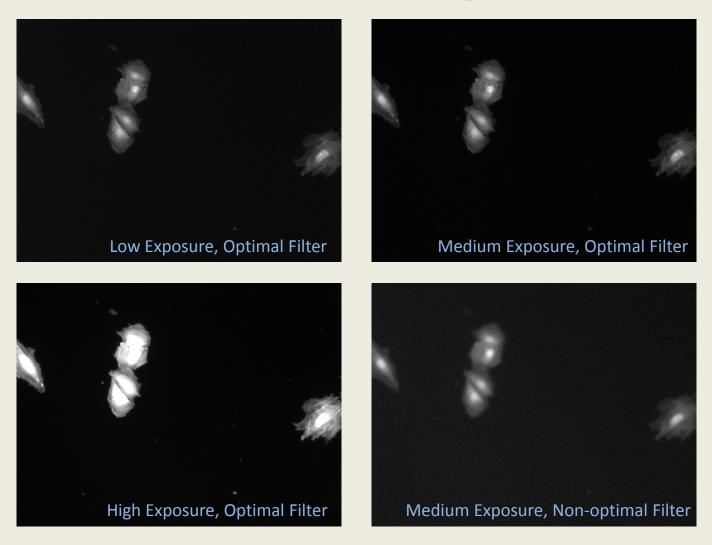


Preliminary evaluation shows that results can vary by more than ± 40%

A10 Cell Line Three different segmentation techniques

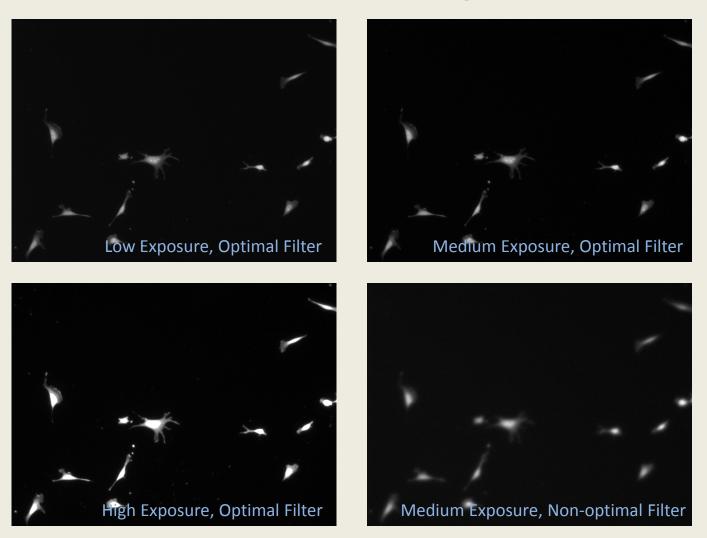
Variability Across Implementations

Different implementations of the same technique can change results as well

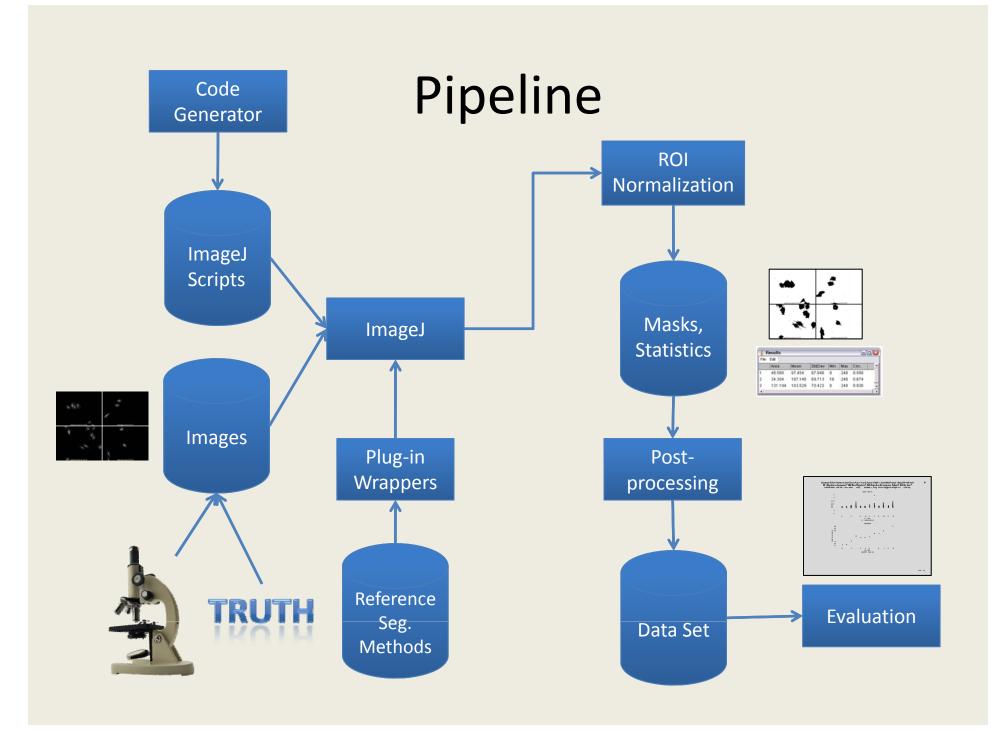


"Software as measurement"

Experimental Design


- Two cell lines A10 & 3T3
- Cell preparation follows ASTM document
- Different image exposure and filter levels
- No flat-field correction
- Multiple sampling to capture noise
- Ground truth: expert manual segmentation
- Result: approximately 8000 images 80 of which are used for initial evaluation work

Red Channel Images - A10

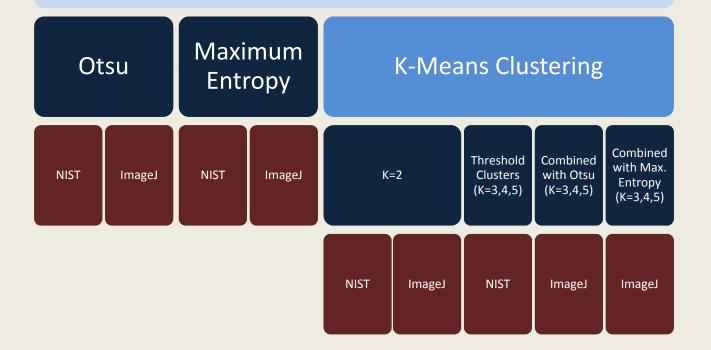


16-bit Gray-scale Images

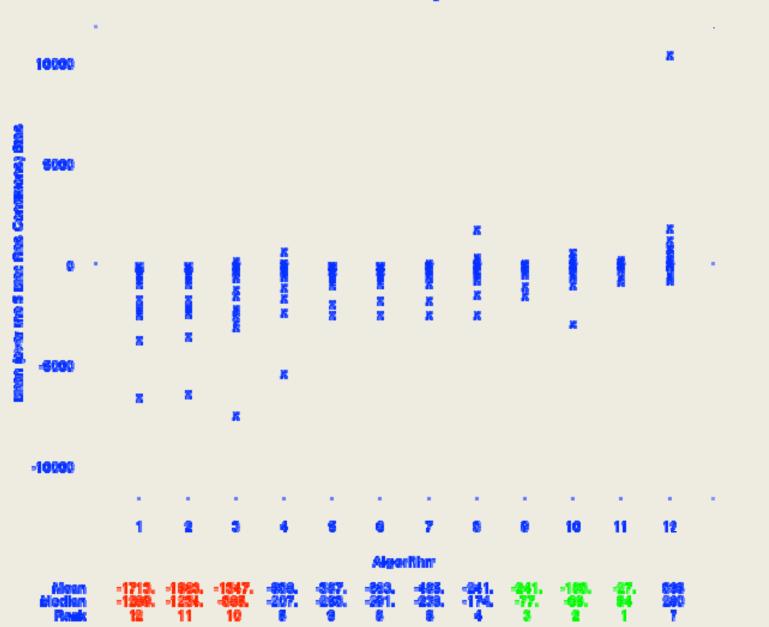
Red Channel Images - 3T3

16-bit Gray-scale Images

Planned Progression of Evaluations

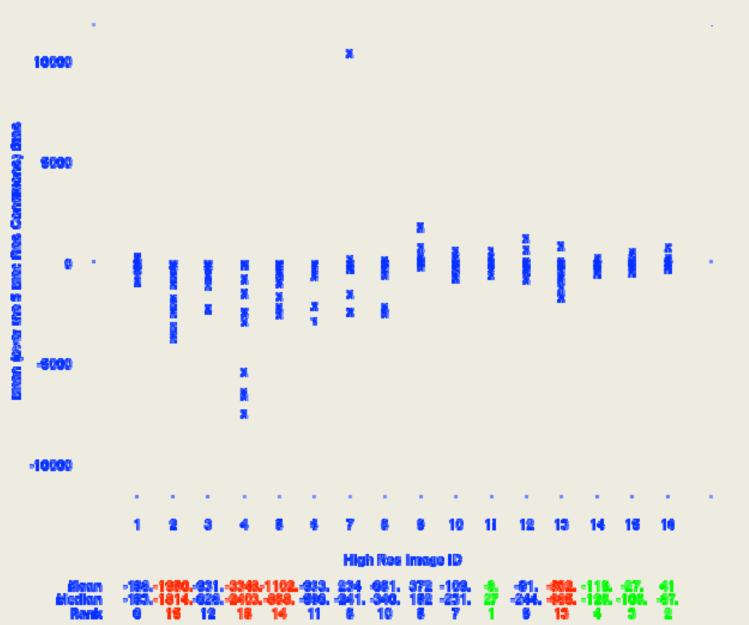

Basic Algorithms

Edge-based Methods


Advanced Techniques

Algorithms Evaluated

Basic Methods


			Bio-Image Sensitivity Analysis (CompEle Project) (Brady/Dimo/Plant) C1. What is the least algorithm?								01.03% 1					
				Cell	Entry =		las (Om	r 5 bled	km-Res		Cenditie	ns)				
			-				Algu									march
	1.1		676 M	Heriot.	3979	Kana	1995	1212-0		NAME:	KARDONIN.	NEW G			biedan	Rant
	1	-807.	-900.	-370.	-184.	-244.	-223.	-223.	65	84	403	887	234	-198.	-183.	0
	2	-3678.	-3518.	-3063.	-6271.	-1900.	-1728.	-1728.	-2398.	-1017.	-666.	-895.	-584	-1980.	-1814.	15
	3	-8356.	4178.	-6821.	-1698.	-80%	-618.	-618.	-578.	-282.	-206.	-68.	-696.	-631.	-628.	12
	4	-6651.	-6394.	-7483.	-5223.	-2427.	-2378.	-2378.	-1425.	-1481.	-4676.	-765.	-727.	-3348.	-2483.	18
	6	-2304.	4146	-0448.	-1918.	-62%	-895.	-818.	-418.	-448.	-419.	-248.	-669.	-1108.	-898.	- 14
2	8	-2090.	-2040.	-5831.	-645.	-878.	-365.	-696.	-595.	-025.	-866.	-124.	-465.	-625.	-629.	11
lr ege	7	-8391.	4543.	-1485.	-881.	-26%	-233.	-423.	-252.	-131.	-160.	4	10805	234	-011.	8
	8	-2357.	-2302.	-2145.	-682.	-346	-540.	-340.	48	-169.	240	-84.	177	-681.	-340.	10
ĉ	9	-106.	-58.	293	183	41	-8.	4.	1758	140	184	222	1946	272	192	5
E	10	-721.	-700.	-531.	-218.	-251.	-242.	-242.	431	21	685	232	248	-109.	-231.	7
-	11	-846.	-831.	-308.	101	-221.	-234.	77	219	-42.	699	128	294	-8.	27	1
	12	-749.	-737.	-209.	728	-376	-377.	-377.	-280.	24	-186.	187	1257	-41.	-844.	
	13	-1672.	-1698.	-1181.	-184.	-641.	-767.	158	-717.	-060.	-614.	-84.	818	-629.	-653.	13
	14	-496.	-473.	-331.	-115.	-147.	-141.	-141.	-70.	15	20	137	314	-118.	-128.	4
	15	-443.	-430.	-985.	-83.	-161.	-162.	-189.		28	478	149	875	47.	-108.	3
	16	-263.	-250.	-37.	145	-116	-112.	-112.	-97.	16	825	139	649	41	-67.	2
	lane.	174.0	1000	42.42				40.7			100		0.00	÷		
	ilean Idian Rank	-1713. -1268. 12	-1663. -1254. 11	-1647. -585. 10	-695. -297. 1	-887. -298. 8	-593. -291. 8	-496. -238. 8	-241. -174. -4	441. -77. -2	-188. -89. 2	88. 1	895 280 7		dirakt.	50

Bio-Image Sensitivity Analysis (CompEle Project) (Brady/Dima/Plant) C. Best & Worst Algorithms?

dimski.de

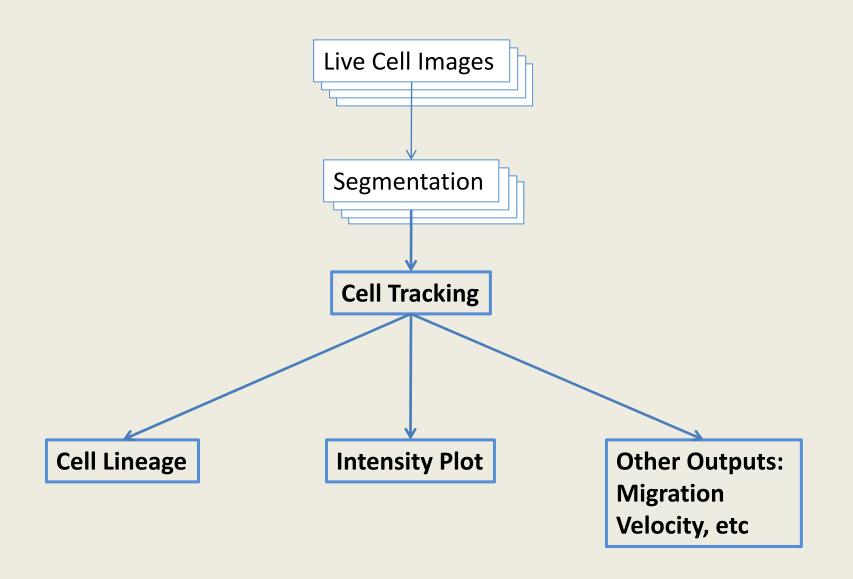
2

Bio-Image Sensitivity Analysis (CompEle Project) (Brady/Olma/Plant) O. Eastest and Hardest Images?

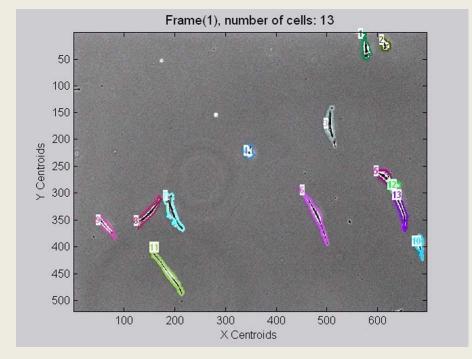
dinaktide

4

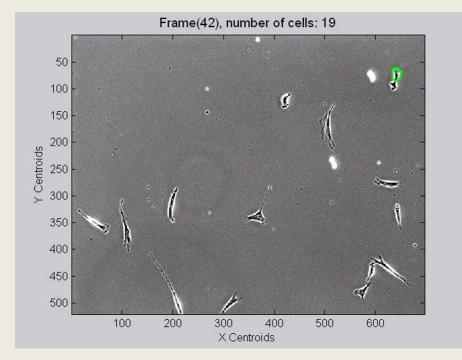
Live Cell Tracking


- There are few automated image analysis options available to the cell biologists to quantify live cell image data
- Segment and track cells in an image sequence to quantify the total fluorescence intensity of individual cells over time

Manually Tracking NIH 3T3 Cells



Phase contrast on left, GFP on right


CompBio Cell Tracker

Automatic Tracking of NIH 3T3 Cells

Automatic Tracking of NIH 3T3 Cells

Thank You!

alden.dima@nist.gov

