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Abstract:  The quality and reliability requirements for next generation manufacturing are reviewed, and current approaches 

are cited.  The potential for augmenting current quality/reliability technology is described, and characteristics of potential 

future directions are postulated.  Methods based on knowledge discovery and analysis in manufacturing (KDAM) are 

reviewed, and related successful applications in business and social fields are discussed.  Typical KDAM applications are 

noted, along with general functions and specific KDAM-related technologies.  A systematic knowledge discovery process 

model is reviewed, and examples of current work are given, including description of successful applications of KDAM to 

creation of rules for optimizing gas porosity in sand casting molds.  Finally, directions in KDAM technology and associated 

research requirements are described, and comments related to application and acceptance of KDAM are provided. 

 

Introduction 

Industries across the globe are pursuing “next 

generation manufacturing” (NGM) as a tactic for meeting 

rapidly-expanding global needs for high performance, low 

cost, high quality products and processes, and as a 

strategy  for revitalizing companies and industries which 

have become non-competitive over time [1,2].  Within the 

pursuit of NGM lies a specific question:  How will 

manufacturers achieve “next generation quality and 

reliability” for new products and processes?  Demanding 

global customers simply will not settle for current best-in-

class performance. 

About fifty years ago, the quality and reliability of 

products began to exhibit rapid improvements.  

Commonly traced to the seminal work of Shewhart [3], 

fundamentally different approaches to quality and 

reliability were initiated, primarily in Japan after WW II.  

Referred to by terms such as total quality control [4] and 

total quality management [5], wide-scale application of 

these approaches in the U.S. occurred the 1980’s, initially 

in semiconductor fabrication.  These approaches now 

permeate manufacturing across the globe, with the effects 

most obvious to the public in areas such as increased 

automobile quality and reliability.  Only an owner of an 

automobile manufactured in the 1970’s can fully 

appreciate the profound impact of this quality and 

reliability revolution. 

The approaches that have enabled these 

improvements can be characterized by two fundamental 

concepts.  The first is that quality is best achieved by 

controlling inputs (processes) vs. inspecting outputs 

(products).  In addition to improving the quality of 

products, this approach minimizes shipment of the 10-

15% defective products typically not caught by inspecting 

product [6].  The second fundamental concept is that the 

focus of output quality/reliability improvement efforts 

should be on minimizing variations in inputs through 

statistical analysis of samples of input data.  Thus was 

born statistical process control (SPC) with its now-

ubiquitous X-bar and R charts [7], and related statistics-

based approaches now commonly applied to 

manufacturing, such as analysis of variance (ANOVA) 

[8], Taguchi methods [9], design for six sigma (DFSS) 

[10], and design of experiments (DOE) [11]. 

 

Current Situation 

If we think of the set of statistics-based quality and 

reliability tools as a technology, we can assume that this 

technology follows a classic technology s-curve [12], 

where incremental improvements accumulate slowly over 

time as the technology is introduced, then increase rapidly 

with technology improvements and widespread 

application, and finally level off as the full potential of the 

technology is realized.  We can further assume that the 

general pattern of technology s-curve progression [13,14] 

also applies here, i.e., when an incumbent technology’s 

contribution to improvement (value) levels off, the 

technology is ripe for augmentation or replacement by a 

new technology, as illustrated in Figure 1. 

If this situation holds for quality and reliability 

technology, we can reasonably ask:  Has the statistics-

based quality/reliability paradigm reached maturity, and if 

so, what technology will follow the s-curve progression
1
?  

                                                           
1 When considering technology s-curves, it is essential to note 

that it is not necessarily the level of contribution of an 

incumbent technology that declines over time, it is the return-on-

investment in technology improvements that declines.  The 

question here is:  Which technologies should I invest in to reach 

the next level of product and service quality and reliability? 



Assuming that the technology s-curve model holds 

here, we can begin to answer the question of technology 

succession in quality and reliability by postulating three 

characteristics of next generation quality/reliability 

technology. 

 

 
Figure 1:  Technology s-curve progression 

 

Generally, increasingly powerful and available 

computer and communication capacity is generating an 

ever-expanding sea of data.  The manufacturing 

environment mimics this general trend, with the content 

of manufacturing-related databases potentially extending 

far beyond the information scope of current statistics-

based quality and reliability approaches to include areas 

such as warrantee data, sales and marketing information, 

financial data, etc.  These databases typically consist of 

many unrelated sets of data aggregated by many different 

entities within and outside of an organization, with each 

database geared toward supporting different 

organizational functions.  We can predict that next 

generation quality/reliability technology will be based on 

integration of these massive extended databases.  

A common refrain heard from those directly involved 

in making next generation manufacturing a reality is that 

they are drowning in this rising sea of data.  Traditional 

analysis approaches to identifying underlying patterns and 

structures in data are producing diminishing returns 

relative to the growth in available data (the tail of the 

technology s-curve).  We can therefore assume that next 

generation quality/reliability technology will include 

finding useful patterns and structures in data currently 

unperceivable using common statistical approaches. 

The task of identifying useful data patterns and 

structures in massive extended databases implies a third 

characteristic of next generation quality and reliability 

technology, which is the ability to effectively utilize 

highly coherent, noisy, and corrupted data with missing 

field and record entries.  This is a natural consequence of 

using data obtained from a variety of internal and external 

sources collected for purposes other than improving 

product designs and manufacturing processes. 

 

Knowledge Discovery and Analysis 

Given these characteristics, the next logical question 

is:  Does such a technology currently exist?  The answer 

is (of course): Yes.  The set of tools and techniques 

grouped under terms such as data mining, machine 

learning, and knowledge discovery in data (KDD) [15-17] 

are designed specifically to provide the functions basic to 

next generation quality and reliability requirements, i.e. 

integration of massive extended databases to find useful 

but currently unperceivable patterns and structures in 

noisy data.  Here, we will refer to the application of these 

and related technologies in manufacturing as KDAM - 

knowledge discovery and analysis in manufacturing. 

Currently, research and application of these 

technologies occurs most commonly in social and 

business fields, and is most apparent to the public in sales 

and marketing applications.  A commonly-encountered 

example is the amazon.com book recommendation 

system.  When a customer logs in at amazon.com, a 

personalized home page appears recommending a number 

of books of potential interest to the customer categorized 

in several different ways, e.g., books similar to books that 

the customer has purchased, other books by authors of 

books the customer has purchased, books that other 

customers have purchased in addition to the books that 

the customer has purchased, etc.  These recommendations 

are based on sophisticated data mining technologies 

applied to customer transaction data.  Netflix, the world’s 

largest on-line movie rental service, provides similar 

recommendations, but includes an on-line customer 

survey of preferences designed to increase the hit-rate of 

movies selected from the recommended titles
2
. 

Nielsen Claritas (www.claritas.com) uses the 

technologies referenced here to provide a consumer 

segmentation system that combines demographic, 

consumer behavior, and geographic data to help marketers 

identify, understand and target their customers and 

                                                           
2
 Recently, Netflix has offered the Netflix Prize 

(www.netflixprize.com), a $1 million award to any person or 

organization that produces a movie recommendation algorithm 

ten percent better than the existing Netflix algorithm [18].  An 

internet search on “netflix dataset” will provide the reader with 

interesting insights into this application of data mining and 

machine learning, a snapshot of how the Netflix Prize 

competitors are doing, and links to the actual Netflix dataset. 

http://www.claritas.com/


prospects with customized products and communications.  

For example, the Claritas PRIZM NE product classifies 

households in terms of 66 demographically and 

behaviorally distinct types, which are further segmented 

into social groups and “LifeStage” groups.  These types 

and groups can be linked to specific geographical areas 

(zip codes), which can, for example, assist in identifying 

likely new store locations. 

Amazon and Netflix provide examples of 

applications targeted at the personal level.  Claritas 

provides an example of an application at the group social 

segmentation level.  The SPSS Clementine software suite 

(www.spss.com/clementine) provides an example of a 

high-level application that performs enterprise-wide 

“predictive analytics”, which SPSS defines as including: 

1) analysis of past, present, and projected future outcomes 

using a range of technologies including data mining and 

related technologies, and 2) decision optimization 

algorithms for determining which actions will drive the 

optimal outcomes. 

An example of Claritas PRIZM-NE classification 

illustrates the manner in which data mining can be used in 

business and social applications.  The Claritas “Urban 

Uptown” class (one of the 66 major PRIZM-NE classes 

reference above) is defined as being “…home to the 

nation's wealthiest urban consumers.  Members of this 

social group tend to be affluent to middle class, college 

educated and ethnically diverse, with above-average 

concentrations of Asian and Hispanic Americans. 

Although this group is diverse in terms of housing styles 

and family sizes, residents share an upscale urban 

perspective that's reflected in their marketplace choices. 

Urban Uptown consumers tend to frequent the arts, shop 

at exclusive retailers, drive luxury imports, travel abroad 

and spend heavily on computer and wireless technology”. 

One of the five groups within this Claritas class is the 

“Young Digerati”, described as “the nation's tech–savvy 

singles and couples living in fashionable neighborhoods 

on the urban fringe. Affluent, highly educated and 

ethnically mixed, Young Digerati communities are 

typically filled with trendy apartments and condos, fitness 

clubs and clothing boutiques, casual restaurants and all 

types of bars – from juice to coffee to microbrew.” 

Clearly, this type of characterization of geographic 

areas is quite useful for applications such as new store site 

selection.  Examples such as these illustrate that the 

technologies referenced here are well-suited to and well-

established in social and business fields
3
.   

It is interesting to note that while the statistical 

approaches developed initially for the shop floor are now 

receiving significant attention in office environments 

[19,20], technology flow in the opposite direction 

(business application to shop floor) is occurring for the 

approaches focused on here. 

 

KDAM Applications 

Successful applications of KDAM technology do 

exist [21-28].  Common applications includes: 

 Detection of root causes of deteriorating product 

quality, 

 Identification of critical and optimal manufacturing 

process parameters, 

 Prediction of effects of manufacturing process 

changes, 

 Identification of root causes and prediction of 

equipment breakdown. 

 

Of course, areas such as these have always been of 

intense interest, and statistical approaches such as SPC, 

DFSS, and DOE have proven and will continue to be 

extremely effective in supporting continuous 

improvement in these and related areas.  So, why the need 

for an additional approach?  Because further 

improvements in these areas are starting to rely more and 

more on identifying increasingly-obscure patterns and 

discovering increasingly-complex structures in data 

obtained on the shop floor.  Today, it is becoming 

increasingly difficult to “see the forest for the trees”.  This 

is exactly the environment that KDAM is designed to 

work in. 

KDAM and its fundamental technology elements 

(data mining, machine learning, etc.) encompass a wide 

range of functions, tools, techniques, etc.  Some of the 

functions particularly relevant to KDAM include: 

1. Regression:  Defining functional relationships 

between outputs of interest and multiple and possibly 

dependent inputs.  An example is predicting the 

dimension of a plastic molded part given typical 

ranges of molding process variables. 

                                                           
3
 The reader is encouraged to look up the Claritas description of 

their own zip code at: http://www.clusterstaging.claritas.com/ 

MyBestSegments/Default.jsp. 

http://www.spss.com/clementine
http://www.clusterstaging.claritas.com/


2. Classification:  Grouping of objects (products) into 

classes given previously known input/output 

(process/product) classifications.  An example is 

association of acceptable and defective parts (two 

classifications) with the particular production 

conditions under which the parts were manufactured. 

3. Clustering:  Grouping of objects (products) by 

characteristics where there exist no previously known 

associations.  An example is discovering that a 

particular employee operating a particular machine 

tends to produce parts with dimensions on the high 

side of the target value. 

 

A wide variety of specific technologies have been 

applied to perform these functions.  For purposes of 

illustration, a very brief list of commonly applied 

approaches is provided here: 

 Artificial neural networks [29,30], 

 Self-organizing maps [30], 

 Genetic algorithms [31], 

 Decision trees [32], 

 Bayesian classifiers [33] 

 Multivariate statistical projection [34-37]. 

 

Knowledge Discovery Process Models 

In addition to advances in tools and algorithms and 

the means to test and compare approaches, a key 

ingredient to moving data mining and machine learning 

technologies from laboratory curiosities to real-world 

applications was the development of systematic 

knowledge discovery processes.  Due to the variety of 

potentially-useful technologies, the magnitudes of the 

databases analyzed, the complexity of the problems being 

addressed, and the rate at which research in this area is 

proceeding, standardization of the knowledge discovery 

process was critical to widespread application of these 

technologies. 

The knowledge discovery process has been 

incorporated into a number of formal process models 

which can generally be grouped as academic research 

models and industrial application models [38].  Roiger 

and Geatz [39] provide an informative review of these 

models, and compare them with the scientific method of 

problem solving.  The CRISP-DM (Cross-Industry 

Standard Process for Data Mining – www.crisp-dm.org) 

provides an industrial model particularly well-suited to 

KDAM applications. 

The CRISP-DM model is shown in Figure 2.  The 

model has six primary steps: 

1. Business understanding 

2. Data understanding 

3. Data preparation 

4. Modeling (data mining) 

5. Evaluation 

6. Deployment 

 

The CRISP-DM model is characterized by an easy-

to-understand vocabulary and good documentation 

(available on-line).  The model divides the six primary 

steps into detailed sub-steps, and encourages iterative 

development through feedback among steps
4
. 
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Figure 2. CRISP-DM process model with feedback loops. 

 

KDAM Example – Metal Casting 

Researchers at Warsaw University of Technology’s 

Institute of Manufacturing Technology
5
 are applying 

KDAM in foundry production and metal cast part 

                                                           
4
 CRISP-DM is comparable to the DMAIC improvement cycle 

[38] commonly associated with six-sigma approaches.  DMAIC 

is composed of five phases: define, measure, analyze, improve, 

and control, which are generally comparable to the six CRISP-

DM steps.  Because KDAM approaches typically rely on real-

time on-line production data gathered during regular process 

operation (vs. data obtained during designed and controlled 

experiments), the data can be quite noisy.  Thus, the CRISP-DM 

model places significant emphasis on data understanding and 

preparation.  Beyond this, examination of the details of the 

process steps reveals that differences among these and related 

methodologies often lies more in origins rather than intent, with 

approaches such as CRISP-DM being perhaps more closely 

associated with information technology, and DMAIC and related 

methodologies having origins in engineering. 

5
 Contact Dr. Andrzej Kochanski, Institute of Manufacturing 

Technologies, Warsaw University of Technology, Warsaw, 

Poland, akochans@wip.pw.edu.pl. 

http://www.crisp-dm.org/


manufacturing, including: 1) detection of causes of gas 

porosity in steel castings; 2) optimization of cast iron heat 

treatment parameters; 3) green molding sand formulation; 

and 4) prediction and improvement of melt quality and 

casting properties such as strength, elongation, and 

hardness [40-49]. 

Cast part manufacturing is challenging due to several 

aspects of the casting process.  First, the casting alloy can 

consist of over a dozen chemical components.  Second, 

not only does the casting material experience physical 

changes during the melting and cooling phases of casting, 

the chemical composition of the material also changes.  

Additionally, casting requires the parallel manufacture of 

other objects, such as the mold, which are typically made 

of completely different materials.  In the case of sand 

casting, the properties of the mold also change physically 

and chemically during casting.  Further, the sand casting 

mold materials (which have changed composition during 

molding) are re-cycled to make additional molds.  Finally, 

the physical environment of a foundry may not be well-

controlled (to say the least).  Figure 2 shows the various 

elements of a sand casting system. 

 
Figure 2:  Elements of the sand casting process. 

 

Critical cast part characteristics include part 

dimensions, surface finish, and feature shapes, and also 

material properties such as tensile strength, elongation, 

hardness, etc.  These characteristics can be extremely 

important, especially for applications where human life 

depends on component quality and reliability. Figure 3 

shows half of a sand casting mold.  Figure 4 shows filled 

molds waiting for the cast parts to cool. 

This brief overview of sand casting illustrates that a 

number of critical output characteristics rely in a complex 

manner on a number of process inputs that interact in 

complex ways and experience significant variation over 

time.  This makes prediction of output characteristics 

based on mathematical modeling of chemical and 

physical process that occur during melting, pouring, and 

cooling very difficult, and therefore makes this process a 

prime candidate for analysis using KDAM technologies.  

 

 
Figure 3:  Sand casting mold. 

 

Of the tools typically associated with KDAM, 

artificial neural networks (ANNs) have probably received 

the most use for foundry applications (see [40] and [42] 

for extensive bibliographies of ANN usage in foundries).  

Research results by the Warsaw group related to mold gas 

porosity [40] illustrates the type of problem that ANNs 

are well-suited to solving. 

In one application by the Warsaw researchers, 

production data on gas porosity was collected for over 

2000 parts produced in a steel foundry during five months 

of normal production.  About 4% of the parts exhibited 

gas porosity.  The final number of part samples used for 

ANN training was 170. 

Table I shows 39 factors that were assumed to have 

an influence on mold gas porosity.  Through the training 

and analysis of an artificial neural network, eleven were 

found to have relatively low impact. 

Training of the neural network on the final 28 

variables resulted in automatic generation of a set of rules 

of the form: 

  If water content in molding sand at molding time is high 

    And the time from molding to pouring is high 

      And the environment temperature is low 

        And the air humidity is high 

Then the probability of excessive gas porosity is high. 

 

Obviously, these rules follow common sense, even 

for a person that knows little about the molding process!  

So what is the benefit of using ANNs to characterize this 



situation?  After automatically generating rule sets, the 

neural network was used to create a series of response 

curves relating gas porosity to major process variables.  

The result was a quantitative description of safe ranges of 

variables within which the desired molding properties can 

be obtained.  Interestingly, a related study by this research 

group [42] revealed that the primary cause of casting 

defects was the molder, a human variable. 

 

 
Figure 4: Filled sand casting molds. 

 

KDAM Example – Surface Finishing 

Researchers at Marquette University’s College of 

Engineering
6
 are working with industry partners to initiate 

KDAM research related to surface finishing of machined 

metal parts. 

Surface finish constitutes a critical product 

characteristic in a wide variety of manufacturing 

operations.  Consistently achieving a specified surface 

finish while minimizing cost-related factors such as cycle 

time, material waste, and tool wear is essential to 

maintaining economically viable finishing processes. 

Surface finish depends on a number of process 

variables such as tool speed, material feed rate, and tool 

condition.  Further, there is a wide variety of finishing 

processes to choose from (e.g. grinding, honing, etc.).  

This can make it quite a challenge to optimize process 

variables to achieve a specified finish at minimal cost. 

One application of surface finishing technology being 

investigated relates to production of internal combustion 

engines.  Reducing engine exhaust emissions is a goal of 

                                                           
6
 Contact Dr. Mark Polczynski, Engineering Management 

Program, Marquette University, Milwaukee, WI, USA, 

mark.polczynski@marquette.edu. 

increasing importance.  One factor influencing emissions 

is combustion of engine oil due to leakage of oil between 

the piston ring and the cylinder wall.  This problem 

 

Table I – Foundry production parameters used as neural 

network inputs for detection of casting defects. 

Parameter Final 

Metal content variables   

Scrap amount Y 

Scrap quality index Y 

Fe/Mn/Si amount Y 

Fe-Si amount N 

Fe/Ca/Si amount Y 

Lime amount Y 

% C change Y 

% S change Y 

% Mn change Y 

Final % Al N 

Final % Si Y 

Final % P N 

Mold variables   

Molding sand moisture content Y 

Molding sand permeability Y 

Molding sand tensile strength Y 

Mold quality index N 

Core sand code Y 

Core coating code N 

Molding sand code N 

Mold coating code N 

Core glue code Y 

Bar test casting porosity N 

Process variables   

Melting time Y 

Time from molding to pouring Y 

Tapping temperature Y 

Melting furnace number Y 

Ladle number Y 

Pouring order N 

Days from ladle repair Y 

Days from current furnace repair Y 

Days from previous furnace repair Y 

Pouring quality index Y 

Nozzle supplier code N 

Environmental variables   

Air humidity Y 

Environment temperature Y 

Environment temperature before pouring day N 

Human variables   

Melting team number Y 

Molding team number Y 

Assembling team number Y 

 



is exacerbated under two conditions: 1) if the cylinder and 

piston/ring fit poorly, oil leaks through the gaps into the 

cylinder, and 2) if the cylinder and piston/ring fit too 

tightly, rings hydroplane over the oil film on the cylinder 

walls.  Thus, reduction in this source of engine emissions 

relies heavily on maintaining an optimal fit between the 

cylinder and piston (Figure 5).  This research focuses 

primarily on optimizing this fit. 

 

 
Figure 5:  Cut-away view of piston and cylinder 

 

Being in its initial stages, this research is pursuing a 

different path than the metal casting research.  In KDAM 

terminology, the metal casting problem is one of 

classification:  given certain combinations of conditions 

that produce products classified as “acceptable” or 

“rejects”, the goal is to discover rules that predict process 

conditions that consistently produce acceptable parts.  For 

the surface finishing work, virtually all the parts analyzed 

are good parts, and the initial analysis focuses on 

clustering.  The goal is to find clusters of parts with 

dimensional measurements near target values with low 

variance, and then identify various combinations of 

process variables associated with these clusters.  Thus, an 

example cluster description might read something like: 

 

 Part number 12345 

 Machine number 10 

 Operator XYZ 

 Second shift 

 Summer season 

 Surface finish as specified, with low variance 

 

After characterizing clusters with desirable product 

characteristics, the emphasis of the analysis will shift to 

discovering why these particular conditions produce parts 

with especially good surface finish.  If the reasons can be 

identified, this poses the opportunity to propagate best 

practices across production. 

Table II shows seven cylinder boring process 

variables and seventeen cylinder dimensions being used 

for initial clustering analysis.  Note that in addition to 

surface measurements, a number of macroscopic bore 

dimensions are included.  Since the data is already 

available, and since clustering (and classification) 

algorithms automatically generate outputs, and given that 

most good data mining and machine learning tools 

include means of identifying which types of data 

(attributes) are irrelevant to the analysis, there is generally 

no reason to not include as much data as is available in an 

initial analysis such as this. 

 

Table II.  Variables and dimensions used 

      in cylinder boring clustering analysis. 

 Process variables

  Part number

  Boring process

  Machine operator

  Transfer line

  Production date

  Production time

  Elapsed time

Bore dimensions

  Piston bore diameter (6 measures)

  Piston bore roundness (3 measures)

  Piston bore chamfer (1 measure)

Surface finish

  Ra

  Rmax

  Rpk

  Rvk

  Mr1

  Mr2

  Vo

 
 

As an example of the type of data being collected, 

Figure 6 shows a time plot of Ra surface roughness data 

for 4973 cylinder bore production samples measured over 

140 days.  The most commonly used measure of surface 

roughness, Ra is the arithmetic mean of the magnitude of 

the deviation of the surface profile from the mean line 

along the surface [50].  Each point in the figure has been 



standardized by subtracting the average value and 

dividing by the standard deviation
7
. 

Marquette researchers are performing their analyses 

using Weka, a comprehensive tool bench for machine 

learning and data mining.  Weka is free open source 

software developed as part of the Weka Machine 

Learning Project at the University of Waikato in New 

Zealand, and can be downloaded along with extensive 

documentation from the project’s web site 

(www.cs.waikato.ac.nz/ml/weka).  Part of the Marquette 

research involves evaluation of this software for 

producing robust tools that can be used on the shop floor. 

 

 
Figure 5:  Normalized cylinder Ra measurements. 

 

KDAM Directions 

Aside from the examples cited above, is there any 

evidence of trends toward broad acceptance of KDAM 

technology?  The answer is (again): Yes.  Consider the 

situation at Toyota Motor Corporation. 

Toyota is viewed as a world leader in the 

development of advanced manufacturing strategies [51], 

and the Toyota Production System [52] is applied as a 

model by many manufacturers around the world. A strong 

innovator in the field of Total Quality Control and the 

application of statistical methods, Toyota has relied 

heavily on approaches such as design of experiments, 

multivariate analysis, the Taguchi method, and robust 

design to improve product quality and reliability and 

reduce manufacturing costs.  But the manner in which 

these tools are being used at Toyota are evolving.  

According to Hino [53]: 

                                                           
7 In addition to potentially facilitation analysis, normalization 

“anonymizes” data, thus easing concerns about security of 

sensitive process and quality/reliability information. 

What Toyota has done is to accumulate past examples 

and data from the entire Toyota group in a systematic, 

stratified, and electronic format and then use computer 

(“office automation”) analysis of these to derive answers 

to most problems and issues. With two weeks provided for 

the resolution of problems, the time-consuming 

experimental design and Taguchi methods are hardly ever 

used. 

Hino also notes that “the company has been spending 

five times what other companies do to collect data, with 

the result that nearly all problems can now be solved by 

using past data.”  This approach constitutes, in essence, an 

enterprise-wide application of data mining to improve a 

wide range of functions within Toyota, including product 

quality and reliability. 

Another significant example of this trend is provided 

by Davenport and Harris [54], who describe activities at 

Honda Motor Company as follows: 

Honda instituted an analytical “early warning” program 

to identify major potential quality issues from warrantee 

service records.  These records are sent to Honda by 

dealers, and they include both categorized quality 

problems and free text.  Other text comes from transcripts 

of calls by mechanics to experts in various domains at 

headquarters and from customer calls to call centers.  

Honda’s primary concern was that any serious problems 

identified by dealers or customers would be noticed at 

headquarters and addressed quickly.  So Honda analysts 

set up a system to mine the textual data coming from these 

different sources. 

As world leaders in manufacturing, Toyota and 

Honda have taken aggressive steps to improving 

manufacturing processes
8
. But typically, manufacturers 

will be somewhat more cautious when first applying 

KDAM technology.  One low-risk path to adopting 

KDAM is to begin applying this technology in support of 

widely-accepted statistics-based quality and reliability 

approaches.  

An example of this is the work of Perzyk et. al. [43], 

who propose utilization of classification tools such as 

                                                           
8
 If these cases at Toyota and Honda are indicative of an east-

first spread of the application of data mining and machine 

learning technology to improving product quality and reliability, 

then the reader might take a moment to reflect on history’s 

penchant for repeating itself. 

http://www.cs.waikato.ac.nz/ml/weka


decision trees to determine the significance of trends in 

SPC control charts.  To use SPC control charts, 

measurements are first taken on production samples at 

appropriate intervals of time, and the sample mean is 

calculated.  Then, alarm and warning limits are 

calculated.  Samples are measured during production and 

values are plotted vs. time on a chart showing upper and 

lower warning and alarm limits [7].  Figure 8 shows an 

example of an SPC control chart
9
.  Equivalent charts 

using ranges of values within sample sets vs. sample 

mean are also commonly utilized. 
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Figure 8:  SPC control chart with limits. 

 

Having prepared the control chart and recorded the 

results over some period of production, the question now 

becomes:  What course of corrective action is appropriate, 

given the pattern of sample points vis-à-vis the warning 

and alarm limits? 

Various heuristics have been developed over time to 

specify appropriate courses of action based on trends in 

the sample means with respect to the warning and alarm 

limits.  An example would be the following rule set, 

which resembles the form of the rule set example given 

earlier which was automatically derived by an ANN: 

 

Stop the process when one sample falls outside of an 

alarm limit, 

        Or when two samples fall outside the same warning  

        limit, 

            Or after a run of six continuously rising samples 

            within the warning limits. 

 

                                                           
9 This univariate control chart is used for purposes of 

illustration.  Latent-based multivariate control charts [33-38] 

constitute a more sophisticate approach. 

For the approach recommended by Perzyk et. al., 

heuristics are replaced by using sample mean data as 

input to a decision tree which has been developed through 

analysis of the causes and effects of process variations.  

The decision tree thus continually and automatically 

“learns” appropriate responses to various sample data 

patterns based on a continuous flow of process data and 

production results. 

 

Research Requirements 

This example of the integration of a common data 

mining tool with a widely-applied statistical approach 

illustrates one route to greater use and acceptance of 

KDAM technology.  However, significant research still 

needs to be conducted to establish wide-spread 

acceptance of KDAM in the manufacturing environment. 

An example of the direction of KDAM research is 

provided by Perzyk, et. al. [49], who compared the 

effectiveness of artificial neural networks with the naïve 

Bayesian classifier for foundry casting processes.  While 

ANNs have been successfully applied for such 

applications, this approach has shortcomings such as the 

need for a complex and time-consuming training process, 

and the ambiguity of results
10

.  Although the naïve 

Bayesian classifier approach has not been widely used in 

this application, these researchers have demonstrated that 

this approach provides results that are comparable to 

those obtained from artificial neural networks, but is 

simpler to use, provides unique solutions, and can be 

developed with less data. 

This example illustrates the primary research 

challenge for widespread application of KDAM 

technology in manufacturing.  While significant time and 

energy has been applied in business and social fields to 

match and improve specific approaches to particular 

applications, much work needs to be done in matching 

and optimizing specific KDAM approaches with 

particular manufacturing applications before a general 

appreciation of the value of this technology can emerge. 

To stimulate current and future KDAM-related 

activities, the authors have initiated creation of a KDAM 

consortium (www.technologyforge.net/KDAM) focused 

on providing a forum for the free and frequent exchange 

                                                           
10 When applying neural networks, a particular problem can 

typically be effectively solved by networks with different 

architectures, topologies, and network weights, raising the 

question:  Which is the “right” network? 



of data mining and machine learning technology, datasets, 

and application results to rapidly and effectively improve 

the capabilities and efficiencies of manufacturing 

processes and the quality and value of manufactured 

products.  Based on this ambitious goal, the mission of 

KDAM is to create and maintain an industry and 

academic community of interest to: 

1. Identify and develop technologies suitable for 

achieving the KDAM goal, including technology 

reduction-to-practice in manufacturing environments, 

2. Identify and classify particular manufacturing 

processes that have proven to benefit from or could 

benefit from the application of specific KDAM-

related technologies, 

3. Share technology developments and communicate 

application results and findings among Consortium 

partners, including application best/worst practice 

guidelines, 

4. Where practical, share databases among Consortium 

members, thereby enabling development, 

verification, and comparison of KDAM-related 

technologies. 

 

Next Generation Quality and Reliability 

A basic premise of this discussion is that current 

approaches to quality and reliability represent a 

technology which can be expected to follow a typical 

technology s-curve progression.  So-called KDAM 

technology is proposed as an approach capable of 

augmenting the current technology to provide next 

generation quality and reliability.  If this premise is 

accepted, then two questions arise at this point in the 

discussion: What will this amalgamation of technologies 

ultimately look like, and how can the transition to new 

approaches be facilitated? 

Regarding the first question, consider the rise of what 

Davenport and Harris define as “analytics” [54]: 

 

… the extensive use of data, statistical and quantitative 

analysis, explanatory and predictive models, and fact-

based management to drive decisions and actions.  The 

analytics may be input for human decisions or may drive 

fully automated decisions.  Analytics are a subset of what 

has come to be called business intelligence: a set of 

technologies and processes that use data to understand 

and analyze business performance. 

 

Davenport and Harris go on to provide detailed 

descriptions of what analytics is and is becoming.  It is 

suggested here that next generation manufacturing quality 

and reliability based on an amalgamation of statistics-

based technologies with data mining and machine 

learning technologies conforms to their description of 

analytics. 

In reference to the second question posed above, it is 

important to note some fundamental differences between 

statistics-based and KDAM-related approaches.  In 

general, statistics-based approaches can be termed 

confirmatory, meaning that a pattern is hypothesized to 

exist in the data, and analysis confirms or denies its 

presence.  On the other hand, KDAM-related approaches 

can be thought of as being exploratory, focusing on 

discovering “interesting” or “unusual” patterns in the data 

[55,57].  

Another way to view these fundamental differences is 

to recall the words of George Box, a primary source for 

design of experiments technology:  “To find out what 

happens with a process when you interfere with it, you 

have to interfere with it, not passively observe it”.  A data 

miner would not disagree with this basic premise, but 

might point out that nature regularly interferes with 

processes all by itself in an often disturbingly vigorous 

manner.  If you collect enough data and analyze it 

appropriately, the patterns generated by natural 

interference may reveal themselves without human 

encouragement. 

Probably the most productive way to view KDAM 

and current statistics-based methods is as complementary 

approaches.  As an exploratory approach focusing on 

discovering interesting or unusual patterns in data, 

KDAM-type methods can form an effective front-end for 

improving the efficiency of statistics-based confirmatory 

approaches by reducing the cost and turn-around time to 

conduct design-of-experiment investigations to firmly 

establish causal relationships among variables. 

Of course, should KDAM-related research indicate 

that this approach provides the potential for significant 

improvements in quality and reliability, the research must 

be followed by development of robust, inexpensive tools 

easily used by production workers on the factory floor.  

One enabler of the widespread successful use of tools 

such as SPC has been the proliferation of robust software 

tools.  This condition must be replicated if KDAM is to 

contribute to next generation quality and reliability. 

Given fundamental differences such as these, it can 

be expected that resistance to acceptance of alternate 

viewpoints will occur (e.g., which is the preferred 

problem-solving model, DMAIC or CRISP-DM?).  An 



old adage may apply here: Never underestimate the power 

of incumbency.  Significant time and energy has been 

invested in statistics-based approaches, and spectacular 

improvements in quality and reliability have been and 

continue to be achieved.  This calls to mind another old 

adage: If it ain’t broke, don’t fix it.  The implication is 

that first-adopters of KDAM need to show spectacular 

results to establish the merits of this technology. 

That being said, the technology s-curve progression 

model has proven to be applicable over a broad range of 

situations.  Practitioners of both incumbent and alternative 

approaches are encouraged to peruse the literature which 

deals directly with comparison and contrast of statistics-

based approaches and KDAM-related technologies 

[55,56].  These and future discussions will be vital to the 

development of next generation quality and reliability. 

 

Summary 

Based on the overview provided here, the current 

status and future of the deployment of data mining, 

machine learning, and related technologies in the field of 

manufacturing can be summarized as follows: 

 Acknowledging the success of current statistical 

approaches to improving manufacturing quality and 

reliability, the need exists to develop next generation 

approaches to meet increasingly stringent global 

market quality, reliability, and cost requirements. 

 A strong base of data mining and related tools, 

techniques, and processes has been developed to 

identify increasingly-obscure patterns and discover 

increasingly-complex structures in the types of data 

being generated on factory floors. 

 These approaches are widely-applied in business and 

social applications, and research programs, tools, and 

examples of successful implementation are available 

to support these applications. 

 Successful applications of knowledge discovery and 

analysis in manufacturing technology (KDAM) do 

exist, indicating the potential for transfer of 

technology into this field, 

 Significant work needs to be conducted to measure, 

compare, and improve the effectiveness of particular 

KDAM technologies for specific manufacturing 

applications. 

 Significant work needs to be done to establish the 

usefulness of KDAM vis-à-vis incumbent 

approaches, and to integrate relevant aspects of each 

into a useful toolset capable of supporting next 

generation quality and reliability. 

 

Regarding the last two points, the amount of effort 

required to augment the incumbent quality/reliability 

technology should not be under-estimated.  However, the 

demands of next generation manufacturing are rigorous, 

and the potential rewards to organizations that 

successfully transition to next generation quality and 

reliability levels are significant.  This situation warrants 

efforts to vigorously assess the potential of KDAM to 

meet the challenges of next generation manufacturing. 
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