

 UCSoft
 White Paper

 Our Changing World of the Software Industry
From Guesswork to Scientific Work of Software Engineering

Jerry Zhu, Ph.D.

UCSoft
2727 Duke Street, Suite #602

Alexandria, VA 22314
(phone) 703 461 3632

(fax) 866 201 3281
Jerry.zhu@ucsoft.biz

 Abstract

Software engineering is an immature field much like civil engineering before scientific revolution when
engineering requirements were specified based on personal opinions, resulting in imprecise, incomplete,
and unstable requirements. During the time before Isaac Newton, there was no consensus to mandate how
bridges should be built, and because everyone followed his or her own methods, most bridges fell down.
The same is true for software engineering as a huge diversity of software development methodologies is
seen in the market today. After Newton, when physics and mathematics were well established, civil
engineers would be able to specify requirements in terms of scientific principles, resulting in precise,
concise, and stable requirements. Accordingly, consensus and standards of how to build bridges emerged.
When those standards are followed, bridges do not fall down.

For software engineering to achieve the same success of modern civil engineering, scientific knowledge,
rather than personal opinions, are needed to structure and represent problem domain. Requirements
represented in scientific principles are precise, concise, and stable and become a solid foundation from
which all other design activities are derived. Accordingly, software engineers, like modern civil engineers,
are transformed from practical artists to scientific professionals. There has been continuous progress in
computer languages, integrated development environments, and network protocols. But in terms of
progress in scoping and representing problem space, there has been none.

By analyzing the history of engineering and the philosophy of science, the paper concludes that the
software industry is in the middle of a crisis and envisions the software industry revolution as the next
step in the revolution cycle of the software development discipline. A new paradigm will emerge and
replace today’s paradigm and change the whole concept of enterprise software, requirements and the
development process. Drawing on insight from the mature fundamentals of design, common to all
established engineering branches, the paper compares the old paradigm with the new and proposes the
scientific discipline of enterprise software that anticipates the new era of the software industry by
transforming software engineering from guesswork to scientific work, hence eliminating requirements
induced rework, overrun and schedule delays and failures.

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 1

mailto:Jerry.zhu@ucsoft.biz

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 2

The Problem of Software Engineering
“Software bugs, or errors, are so prevalent and so
detrimental that they cost the U.S. economy an estimated
$59.5 billion annually.” “Software developers already
spend approximately 80 percent of development costs on
identifying and correcting defects, and yet few products
of any type other than software are shipped with such
high levels of errors.”1 If errors abound, then rework can
start to swamp a project. Every instance of reworking
introduces a sequential set of tasks that must be redone.
For example, suppose a team completes the sequential
steps of analyzing, designing, coding and testing a
feature, and then uncovers a design flaw in testing. Now
another sequence of redesigning, recoding and retesting is
required. What is worse, attempts to fix an error often
introduce new ones. If too many errors are produced, the
cost and time needed to complete the system become so
great that going on does not make sense.

Because the effort required to modify what has already
been created is not in the planned schedule, top managers
often exaggerate the project in the point of fantasy.
Fantasy by top management has a devastating effect on
employees. If your boss commits you to produce a new
scheduling system in six months that will actually take at
least two years, there is no honest way to do your job.
Such projects appear to be on schedule until the last
second, then are delayed, and delayed again. Managers’
concern often switches from the project itself to covering
up the bad publicity of the delays.

A key problem, a software industry problem, is that
requirements "known" at the beginning of a project are
inevitably NOT the requirements that are discovered by
the end of the project to be the ones necessary to make the
result ultimately successful. As Brooks noticed, “The
hardest part of building a software system is deciding
precisely what to build. No other part of the conceptual
work is as difficult as establishing the detailed technical
requirements, including all the interfaces to people, to
machines, and to other software systems. No other part of
the work so cripples the resulting system if done wrong.
No other part is more difficult to rectify later."2 It is the

1 NIST, Software Errors Cost U.S. Economy $59.5 Billion
Annually, June 28, 2002. Available at
http://www.nist.gov/public_affairs/releases/n02-10.htm
2 Brooks, Frederick, “No Silver Bullet – Essence and
Accidents of Software Engineering,” Computer, April
1987.

problem of the software industry because it happens in
every country to large companies and small; in
commercial, nonprofit, and governmental organizations;
and without regard to status or reputation. The problem is
translated into rework, waste, or failure in most software
projects.

Most software projects can be considered at least partial
failures because few projects meet all their cost, schedule,
quality, or requirements objectives. A failure is defined as
any software project with severe cost or schedule
overruns, quality problems, or that suffers outright
cancellation. “Of the IT projects that are initiated, from
5% to 15% will be abandoned before or shortly after
delivery as hopelessly inadequate. Many others will
arrive late and over budget or require massive reworking.
Few IT projects, in other words, truly succeeded. There is
cost of litigation from irate customers suing suppliers for
poorly implemented systems. The yearly tab for all these
costs conservatively runs somewhere from $60 billion to
$70 billion in the U.S. alone.”3

There has been much study of the problems of project
failures. These studies, however, are of little significance.
That the software problems in software engineering lie
by-and-large in requirements engineering is obviously
recognized and remedies are offered. Still, the end result
is the same: there is no documented proof or indication
that software projects are on time, within budget and
capable of delivering what is expected as far as we know.
In other words, the remedies do not seem to be working.
Projects fail regardless of these failure analyses.

The software industry problem cannot be understood by
looking at software itself. However, when seeing software
engineering (SE) in the context of the history of
engineering and the context of the philosophy of science.
we may better understand the nature of the problem, what
is required to solve the problem, and accordingly have the
right effort to move forward along the revolution cycle of
the software engineering discipline..

SE in the context of the History of
Engineering
Software engineering is, in the year 2009, roughly where
civil engineering was before the scientific revolution in
the early seventeenth century. During the time before
Isaac Newton, engineering requirements were specified

3 Charette, Robert N. “Why Software Fails.” IEEE
Spectrum. Sep. 2005.

http://www.nist.gov/public_affairs/releases/n02-10.htm

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 3

based on personal opinions, resulting in imprecise,
incomplete, and unstable requirements. Medieval
engineers were practical artists and craftsmen, and
proceeded mainly by trial and error. There was no
consensus to mandate how bridges should be built, and
because everyone followed his or her own methods, most
bridges fell down.

The same is true for software engineering today.
Professional software developers usually build software
for someone other than themselves – the users of the
software. Ninety-nine percent of the software projects are
not for the software industry and software professionals
do not know what they are developing. They are “slave”
workers who perform what they are told. The users must
know what they want. However, experience in trying to
gather requirements from users soon reveals them to be an
imperfect source of information. Frankly, users frequently
do not know what the requirements are or how to specify
them in a precise manner. Users often tend to offer
opinions as much as possible based on their own
judgment and preferences that vary from time to time and
from people to people. There was no scientific basis of
what constitutes requirements such that requirements can
be defined and documented with subjective certainty.
Even with the help of analysts, users did not fully
understand what the software system ought to do. As
projects proceeded, users and the developers themselves
could see what the system would look like and thus came
to understand the real needs better, a wealth of change
would be suggested. This introspect is mimic to medieval
bridge builders who always seemed to come to realize the
right bridge requirements right before the bridges fell.

Requirements being always changing become a common
assumption and are actually the fatal problem for the
software industry. How to manage changing requirements
is a major debate in software project management circles:
the debate between traditional and agile methodologies. A
huge diversity to design approaches used by practitioners
is currently seen in the marketplace. These methodologies
do not resolve the problem from the root. They only add
some new thoughts into the existing failed unhealthy
pyramid. Requirements structuring and representation is
knowledge creation in the domain of business not the
domain of information technology. Software professionals
have no power to control the changing requirements no
matter what methodologies they come up with, just like
farmers built their houses without formal requirements.
They just built, built and built. Farmers also deal with
changing requirements and changing design. That was
before the Scientific Revolution.

The first phase of modern engineering emerged in the
Scientific Revolution when engineers were able to adopt a
scientific approach to practical problems and
systematically perform structural analysis, mathematical
representation and design of building structures. After
Newton, civil engineers would be able to specify
requirements in terms of physics and mathematics,
resulting in precise, concise, and stable requirements.
Accordingly, consensus and standards of how to build
bridges emerged. When those standards are followed,
bridges do not fall down. Resultantly, medieval engineers
were transformed from practical artists to scientific
professionals.

SE will have its own modern era when software
requirements are specified in scientific terms instead of
opinions. There has been continuous progress in computer
languages, integrated development environments, and
network protocols. But in terms of progress in scoping
and representing problem space, there has been none. The
scientific knowledge of civil engineering is physics and
mathematics and the scientific knowledge of SE has a
theoretical foundations built on organizational theory,
complexity theory, systems thinking, and logic etc.
Scientific specification of software requirements cannot
be done within today’s paradigm and methods. A new
paradigm is required. This new paradigm will
reconceptualize the basic assumptions of software and
requirements..

SE in the Context of the Philosophy
of Science
The term Software Engineering (SE) was coined in the
1968 NATO Conference to introduce software
manufacturers to the established branches of engineering
design. It was believed during the conference that
software designers were in a position similar to architects
and civil engineers. Naturally, we should turn to these
ideas to discover how to attack the design problem. Since
1968, the desire to apply the disciplined, systematic
approach of industry engineering design to software has
led to the emergence of numerous diverse SE
methodologies. The industry standard SE model, Unified
Process, is the result of consolidating more than fifty
object-oriented methods from 1989 to 1994. As
methodologists were faced with increasing complex
problems, new process wars once again emerged, perhaps
fiercer than before, since UP’s opponents have joined to
form the Agile movement. For Agile proponents, process
is a bureaucratic impediment to an otherwise acclaimed

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

innovative industry. For UP proponents, the Agile process
is just another disguise for undisciplined hacking.

 Precise, Concise, and Stable Requirements 4

Four decades after SE was first introduced as a model for
the field of software development in 1968, issues
surrounding software production identified four decades
ago remain unresolved today.4 The outcomes of the field
of SE do not resemble those of any other branches of
engineering in terms of success rate, error laden
deliverables, intellectual rework and subjective
uncertainty. Studies have shown that adherence to any
methodology, far from facilitating development, only
made the design more problematic. Software engineers
being studied abdicated responsibility for design decision
to the methodology is a fetish of technique rather than
solving the design problem to hand. Developers ignore
certain aspects of methodologies not from a position of
ignorance, but from the more pragmatic basis that certain
elements are not relevant to the development they face.

Why doesn’t the software industry have a consensus on
methodology even after nearly half a century of growth?
The answer to the question can be understood in Thomas
Kuhn’s philosophy of science.5

The philosophy of science is a discipline that looks at
another discipline’s practices to understand and improve
the latter’s theory and practices. Kuhn’s philosophy works
well both in describing the current state of SE and in
providing new ways of approaching its perceived
problems. According to Kuhn, scientific revolutions come
about because existing paradigms no longer solve existing
problems, creating "anomalies" that lead to a crisis.
Scientists then start to scrutinize the current paradigm
itself and start coming up with alternative paradigms.
Eventually, a new paradigm that has the power to resolve
the anomalies establishes itself. When a new paradigm is
finally adopted, science will have undergone what Kuhn
calls a scientific revolution. After the revolution, a new
normal science is stabilized. Kuhn’s revolution cycle
starts from a pre-paradigmatic stage described below.

4 Simons, C.L. I.C. Parmee and P.D. Coward, “35 years
on: to what extent has software engineering design
achieved its goals?” IEE Proc, -Software. Vol. 150, No. 6,
Dec. 2003

5 Kuhn, S. Thomas. “The Structure of Scientific
Revolution,” University of Chicago Press. 1996

Pre-Paradigmatic
stage

Normal
Science

Revolution

Crisis

 Figure 1. Discipline Revolution Cycle

The pre-paradigmatic phase represents the "pre-history"
of a science, the period in which there is wide
disagreement among researchers or groups of researchers
about fundamental issues, such as which phenomena
should be explored according to which theoretical
principle; what the relationships of the theoretical
principles are with each other and with theories in related
domains; what methods and values should guide the
search for new phenomena and new principles; what
techniques and instruments can be used, and so forth.
While such a state of affairs persists, the discipline cannot
be said to be truly scientific. A discipline becomes
scientific when it acquires a scientific paradigm, capable
of putting an end to the broad disagreement characterizing
its initial period. At this stage, the discipline becomes a
science. Within the new paradigm, the discipline sets the
problems, the terms in which these may be approached to
give a valid solution and the means of identifying what
constitutes a valid solution. It presents challenging
puzzles, supplies clues to solutions and guarantees the
competent practitioners success that those of the
prescience schools did not. This activity of puzzle-solving
within the constraints of the paradigm is referred to by
Kuhn as normal science.

Not all scientific works will succeed. During normal
scientific work, most failures of predictions, theories or
experiments will be regarded as failures on the part of
practitioners rather than the discipline. However,
problems may remain unsolved, and some of these may
call all or part of the discipline into question. These
problems may relate to theoretical problems that the
discipline cannot explain, to observations the discipline
has predicted incorrectly. Sometimes these problems
become so obvious that they lead to a sense of scandal
and a feeling in the community of practitioners that
“something must be done.” The crisis deepens when
workers begin to lose faith in the current paradigm, and
when a rival paradigm emerges the stage is set for a

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

change in fundamental beliefs. On the basis of better
predictive or explanatory power, and/or for a number of
other reasons, one of these--or the original discipline in a
revised form--emerges as the new, generally accepted
discipline. The final acceptance of this new, changed or
restated discipline is a scientific revolution, or a paradigm
shift.

Kuhn’s views were intended for the nature sciences. Still,
there are questions about whether Kuhn’s views are
applicable to the applied sciences and the “the sciences of
the artificial.” Papdimitriou6 models applied science as
units of interrelated research and practice, where
research/practice units are visualized as the nodes in a
directed graph with the edges indicating connectivity
between these units. He then claims that the field is in a
crisis when connectivity is low between the clusters of
practice and research nodes, i.e., when there is little or no
connection between practice and theory in an applied
science. Papdimitriou maps Kuhn’s "crisis" due to
anomalies in natural sciences to a crisis due to lack of
connectivity between theory and practice in applied
sciences.

 Precise, Concise, and Stable Requirements 5

Peter Drucker7 refers basic assumptions about reality as
paradigms. He says, “For a social discipline such as
management the assumptions are actually a good deal
more important than are the paradigms for a nature

6 Papadimitriou, Christos H.: "Database metatheory:
Asking the big queries" in Proceedings of the fourteenth
ACM SIGACT-SIGMOD-SIGART symposium on
Principles of Database Systems, 1995, pp. 1-10.
7 Drucker, Peter. “Management Challenges for the 21st
Century” Harper Business, 1999

science. The paradigm- that is, the prevailing general
theory – has no impact on the natural universe. Whether
the paradigm states that the Sun rotates around the Earth
or that, on the contrary, the earth rotates around the Sun
has no effect on Sun and Earth. A natural science deals
with the behavior of OBJECTS. But a social discipline
such as management deals with the behavior of people
and institutions. Practitioners will therefore tend to act
and to behave as the discipline’s assumptions tell them to.
Even more important, the reality of a nature science, the
physical universe and its laws, do not change. The social
universe has not “natural laws” of this kind. It is thus
subject to continuous change. And this means that
assumptions that were valid yesterday can become invalid
and indeed, totally misleading in not time at all.” He
continuous to say, “What matters most in a social
discipline such as management are therefore the basic
assumptions. And a change in the basic assumptions
matters even more.”

The discipline of socials systems design is a social
scientific discipline and enterprise software is a social
system. Therefore it is important to make explicit the
assumptions of SE. SE as a field is less than half a century
old. It can safely be considered to be at its infant stage as
compared to other more established engineering
disciplines like Civil Engineering. Thus, it is most likely
in its crisis stage within its current paradigm; the
theoretical foundation of UP no longer meets the demand
of today’s complex problems. There are several indicators
that point in that direction, like a huge diversity of
development methodologies and a wide disagreement
among researchers and practitioners about its "scientific
paradigm” (i.e., its formal theoretical foundations). Being
devoid of a theoretical foundation, it cannot really
become an engineering discipline either, since any
engineering discipline needs formal theoretical
foundations to build upon. If there is no established
science or scientific paradigm then we have to conclude
that the SE "crisis" is a Kuhnian crisis. It needs a
revolution to recreate its new paradigm to be scientific.

SE being a Kuhn crisis is further evidenced from the
applied science perspective that the theory of SE is
decoupled from its practice. Software designers should
“fake” the theoretical, rational design process in that a
rational, systematic software design process will always
be an idealization. Adherence to any methodology was far
from facilitating the development process, only making
the design process more problematic. Software engineers
studied abdicated responsibility for design decisions to
the methodology in “a fetish of technique,” rather than
solving the design problem at hand. Methodologies are

Practice Theory

Figure 2. Theory and practice decoupling

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 6

treated primarily as a necessary fiction to present an
image of control or to provide a symbolic status, and are
too mechanistic to be of much use in the detailed, day-to-
day organization of a system developer’s activities.

The recognition of the current status of SE being a
Kuhnian crisis gives us a clear understanding of where SE
should be heading and what should be done about the
current crisis. It is anticipated that a new paradigm will
emerge to put an end to the methodology war. The
decision to reject one paradigm is always simultaneously
the decision to accept another, and the judgment leading
to that decision involves the comparison of both
paradigms with nature and with each other. The transition
from a paradigm in crisis to a new one from which a new
tradition of normal science can emerge is far from a
cumulative process, one achieved by an articulation or
extension of the old paradigm. Rather, it is a
reconstruction of the field from new fundamentals, a
reconstruction that changes some of the field’s most
elementary theoretical generalizations as well as many of
its paradigm methods and applications. When the
transition is complete, the profession will have changed
its view of the field, its methods, and its goals. When
paradigms change, the world itself changes with them.
Led by a new paradigm, scientists adopt new instruments
and look in new places. After a revolution, scientists are
responding to a different world.

The Fundamentals of Mature
Engineering Design
The success of the new paradigm of SE must also resolve
the decoupling of SE theory and practice. Because the
decoupling between theory and practice does not exist in
well-established engineering branches, the mature
fundamentals of design, common to all established
branches of engineering, prove to be an effective starting
point for a field in its infancy. Once the mature
fundamentals are found, the new discipline of SE that
complies with these fundamentals of engineering design
can be constructed. This in turn will solve the problem of
SE theory being decoupled from practice.

The mature fundamentals of machine design were
elaborated on in a paper written by Polanyi.8 The
manufacture of a machine consists of cutting suitably
shaped parts and fitting them together so that their joint
mechanical action provides a required function. The

8 Polanyi, Michael, “Life’s Irreducible Structure,”
Science, Vol., 160

structure of machines and the working of their structure
are thus shaped by man, even while their material and the
forces that operate them obey the laws of inanimate
nature. In constructing a machine and supplying it with
power, we harness the laws of nature at work in the
machine’s material and its driving force, and make them
serve our purpose. This harness is not unbreakable; the
structure of the machine, and thus its working, can break
down. But this will not affect the forces of inanimate
nature on which the operation of the machine relied; it
merely releases these forces from the restriction the
machine imposed on them before it broke down.

Therefore, the machine, as a whole, works under the
control of two distinct principles: the higher principle, the
machine’s design and the lower principle, the law of
inanimate nature on which the machine relies. Higher
level properties are emergent in the sense that they are not
reducible to the lower level principles. (For example, the
shape of a cup is not reducible to the laws of physics.)
Though the higher level harnesses the lower one, the
lower level is the foundation and is therefore independent
of the level above. Hence, a machine is a system of dual
control that relies, for the operations of its higher
principle, on the working of the lower principle.

The higher-level relies for its operations on the level
below and reduces the scope of the operation of the
particulars at the level below by imposing on it a
boundary that harnesses it to the service of the higher
level. Because any machine operates under two levels of
constraints, the design of the machine therefore is to first
identify the particulars of the lower level and its
governing constraint and then synthesize the higher-level
constraint, or harness lower level particulars, to
implement required functions.

The main task of engineers is to apply their technological
knowledge--the knowledge of higher-level principles of
design--to their scientific knowledge--the knowledge of
the principles of the lower level particulars and their
governing laws--to implement required functions and to
solve technical problems. They then optimize these
solutions within the requirements and constraints of the
project. For example, electronic engineers apply circuit
design knowledge to the electronic properties of materials
to build circuits. Mechanical engineers apply mechanical
design knowledge to the mechanical properties of
materials to build machines. Without a solid knowledge
of the material mechanics--the lower level principle--we
build bridges that cannot be accounted for.

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

Because all machines operate under the control of two
distinct principles, if we want to design an operable
machine we must be explicit in our design on principles
of both levels and on how the higher-level principle
harnesses the lower one. Because the lower level
principles describe the natural laws that are stable and do
not change within the scope of environmental constraints
and the dependency of the higher level on the lower level,
the design will also be stable, will not change and at the
same time meet the specifications of its functional
requirements. We should never, in principle, fail any
traditional engineering design, whether it is a bridge, a
vehicle or a building, because we can in both theory and
practice identify particulars along with their governing
laws at the lower level and construct a higher-level
principle that harnesses the lower particulars precisely to
fulfill defined functions. With two levels of principles at
work, NASA scientists were able to successfully place
men on the moon.

Engineering design is a process of creating knowledge in
two levels of abstraction with lower level being scientific
knowledge and the higher level being technological
knowledge. Each of the two levels can be further broken
down into two sub-levels: scientific inquiry and
engineering inquiry at the lower level and conceptual
design and detailed design at the higher level described
below.

 Precise, Concise, and Stable Requirements 7

Scientific Inquiry takes its direction from the
investigators commitment and hunches, by formulating
questions about a particular issue. The aim is to
understand chosen phenomenon. It is main domain of
research and produces scientific knowledge in form of
natural sciences. Natural science is knowledge about
natural objects and phenomena and is concerned with
what is. It focuses on what already exists and aims at
discovering and analyzing this existence.

Engineering Inquiry builds upon the discovery of the
scientific inquiry by adding the constraint of utility on the
existence of the system under development and asks what
can be of use under natural laws and other practical
constraints. Questions regarding what for, how to, and
how good, which are usually absent in the contents of
natural science, become central to the contents of
engineering science. They are represented by functional
concepts. Engineers investigate not only a system's
physical structures but also its functions, or the services
that it delivers to some external environment. Structures
and functions are of course interrelated, but specific
studies can emphasize one or the other. The outputs of
this engineering inquiry is engineering science. Examples
of engineering science include mechanics of solids, fluid
mechanics, thermodynamics, electromagnetism, material
structures and properties. They share the basic laws and
principles of the physical sciences but have developed
substantial bodies of concrete details.

Conceptual design involves the identification and
selection of the best working principle and part
decomposition for the product. The sub-functions of the
chosen parts and their interactions explain how each
required function as specified in engineering science is
realized. Its output is the product concept or architecture.

Detail design takes the product concept and embodies it
to produce a definitive layout of the proposed technical
systems and its component decomposition in accordance
with constraints. The detail design includes specifying the
materials, the sizes, the type of motor, the size of the
hydraulic pump and cylinders, where the attachment and
assembly holes should be drilled, the size of the holes,
etc. It requires a lot of skills to specify this myriad of
items correctly if the design is to “go together'' in a
satisfactory manner. Many alternatives and options should
be considered during this part of the engineering design
processes.

The mature fundamentals of design, common to all
established branches of engineering, are four levels of
knowledge creation from scientific inquiry at the bottom

 Realize

Principle of Natural Law

Scientific Inquiry

Engineering Inquiry

 Detailed Design

 Constrain

Principle of Design

 Realize

Conceptual Design

Harness Constrain

Constrain

Figure 3. Fundamentals of Design

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 8

(the most abstract and objective) to detail design at the
top (the most concrete and subjective). Each level is built
upon the level below and is independent of the level
above. “It is an intentional construct open at the bottom.
The hierarchy embodies intentional complexity, which
characterizes a system to the degree that it is susceptible
to many different kinds of analysis. In the hierarchy, new
levels would emerge from the current top level. So the
system can grow by the accumulation of informational
constraints, modeled as a process of refinement by way of
adding subclasses.”9

The development of a hierarchy requires a two-level basic
form with the lower level being “requirements” and the
higher level being “product.” The “requirements” are
independent of the “product” and the “product” realizes
the “requirements.” The “product” implements the
elements defined in the “requirements” by adding
supportive dynamics and new information. The
“requirement” is sufficient for the “product” in the sense
that “requirements” contain all the dynamics needed to
implement the “product.” So, we can complete the
“product” level with confidence and move to the next
two-level basic form where the “product” becomes
“requirements” and so on. This two-basic form moves up
level by level until the highest level is completed. “The
amount of change required to launch a new level is ever
smaller as the hierarchy develops – refinement is just that.
The lower the level, the more influence it exerts.”10

The Scientific Paradigm of Software
Engineering
The four-level knowledge creation as the mature
fundamentals of design common to all branches of
engineering is applicable to applied science of social
systems design as well. The main difference between
traditional engineering and social systems engineering is
the scientific inquiry and its resulting knowledge. Instead
of the principles of natural laws, the lowest level principle
is the law of the social system under development. In the
social universe and the world of business change, the law
of a social system is the organizational science. Every
organization operates on a theory of business.
Organizational science describes the business theory in
form of deductive sciences that consist of primitive terms,

9 Salthe, S.N.: “Summary of the principles of hierarchy
theory.” General Systems Bulletin 31: 13-17. 2002
10 Salthe, S.N.: “Summary of the principles of hierarchy
theory.” General Systems Bulletin 31: 13-17. 2002

defined terms, axioms and theorems. A theory of business
is a set of assumptions as to what its business is, what its
objectives are, how it defines results, who its customers
are, what customers value and pay for.

Organizational science is local and unique to every
organization and unique to every aspect of the
organization. In contrast, natural science is universal and
applicable to all design tasks to build physical systems. In
traditional engineering, engineers begin at the level of
engineering inquiry because the nature science is given
and taught in school years. Engineers would apply
engineering knowledge to scientific knowledge to create
solutions without creating the scientific knowledge each
time. Social systems engineers, however, will need to
create scientific knowledge unique to the problem domain
for each project they perform. Once the organizational
science is created, a solid foundation is built from which
all other design inquires can proceed. Accordingly, the
designed system will be operable and sustainable and
achieve the goals of the system under development. A
stable organizational science of the social systems design
at the bottom level will ensure the coupling of theory and
practice, hence be able to end the Kuhnian crisis and
move into the next cycle of normal science.

The high waste resulting from failed projects in the
software industry, especially those associated with large-
scale systems failures, indicates that the system of beliefs
that supports thoughts about systems design is grossly
underdeveloped and underconceptualized. These
underconceptualized definitions and models fail to
comply with the mature fundamentals of design and are
the direct results of the assumptions held by the
discipline. Those assumptions largely determine what the
practitioners assume to be reality and “facts,” establish
what to focus on, and indeed determine what the
discipline is all about. These assumptions also largely
determine what is being disregarded in the discipline or is
being pushed aside as irrelevant. Yet, despite their
importance, these assumptions are rarely analyzed,
studied, or challenged — indeed, they are rarely even
made explicit. Once they are made explicit, analyzed, and
reformulated, the discipline will be transformed, and
practitioners will change their behavior patterns based on
what the new assumptions of the discipline tell them. This
in turn will change the reality of what the basic
assumptions of the discipline describe. Therefore, to
change the unsatisfactory reality produced by a discipline
is to change the basic assumptions of that discipline. To
apply scientific principles to the requirements approach
requires a change in assumptions about software and
requirements.

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

Many believe that working software is the only
deliverable of the project that matters and everything else
is unessential. We can know what software to build by
talking to its users. To know what house to build is to talk
with its owners who are not part of the house. This means
that the boundary of enterprise software systems excludes
the users as elements in the environment and includes
only software code as part of the system. The software we
build should support the users, and we can learn from the
interactions between users and software. Use-case driven
process places a strong emphasis on building systems
based on a thorough understanding of how the delivered
system will be used. The notions of use cases and
scenarios are used to align the process flow from
requirements captured through testing, and to provide
traceable threads through development to the delivered
system. This assumption of requirements being how the
system is used misses the bottom level of fundamentals of
design (Figure 3). It begins with the engineering inquiry
level to create functional requirements. There are no
scientific knowledge from which that desired functions
are specified. The source of functional requirements is the
opinions of the users and developers. Those opinions are
hardly consistent and complete, ambiguous and largely
depend on the individuals’ experiences and preferences
that vary from time to time and from people to people.
Hence, the software system is built on sand (personal
opinions) instead of rock (unchanging scientific
principles). This shaky foundation on which the software
system is built is the root cause of the industry problem.

 Precise, Concise, and Stable Requirements 9

To bring an end to the current crisis of the software
industry in the software development discipline revolution
cycle, the current paradigm must be abandoned or revised
to allow a new paradigm to emerge. Kuhn calls this
period the scientific revolution. After the revolution, the
new paradigm becomes the basis for another period of
normal science. The new paradigm will change the basic
assumptions of software requirements, enterprise
software, and the software development process.

With the new paradigm, an enterprise software system has
a boundary. The boundary divides certain elements within
the boundary as part of the system from those that are in
the environment. Poor requirements resulting in project
failures are direct results of misplaced boundaries. If the
system’s boundary is not defined explicitly as the first
step, it is likely that a misplaced boundary will be
implicitly drawn. It is an easy matter to redraw the
boundary of a system on paper at a very early stage of
development. However, as a project progresses, the

boundary becomes embedded in the design concept, an
investment is made, and it becomes progressively more
difficult to alter the position of the boundary. Placement
of a boundary reflects the perspective of the system's
designer and is vitally important to the success of the
system. Without a clear understanding of the boundary at
the very beginning, it is unlikely to have the right
boundary in order to document the right requirement of
the system. Misplaced boundaries imply
misunderstanding of the system to be designed, and this
misunderstanding is unlikely to be corrected in the
process of design, resulting in failed or faulty systems.

To draw the boundary of an enterprise software system is
to define what is outside and what is inside of the system.
There are two kinds of environments for an enterprise
software system: transactional and contextual. The
transactional environment contains things that the system
can influence but cannot control, such as customers and
other systems. The contextual environment contains
things over which the system has neither control nor
influence, such as weather and government regulations.
See Figure 4.

As a social system, an enterprise software system consists
of organizational units that consist of users or actors and
software components. In contrast with the current
paradigm, users are placed outside of the system. The
system provides services and products to its customers in
the transactional environment. Customers in the
transactional environment initiate requests for services,

Partners

Users

Other
Systems

Customers

Software
Components

Figure 4. The New Paradigm of Enterprise Software

Transactional
environment

Weather Regulation

Contextual
Environment

Organizational
Units

Enterprise
Software
System

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz

and then the system delivers the services to the customer.
Different customers ask for different types of services.
The process of a customer receiving a service from the
system is defined as a business process type. The goal of
enterprise software development is to design this
enterprise software system, its organizational units,
actors, and software components, and their interactions.

How the boundary of an enterprise is drawn directly
shapes the assumptions of requirements. With the new
paradigm, there are two levels of requirements: business
requirements and systems requirements described as
business model and user model respectively. See in
Figure 2.Business requirements define the problem in the
business domain while systems requirements describe the
solution in the functional domain. Therefore, systems
requirements realize business requirements. The user
model realizes the business model by adding into it
technologies and users. A business model describes
interactions between organizational units (not users) and
customers within its transactional environment about how
business value is delivered. A user model describes
interactions between users and software subsystems about
how business value is created. The business model is a
black box description while the user model is a black box
description performed by users and software subsystems.

 Precise, Concise, and Stable Requirements 10

This separation of concerns between business and systems
requirements makes it possible and convenient to model
business to our satisfaction and completion before
creating the user model. The business model is
independent of the user model, much like physics being
independent of biology. Biology relies on, but will not
alter, physics in its operation. We could and should
complete the study of physics before biology. With a
good understanding of the business, it becomes possible
to understand and model user requirements with accuracy
and precision by direct translating the business model into
a user model. In doing so, we have a requirement model
that is coherent. Coherence here means that all elements
in the user model are explained by elements in the
business model and all elements in the business model
explain elements in the user model.

The two-level requirements model is equivalent to the
lower level principle of natural laws in figure 3. Based on
the new paradigm of enterprise software, the new
development process can be described as bottom up along
the four levels of hierarchy described in Figure 6 below.
This new development process will comply with the
mature fundamentals of design described in figure 3.

 Detailed Design

Some people may argue that the business model is not
organizational science and a stable business model can’t
be reached, therefore it is impossible to model user
requirements after the business model is completed.
People with those arguments derived from their
productive careers have committed to the old paradigm
the way to see problems. This commitment makes a
particular perceptual blindness and rigidity to the
perceptions of the world, blind to anomalies that do not
fit, and rigid to the older paradigm. A change of paradigm
would mean a change in the list of problems based on the
same data of experience. Ross Ashhy defines a system as
“a set of variables sufficiently isolated to stay [constant]
long enough for us to discuss it.” A well-established
enterprise is stable in terms of its competencies, type of
customers, products and services. We can model these
into abstract representations independent of users and the
use of technologies. Even though they change, the
lifecycle of such changes should be much longer than the
lifecycle of software projects. If a stable business model
can’t be reached in a timely manner, it may indicate that it
is time to abort the software project for a different focus.

Business Model

User Model

Architecture

 Realize

Realize

Constrain

Constrain Realize

Constrain

Figure 6. The New Discipline of Design Process

User Model

RealizeConstrain

Business Model

uirement model Figure 5. Req

 UCSoft
 White Paper

Copyright 2009 UCSoft www.ucsoft.biz Precise, Concise, and Stable Requirements 11

Conclusion
The discovery of mathematics and physics revolutionized
the construction industry and transformed medieval
engineers from practical artists to scientific professionals.
Like medieval engineers, software engineers today are
practical artists developing software based on opinions.
“Best practices” rather than scientific principles are the
norm in the software industry. The same revolution for
the software industry to end the crisis of process war and
create a consensus of how to develop software is
anticipated in the near future simply because all the
theoretical foundations necessary to create the software
science, the science that structures and visualizes precise,
concise and stable enterprise software requirements,
already exit. Different from today’s civil engineers whose
scientific knowledge (natural sciences) is given and
taught in their school years, software engineers would
have to create organizational science (business model) on
their own each time they work on a project. The science
of creating the organizational science is the science of
methods…the methodology of deductive science, or the
methodology to create mathematics. For anyone who
intends to study or advance some science, it is
undoubtedly important to be conscious of the
methodology employed in the construction of that
science, and we shall see that, in the case of
organizational science, the knowledge of that
methodology is of particular far-reaching importance, for
lacking such knowledge makes it impossible to
comprehend the nature of social organizations. The
principles with which we shall get acquainted in the
methodology serve the purpose of securing the knowledge
acquired in the business model of the enterprise software
at the highest possible degree of clarity and certainty.
From this point of view, a systematic methodology of
structuring and visualizing the enterprise software
requirements is both necessary and sufficient to
revolutionize the software engineering from guesswork to
scientific work. This methodology is the realization of the
methodology of deductive science in the context of
enterprise software.

	Abstract
	The Problem of Software Engineering
	SE in the context of the History of Engineering
	SE in the Context of the Philosophy of Science
	The Fundamentals of Mature Engineering Design
	The Scientific Paradigm of Software Engineering
	Conclusion

