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 Abstract 
 
Software engineering is an immature field much like civil engineering before scientific revolution when 
engineering requirements were specified based on personal opinions, resulting in imprecise, incomplete, 
and unstable requirements. During the time before Isaac Newton, there was no consensus to mandate how 
bridges should be built, and because everyone followed his or her own methods, most bridges fell down. 
The same is true for software engineering as a huge diversity of software development methodologies is 
seen in the market today. After Newton, when physics and mathematics were well established, civil 
engineers would be able to specify requirements in terms of scientific principles, resulting in precise, 
concise, and stable requirements. Accordingly, consensus and standards of how to build bridges emerged. 
When those standards are followed, bridges do not fall down.  
 
For software engineering to achieve the same success of modern civil engineering, scientific knowledge, 
rather than personal opinions, are needed to structure and represent problem domain. Requirements 
represented in scientific principles are precise, concise, and stable and become a solid foundation from 
which all other design activities are derived. Accordingly, software engineers, like modern civil engineers, 
are transformed from practical artists to scientific professionals. There has been continuous progress in 
computer languages, integrated development environments, and network protocols. But in terms of 
progress in scoping and representing problem space, there has been none.  
 
By analyzing the history of engineering and the philosophy of science, the paper concludes that the 
software industry is in the middle of a crisis and envisions the software industry revolution as the next 
step in the revolution cycle of the software development discipline. A new paradigm will emerge and 
replace today’s paradigm and change the whole concept of enterprise software, requirements and the 
development process. Drawing on insight from the mature fundamentals of design, common to all 
established engineering branches, the paper compares the old paradigm with the new and proposes the 
scientific discipline of enterprise software that anticipates the new era of the software industry by 
transforming software engineering from guesswork to scientific work, hence eliminating requirements 
induced rework, overrun and schedule delays and failures. 
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The Problem of Software Engineering 
“Software bugs, or errors, are so prevalent and so 
detrimental that they cost the U.S. economy an estimated 
$59.5 billion annually.” “Software developers already 
spend approximately 80 percent of development costs on 
identifying and correcting defects, and yet few products 
of any type other than software are shipped with such 
high levels of errors.”1 If errors abound, then rework can 
start to swamp a project. Every instance of reworking 
introduces a sequential set of tasks that must be redone. 
For example, suppose a team completes the sequential 
steps of analyzing, designing, coding and testing a 
feature, and then uncovers a design flaw in testing. Now 
another sequence of redesigning, recoding and retesting is 
required. What is worse, attempts to fix an error often 
introduce new ones. If too many errors are produced, the 
cost and time needed to complete the system become so 
great that going on does not make sense.  

 
Because the effort required to modify what has already 
been created is not in the planned schedule, top managers 
often exaggerate the project in the point of fantasy. 
Fantasy by top management has a devastating effect on 
employees.  If your boss commits you to produce a new 
scheduling system in six months that will actually take at 
least two years, there is no honest way to do your job. 
Such projects appear to be on schedule until the last 
second, then are delayed, and delayed again.  Managers’ 
concern often switches from the project itself to covering 
up the bad publicity of the delays. 
 
A key problem, a software industry problem, is that 
requirements "known" at the beginning of a project are 
inevitably NOT the requirements that are discovered by 
the end of the project to be the ones necessary to make the 
result ultimately successful. As Brooks noticed, “The 
hardest part of building a software system is deciding 
precisely what to build. No other part of the conceptual 
work is as difficult as establishing the detailed technical 
requirements, including all the interfaces to people, to 
machines, and to other software systems. No other part of 
the work so cripples the resulting system if done wrong. 
No other part is more difficult to rectify later."2 It is the 

                                                 
1 NIST, Software Errors Cost U.S. Economy $59.5 Billion 
Annually, June 28, 2002. Available at 
http://www.nist.gov/public_affairs/releases/n02-10.htm 
2 Brooks, Frederick, “No Silver Bullet – Essence and 
Accidents of Software Engineering,” Computer, April 
1987. 
 

problem of the software industry because it happens in 
every country to large companies and small; in 
commercial, nonprofit, and governmental organizations; 
and without regard to status or reputation.  The problem is 
translated into rework, waste, or failure in most software 
projects. 
 
Most software projects can be considered at least partial 
failures because few projects meet all their cost, schedule, 
quality, or requirements objectives. A failure is defined as 
any software project with severe cost or schedule 
overruns, quality problems, or that suffers outright 
cancellation. “Of the IT projects that are initiated, from 
5% to 15% will be abandoned before or shortly after 
delivery as hopelessly inadequate.  Many others will 
arrive late and over budget or require massive reworking. 
Few IT projects, in other words, truly succeeded. There is 
cost of litigation from irate customers suing suppliers for 
poorly implemented systems.  The yearly tab for all these 
costs conservatively runs somewhere from $60 billion to 
$70 billion in the U.S. alone.”3  
 
There has been much study of the problems of project 
failures. These studies, however, are of little significance. 
That the software problems in software engineering lie 
by-and-large in requirements engineering is obviously 
recognized and remedies are offered. Still, the end result 
is the same: there is no documented proof or indication 
that software projects are on time, within budget and 
capable of delivering what is expected as far as we know. 
In other words, the remedies do not seem to be working. 
Projects fail regardless of these failure analyses.  
 
The software industry problem cannot be understood by 
looking at software itself. However, when seeing software 
engineering (SE) in the context of the history of 
engineering and the context of the philosophy of science.  
we may better understand the nature of the problem, what 
is required to solve the problem, and accordingly have the 
right effort to move forward along the revolution cycle of 
the software engineering discipline..  

SE in the context of the History of 
Engineering 
Software engineering is, in the year 2009, roughly where 
civil engineering was before the scientific revolution in 
the early seventeenth century. During the time before 
Isaac Newton, engineering requirements were specified 

                                                 
3 Charette, Robert N. “Why Software Fails.” IEEE 
Spectrum. Sep. 2005. 

http://www.nist.gov/public_affairs/releases/n02-10.htm
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based on personal opinions, resulting in imprecise, 
incomplete, and unstable requirements. Medieval 
engineers were practical artists and craftsmen, and 
proceeded mainly by trial and error. There was no 
consensus to mandate how bridges should be built, and 
because everyone followed his or her own methods, most 
bridges fell down.  
 
The same is true for software engineering today. 
Professional software developers usually build software 
for someone other than themselves – the users of the 
software. Ninety-nine percent of the software projects are 
not for the software industry and software professionals 
do not know what they are developing. They are “slave” 
workers who perform what they are told. The users must 
know what they want. However, experience in trying to 
gather requirements from users soon reveals them to be an 
imperfect source of information. Frankly, users frequently 
do not know what the requirements are or how to specify 
them in a precise manner. Users often tend to offer 
opinions as much as possible based on their own 
judgment and preferences that vary from time to time and 
from people to people. There was no scientific basis of 
what constitutes requirements such that requirements can 
be defined and documented with subjective certainty. 
Even with the help of analysts, users did not fully 
understand what the software system ought to do. As 
projects proceeded, users and the developers themselves 
could see what the system would look like and thus came 
to understand the real needs better, a wealth of change 
would be suggested. This introspect is mimic to medieval 
bridge builders who always seemed to come to realize the 
right bridge requirements right before the bridges fell.  
 
Requirements being always changing become a common 
assumption and are actually the fatal problem for the 
software industry. How to manage changing requirements 
is a major debate in software project management circles: 
the debate between traditional and agile methodologies. A 
huge diversity to design approaches used by practitioners 
is currently seen in the marketplace. These methodologies 
do not resolve the problem from the root. They only add 
some new thoughts into the existing failed unhealthy 
pyramid. Requirements structuring and representation is 
knowledge creation in the domain of business not the 
domain of information technology. Software professionals 
have no power to control the changing requirements no 
matter what methodologies they come up with, just like 
farmers built their houses without formal requirements. 
They just built, built and built. Farmers also deal with 
changing requirements and changing design. That was 
before the Scientific Revolution. 

The first phase of modern engineering emerged in the 
Scientific Revolution when engineers were able to adopt a 
scientific approach to practical problems and 
systematically perform structural analysis, mathematical 
representation and design of building structures. After 
Newton, civil engineers would be able to specify 
requirements in terms of physics and mathematics, 
resulting in precise, concise, and stable requirements. 
Accordingly, consensus and standards of how to build 
bridges emerged. When those standards are followed, 
bridges do not fall down. Resultantly, medieval engineers 
were transformed from practical artists to scientific 
professionals. 
 
SE will have its own modern era when software 
requirements are specified in scientific terms instead of 
opinions. There has been continuous progress in computer 
languages, integrated development environments, and 
network protocols. But in terms of progress in scoping 
and representing problem space, there has been none. The 
scientific knowledge of civil engineering is physics and 
mathematics and the scientific knowledge of SE has a 
theoretical foundations built on organizational theory, 
complexity theory, systems thinking, and logic etc. 
Scientific specification of software requirements cannot 
be done within today’s paradigm and methods. A new 
paradigm is required. This new paradigm will 
reconceptualize the basic assumptions of software and 
requirements..  

SE in the Context of the Philosophy 
of Science 
The term Software Engineering (SE) was coined in the 
1968 NATO Conference to introduce software 
manufacturers to the established branches of engineering 
design. It was believed during the conference that 
software designers were in a position similar to architects 
and civil engineers. Naturally, we should turn to these 
ideas to discover how to attack the design problem. Since 
1968, the desire to apply the disciplined, systematic 
approach of industry engineering design to software has 
led to the emergence of numerous diverse SE 
methodologies. The industry standard SE model, Unified 
Process, is the result of consolidating more than fifty 
object-oriented methods from 1989 to 1994. As 
methodologists were faced with increasing complex 
problems, new process wars once again emerged, perhaps 
fiercer than before, since UP’s opponents have joined to 
form the Agile movement. For Agile proponents, process 
is a bureaucratic impediment to an otherwise acclaimed 
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innovative industry. For UP proponents, the Agile process 
is just another disguise for undisciplined hacking.  
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Four decades after SE was first introduced as a model for 
the field of software development in 1968, issues 
surrounding software production identified four decades 
ago remain unresolved today.4 The outcomes of the field 
of SE do not resemble those of any other branches of 
engineering in terms of success rate, error laden 
deliverables, intellectual rework and subjective 
uncertainty.  Studies have shown that adherence to any 
methodology, far from facilitating development, only 
made the design more problematic. Software engineers 
being studied abdicated responsibility for design decision 
to the methodology is a fetish of technique rather than 
solving the design problem to hand. Developers ignore 
certain aspects of methodologies not from a position of 
ignorance, but from the more pragmatic basis that certain 
elements are not relevant to the development they face.  
 
Why doesn’t the software industry have a consensus on 
methodology even after nearly half a century of growth? 
The answer to the question can be understood in Thomas 
Kuhn’s philosophy of science.5   
 
The philosophy of science is a discipline that looks at 
another discipline’s practices to understand and improve 
the latter’s theory and practices. Kuhn’s philosophy works 
well both in describing the current state of SE and in 
providing new ways of approaching its perceived 
problems. According to Kuhn, scientific revolutions come 
about because existing paradigms no longer solve existing 
problems, creating "anomalies" that lead to a crisis. 
Scientists then start to scrutinize the current paradigm 
itself and start coming up with alternative paradigms. 
Eventually, a new paradigm that has the power to resolve 
the anomalies establishes itself. When a new paradigm is 
finally adopted, science will have undergone what Kuhn 
calls a scientific revolution. After the revolution, a new 
normal science is stabilized. Kuhn’s revolution cycle 
starts from a pre-paradigmatic stage described below. 
 
 
 

                                                 
4 Simons, C.L. I.C. Parmee and P.D. Coward, “35 years 
on: to what extent has software engineering design 
achieved its goals?” IEE Proc, -Software. Vol. 150, No. 6, 
Dec. 2003 
 
5 Kuhn, S. Thomas. “The Structure of Scientific 
Revolution,” University of Chicago Press. 1996 
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 Figure 1. Discipline Revolution Cycle 
 
 
The pre-paradigmatic phase represents the "pre-history" 
of a science, the period in which there is wide 
disagreement among researchers or groups of researchers 
about fundamental issues, such as which phenomena 
should be explored according to which theoretical 
principle; what the relationships of the theoretical 
principles are with each other and with theories in related 
domains; what methods and values should guide the 
search for new phenomena and new principles; what 
techniques and instruments can be used, and so forth. 
While such a state of affairs persists, the discipline cannot 
be said to be truly scientific. A discipline becomes 
scientific when it acquires a scientific paradigm, capable 
of putting an end to the broad disagreement characterizing 
its initial period. At this stage, the discipline becomes a 
science. Within the new paradigm, the discipline sets the 
problems, the terms in which these may be approached to 
give a valid solution and the means of identifying what 
constitutes a valid solution. It presents challenging 
puzzles, supplies clues to solutions and guarantees the 
competent practitioners success that those of the 
prescience schools did not. This activity of puzzle-solving 
within the constraints of the paradigm is referred to by 
Kuhn as normal science.  
 
Not all scientific works will succeed. During normal 
scientific work, most failures of predictions, theories or 
experiments will be regarded as failures on the part of 
practitioners rather than the discipline. However, 
problems may remain unsolved, and some of these may 
call all or part of the discipline into question. These 
problems may relate to theoretical problems that the 
discipline cannot explain, to observations the discipline 
has predicted incorrectly. Sometimes these problems 
become so obvious that they lead to a sense of scandal 
and a feeling in the community of practitioners that 
“something must be done.” The crisis deepens when 
workers begin to lose faith in the current paradigm, and 
when a rival paradigm emerges the stage is set for a 
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change in fundamental beliefs. On the basis of better 
predictive or explanatory power, and/or for a number of 
other reasons, one of these--or the original discipline in a 
revised form--emerges as the new, generally accepted 
discipline. The final acceptance of this new, changed or 
restated discipline is a scientific revolution, or a paradigm 
shift. 
 
Kuhn’s views were intended for the nature sciences. Still, 
there are questions about whether Kuhn’s views are 
applicable to the applied sciences and the “the sciences of 
the artificial.” Papdimitriou6 models applied science as 
units of interrelated research and practice, where 
research/practice units are visualized as the nodes in a 
directed graph with the edges indicating connectivity 
between these units. He then claims that the field is in a 
crisis when connectivity is low between the clusters of 
practice and research nodes, i.e., when there is little or no 
connection between practice and theory in an applied 
science. Papdimitriou maps Kuhn’s "crisis" due to 
anomalies in natural sciences to a crisis due to lack of 
connectivity between theory and practice in applied 
sciences.  
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Peter Drucker7 refers basic assumptions about reality as 
paradigms. He says, “For a social discipline such as 
management the assumptions are actually a good deal 
more important than are the paradigms for a nature 
                                                 
6 Papadimitriou, Christos H.: "Database metatheory: 
Asking the big queries" in Proceedings of the fourteenth 
ACM SIGACT-SIGMOD-SIGART symposium on 
Principles of Database Systems, 1995, pp. 1-10. 
7 Drucker, Peter. “Management Challenges for the 21st 
Century” Harper Business, 1999 

science. The paradigm- that is, the prevailing general 
theory – has no impact on the natural universe. Whether 
the paradigm states that the Sun rotates around the Earth 
or that, on the contrary, the earth rotates around the Sun 
has no effect on Sun and Earth. A natural science deals 
with the behavior of OBJECTS. But a social discipline 
such as management deals with the behavior of people 
and institutions. Practitioners will therefore tend to act 
and to behave as the discipline’s assumptions tell them to. 
Even more important, the reality of a nature science, the 
physical universe and its laws, do not change. The social 
universe has not “natural laws” of this kind. It is thus 
subject to continuous change. And this means that 
assumptions that were valid yesterday can become invalid 
and indeed, totally misleading in not time at all.” He 
continuous to say, “What matters most in a social 
discipline such as management are therefore the basic 
assumptions. And a change in the basic assumptions 
matters even more.” 
 
The discipline of socials systems design is a social 
scientific discipline and enterprise software is a social 
system. Therefore it is important to make explicit the 
assumptions of SE. SE as a field is less than half a century 
old. It can safely be considered to be at its infant stage as 
compared to other more established engineering 
disciplines like Civil Engineering. Thus, it is most likely 
in its crisis stage within its current paradigm; the 
theoretical foundation of UP no longer meets the demand 
of today’s complex problems. There are several indicators 
that point in that direction, like a huge diversity of 
development methodologies and a wide disagreement 
among researchers and practitioners about its "scientific 
paradigm” (i.e., its formal theoretical foundations). Being 
devoid of a theoretical foundation, it cannot really 
become an engineering discipline either, since any 
engineering discipline needs formal theoretical 
foundations to build upon. If there is no established 
science or scientific paradigm then we have to conclude 
that the SE "crisis" is a Kuhnian crisis. It needs a 
revolution to recreate its new paradigm to be scientific. 
 
SE being a Kuhn crisis is further evidenced from the 
applied science perspective that the theory of SE is 
decoupled from its practice. Software designers should 
“fake” the theoretical, rational design process in that a 
rational, systematic software design process will always 
be an idealization. Adherence to any methodology was far 
from facilitating the development process, only making 
the design process more problematic. Software engineers 
studied abdicated responsibility for design decisions to 
the methodology in “a fetish of technique,” rather than 
solving the design problem at hand. Methodologies are 

Practice Theory

Figure 2. Theory and practice decoupling
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treated primarily as a necessary fiction to present an 
image of control or to provide a symbolic status, and are 
too mechanistic to be of much use in the detailed, day-to-
day organization of a system developer’s activities.  
 
The recognition of the current status of SE being a 
Kuhnian crisis gives us a clear understanding of where SE 
should be heading and what should be done about the 
current crisis. It is anticipated that a new paradigm will 
emerge to put an end to the methodology war. The 
decision to reject one paradigm is always simultaneously 
the decision to accept another, and the judgment leading 
to that decision involves the comparison of both 
paradigms with nature and with each other. The transition 
from a paradigm in crisis to a new one from which a new 
tradition of normal science can emerge is far from a 
cumulative process, one achieved by an articulation or 
extension of the old paradigm. Rather, it is a 
reconstruction of the field from new fundamentals, a 
reconstruction that changes some of the field’s most 
elementary theoretical generalizations as well as many of 
its paradigm methods and applications. When the 
transition is complete, the profession will have changed 
its view of the field, its methods, and its goals. When 
paradigms change, the world itself changes with them. 
Led by a new paradigm, scientists adopt new instruments 
and look in new places. After a revolution, scientists are 
responding to a different world. 

The Fundamentals of Mature 
Engineering Design 
The success of the new paradigm of SE must also resolve 
the decoupling of SE theory and practice. Because the 
decoupling between theory and practice does not exist in 
well-established engineering branches, the mature 
fundamentals of design, common to all established 
branches of engineering, prove to be an effective starting 
point for a field in its infancy. Once the mature 
fundamentals are found, the new discipline of SE that 
complies with these fundamentals of engineering design 
can be constructed. This in turn will solve the problem of 
SE theory being decoupled from practice. 
 
The mature fundamentals of machine design were 
elaborated on in a paper written by Polanyi.8 The 
manufacture of a machine consists of cutting suitably 
shaped parts and fitting them together so that their joint 
mechanical action provides a required function. The 

                                                 
8 Polanyi, Michael, “Life’s Irreducible Structure,” 
Science, Vol., 160 

structure of machines and the working of their structure 
are thus shaped by man, even while their material and the 
forces that operate them obey the laws of inanimate 
nature. In constructing a machine and supplying it with 
power, we harness the laws of nature at work in the 
machine’s material and its driving force, and make them 
serve our purpose. This harness is not unbreakable; the 
structure of the machine, and thus its working, can break 
down. But this will not affect the forces of inanimate 
nature on which the operation of the machine relied; it 
merely releases these forces from the restriction the 
machine imposed on them before it broke down.  
 
Therefore, the machine, as a whole, works under the 
control of two distinct principles: the higher principle, the 
machine’s design and the lower principle, the law of 
inanimate nature on which the machine relies. Higher 
level properties are emergent in the sense that they are not 
reducible to the lower level principles. (For example, the 
shape of a cup is not reducible to the laws of physics.) 
Though the higher level harnesses the lower one, the 
lower level is the foundation and is therefore independent 
of the level above. Hence, a machine is a system of dual 
control that relies, for the operations of its higher 
principle, on the working of the lower principle.  
 
The higher-level relies for its operations on the level 
below and reduces the scope of the operation of the 
particulars at the level below by imposing on it a 
boundary that harnesses it to the service of the higher 
level. Because any machine operates under two levels of 
constraints, the design of the machine therefore is to first 
identify the particulars of the lower level and its 
governing constraint and then synthesize the higher-level 
constraint, or harness lower level particulars, to 
implement required functions.  
 
The main task of engineers is to apply their technological 
knowledge--the knowledge of higher-level principles of 
design--to their scientific knowledge--the knowledge of 
the principles of the lower level particulars and their 
governing laws--to implement required functions and to 
solve technical problems. They then optimize these 
solutions within the requirements and constraints of the 
project. For example, electronic engineers apply circuit 
design knowledge to the electronic properties of materials 
to build circuits.  Mechanical engineers apply mechanical 
design knowledge to the mechanical properties of 
materials to build machines.  Without a solid knowledge 
of the material mechanics--the lower level principle--we 
build bridges that cannot be accounted for. 
 



        

  UCSoft      
                   White Paper 
 

 

Copyright 2009 UCSoft   www.ucsoft.biz

Because all machines operate under the control of two 
distinct principles, if we want to design an operable 
machine we must be explicit in our design on principles 
of both levels and on how the higher-level principle 
harnesses the lower one. Because the lower level 
principles describe the natural laws that are stable and do 
not change within the scope of environmental constraints 
and the dependency of the higher level on the lower level, 
the design will also be stable, will not change and at the 
same time meet the specifications of its functional 
requirements. We should never, in principle, fail any 
traditional engineering design, whether it is a bridge, a 
vehicle or a building, because we can in both theory and 
practice identify particulars along with their governing 
laws at the lower level and construct a higher-level 
principle that harnesses the lower particulars precisely to 
fulfill defined functions. With two levels of principles at 
work, NASA scientists were able to successfully place 
men on the moon.  
 
Engineering design is a process of creating knowledge in 
two levels of abstraction with lower level being scientific 
knowledge and the higher level being technological 
knowledge.  Each of the two levels can be further broken 
down into two sub-levels:  scientific inquiry and 
engineering inquiry at the lower level and conceptual 
design and detailed design at the higher level described 
below. 
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Scientific Inquiry takes its direction from the 
investigators commitment and hunches, by formulating 
questions about a particular issue. The aim is to 
understand chosen phenomenon. It is main domain of 
research and produces scientific knowledge in form of 
natural sciences. Natural science is knowledge about 
natural objects and phenomena and is concerned with 
what is. It focuses on what already exists and aims at 
discovering and analyzing this existence.  
 
Engineering Inquiry builds upon the discovery of the 
scientific inquiry by adding the constraint of utility on the 
existence of the system under development and asks what 
can be of use under natural laws and other practical 
constraints. Questions regarding what for, how to, and 
how good, which are usually absent in the contents of 
natural science, become central to the contents of 
engineering science.  They are represented by functional 
concepts.  Engineers investigate not only a system's 
physical structures but also its functions, or the services 
that it delivers to some external environment.  Structures 
and functions are of course interrelated, but specific 
studies can emphasize one or the other.  The outputs of 
this engineering inquiry is engineering science. Examples 
of engineering science include mechanics of solids, fluid 
mechanics, thermodynamics, electromagnetism, material 
structures and properties.  They share the basic laws and 
principles of the physical sciences but have developed 
substantial bodies of concrete details. 
 
Conceptual design involves the identification and 
selection of the best working principle and part 
decomposition for the product. The sub-functions of the 
chosen parts and their interactions explain how each 
required function as specified in engineering science is 
realized. Its output is the product concept or architecture.  
 
Detail design takes the product concept and embodies it 
to produce a definitive layout of the proposed technical 
systems and its component decomposition in accordance 
with constraints. The detail design includes specifying the 
materials, the sizes, the type of motor, the size of the 
hydraulic pump and cylinders, where the attachment and 
assembly holes should be drilled, the size of the holes, 
etc. It requires a lot of skills to specify this myriad of 
items correctly if the design is to “go together'' in a 
satisfactory manner. Many alternatives and options should 
be considered during this part of the engineering design 
processes. 
 
The mature fundamentals of design, common to all 
established branches of engineering, are four levels of 
knowledge creation from scientific inquiry at the bottom 

  Realize 
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Figure 3. Fundamentals of Design  
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(the most abstract and objective) to detail design at the 
top (the most concrete and subjective). Each level is built 
upon the level below and is independent of the level 
above. “It is an intentional construct open at the bottom. 
The hierarchy embodies intentional complexity, which 
characterizes a system to the degree that it is susceptible 
to many different kinds of analysis. In the hierarchy, new 
levels would emerge from the current top level.  So the 
system can grow by the accumulation of informational 
constraints, modeled as a process of refinement by way of 
adding subclasses.”9  
 
The development of a hierarchy requires a two-level basic 
form with the lower level being “requirements” and the 
higher level being “product.”  The “requirements” are 
independent of the “product” and the “product” realizes 
the “requirements.”  The “product” implements the 
elements defined in the “requirements” by adding 
supportive dynamics and new information. The 
“requirement” is sufficient for the “product” in the sense 
that “requirements” contain all the dynamics needed to 
implement the “product.”  So, we can complete the 
“product” level with confidence and move to the next 
two-level basic form where the “product” becomes 
“requirements” and so on.  This two-basic form moves up 
level by level until the highest level is completed. “The 
amount of change required to launch a new level is ever 
smaller as the hierarchy develops – refinement is just that.  
The lower the level, the more influence it exerts.”10   

The Scientific Paradigm of Software 
Engineering 
The four-level knowledge creation as the mature 
fundamentals of design common to all branches of 
engineering is applicable to applied science of social 
systems design as well. The main difference between 
traditional engineering and social systems engineering is 
the scientific inquiry and its resulting knowledge. Instead 
of the principles of natural laws, the lowest level principle 
is the law of the social system under development. In the 
social universe and the world of business change, the law 
of a social system is the organizational science. Every 
organization operates on a theory of business. 
Organizational science describes the business theory in 
form of deductive sciences that consist of primitive terms, 

                                                 
9 Salthe, S.N.: “Summary of the principles of hierarchy 
theory.”  General Systems Bulletin 31: 13-17. 2002 
10 Salthe, S.N.: “Summary of the principles of hierarchy 
theory.”  General Systems Bulletin 31: 13-17. 2002 
 

defined terms, axioms and theorems. A theory of business 
is a set of assumptions as to what its business is, what its 
objectives are, how it defines results, who its customers 
are, what customers value and pay for.  
 
Organizational science is local and unique to every 
organization and unique to every aspect of the 
organization.  In contrast, natural science is universal and 
applicable to all design tasks to build physical systems. In 
traditional engineering, engineers begin at the level of 
engineering inquiry because the nature science is given 
and taught in school years. Engineers would apply 
engineering knowledge to scientific knowledge to create 
solutions without creating the scientific knowledge each 
time. Social systems engineers, however, will need to 
create scientific knowledge unique to the problem domain 
for each project they perform. Once the organizational 
science is created, a solid foundation is built from which 
all other design inquires can proceed. Accordingly, the 
designed system will be operable and sustainable and 
achieve the goals of the system under development.  A 
stable organizational science of the social systems design 
at the bottom level will ensure the coupling of theory and 
practice, hence be able to end the Kuhnian crisis and 
move into the next cycle of normal science.  
 
The high waste resulting from failed projects in the 
software industry, especially those associated with large-
scale systems failures, indicates that the system of beliefs 
that supports thoughts about systems design is grossly 
underdeveloped and underconceptualized. These 
underconceptualized definitions and models fail to 
comply with the mature fundamentals of design and are 
the direct results of the assumptions held by the 
discipline. Those assumptions largely determine what the 
practitioners assume to be reality and “facts,” establish 
what to focus on, and indeed determine what the 
discipline is all about. These assumptions also largely 
determine what is being disregarded in the discipline or is 
being pushed aside as irrelevant. Yet, despite their 
importance, these assumptions are rarely analyzed, 
studied, or challenged — indeed, they are rarely even 
made explicit. Once they are made explicit, analyzed, and 
reformulated, the discipline will be transformed, and 
practitioners will change their behavior patterns based on 
what the new assumptions of the discipline tell them. This 
in turn will change the reality of what the basic 
assumptions of the discipline describe. Therefore, to 
change the unsatisfactory reality produced by a discipline 
is to change the basic assumptions of that discipline. To 
apply scientific principles to the requirements approach 
requires a change in assumptions about software and 
requirements.  
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Many believe that working software is the only 
deliverable of the project that matters and everything else 
is unessential. We can know what software to build by 
talking to its users. To know what house to build is to talk 
with its owners who are not part of the house. This means 
that the boundary of enterprise software systems excludes 
the users as elements in the environment and includes 
only software code as part of the system. The software we 
build should support the users, and we can learn from the 
interactions between users and software. Use-case driven 
process places a strong emphasis on building systems 
based on a thorough understanding of how the delivered 
system will be used. The notions of use cases and 
scenarios are used to align the process flow from 
requirements captured through testing, and to provide 
traceable threads through development to the delivered 
system. This assumption of requirements being how the 
system is used misses the bottom level of fundamentals of 
design (Figure 3). It begins with the engineering inquiry 
level to create functional requirements. There are no  
scientific knowledge from which that desired functions 
are specified. The source of functional requirements is the 
opinions of the users and developers. Those opinions are 
hardly consistent and complete, ambiguous and largely 
depend on the individuals’ experiences and preferences 
that vary from time to time and from people to people. 
Hence, the software system is built on sand (personal 
opinions) instead of rock (unchanging scientific 
principles). This shaky foundation on which the software 
system is built is the root cause of the industry problem.  
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To bring an end to the current crisis of the software 
industry in the software development discipline revolution 
cycle, the current paradigm must be abandoned or revised 
to allow a new paradigm to emerge. Kuhn calls this 
period the scientific revolution. After the revolution, the 
new paradigm becomes the basis for another period of 
normal science.  The new paradigm will change the basic 
assumptions of software requirements, enterprise 
software, and the software development process.  
 
With the new paradigm, an enterprise software system has 
a boundary. The boundary divides certain elements within 
the boundary as part of the system from those that are in 
the environment.  Poor requirements resulting in project 
failures are direct results of misplaced boundaries. If the 
system’s boundary is not defined explicitly as the first 
step, it is likely that a misplaced boundary will be 
implicitly drawn. It is an easy matter to redraw the 
boundary of a system on paper at a very early stage of 
development. However, as a project progresses, the 

boundary becomes embedded in the design concept, an 
investment is made, and it becomes progressively more 
difficult to alter the position of the boundary. Placement 
of a boundary reflects the perspective of the system's 
designer and is vitally important to the success of the 
system. Without a clear understanding of the boundary at 
the very beginning, it is unlikely to have the right 
boundary in order to document the right requirement of 
the system. Misplaced boundaries imply 
misunderstanding of the system to be designed, and this 
misunderstanding is unlikely to be corrected in the 
process of design, resulting in failed or faulty systems.  
 
To draw the boundary of an enterprise software system is 
to define what is outside and what is inside of the system. 
There are two kinds of environments for an enterprise 
software system: transactional and contextual. The 
transactional environment contains things that the system 
can influence but cannot control, such as customers and 
other systems. The contextual environment contains 
things over which the system has neither control nor 
influence, such as weather and government regulations. 
See Figure 4. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
As a social system, an enterprise software system consists 
of organizational units that consist of users or actors and 
software components. In contrast with the current 
paradigm, users are placed outside of the system. The 
system provides services and products to its customers in 
the transactional environment. Customers in the 
transactional environment initiate requests for services, 
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and then the system delivers the services to the customer. 
Different customers ask for different types of services. 
The process of a customer receiving a service from the 
system is defined as a business process type. The goal of 
enterprise software development is to design this 
enterprise software system, its organizational units, 
actors, and software components, and their interactions. 
 
How the boundary of an enterprise is drawn directly 
shapes the assumptions of requirements. With the new 
paradigm, there are two levels of requirements: business 
requirements and systems requirements described as 
business model and user model respectively. See  in 
Figure 2.Business requirements define the problem in the 
business domain while systems requirements describe the 
solution in the functional domain. Therefore, systems 
requirements realize business requirements. The user 
model realizes the business model by adding into it 
technologies and users. A business model describes 
interactions between organizational units (not users) and 
customers within its transactional environment about how 
business value is delivered. A user model describes 
interactions between users and software subsystems about 
how business value is created. The business model is a 
black box description while the user model is a black box 
description performed by users and software subsystems.  

                                               Precise, Concise, and Stable Requirements  10

 
 
 
 
 
 
 
 
 
 
 
This separation of concerns between business and systems 
requirements makes it possible and convenient to model 
business to our satisfaction and completion before 
creating the user model. The business model is 
independent of the user model, much like physics being 
independent of biology. Biology relies on, but will not 
alter, physics in its operation. We could and should 
complete the study of physics before biology. With a 
good understanding of the business, it becomes possible 
to understand and model user requirements with accuracy 
and precision by direct translating the business model into 
a user model. In doing so, we have a requirement model 
that is coherent. Coherence here means that all elements 
in the user model are explained by elements in the 
business model and all elements in the business model 
explain elements in the user model.  

The two-level requirements model is equivalent to the 
lower level principle of natural laws in figure 3. Based on 
the new paradigm of enterprise software, the new 
development process can be described as bottom up along 
the four levels of hierarchy described in Figure 6 below. 
This new development process will comply with the 
mature fundamentals of design described in figure 3.  
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Some people may argue that the business model is not 
organizational science and a stable business model can’t 
be reached, therefore it is impossible to model user 
requirements after the business model is completed. 
People with those arguments derived from their 
productive careers have committed to the old paradigm 
the way to see problems. This commitment makes a 
particular perceptual blindness and rigidity to the 
perceptions of the world, blind to anomalies that do not 
fit, and rigid to the older paradigm. A change of paradigm 
would mean a change in the list of problems based on the 
same data of experience. Ross Ashhy defines a system as 
“a set of variables sufficiently isolated to stay [constant] 
long enough for us to discuss it.” A well-established 
enterprise is stable in terms of its competencies, type of 
customers, products and services. We can model these 
into abstract representations independent of users and the 
use of technologies. Even though they change, the 
lifecycle of such changes should be much longer than the 
lifecycle of software projects. If a stable business model 
can’t be reached in a timely manner, it may indicate that it 
is time to abort the software project for a different focus. 
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Conclusion 
The discovery of mathematics and physics revolutionized 
the construction industry and transformed medieval 
engineers from practical artists to scientific professionals.  
Like medieval engineers, software engineers today are 
practical artists developing software based on opinions. 
“Best practices” rather than scientific principles are the 
norm in the software industry. The same revolution for 
the software industry to end the crisis of process war and 
create a consensus of how to develop software is 
anticipated in the near future simply because all the 
theoretical foundations necessary to create the software 
science, the science that structures and visualizes precise, 
concise and stable enterprise software requirements, 
already exit. Different from today’s civil engineers whose 
scientific knowledge (natural sciences) is given and 
taught in their school years, software engineers would 
have to create organizational science (business model) on 
their own each time they work on a project. The science 
of creating the organizational science is the science of 
methods…the methodology of deductive science, or the 
methodology to create mathematics. For anyone who 
intends to study or advance some science, it is 
undoubtedly important to be conscious of the 
methodology employed in the construction of that 
science, and we shall see that, in the case of 
organizational science, the knowledge of that 
methodology is of particular far-reaching importance, for 
lacking such knowledge makes it impossible to 
comprehend the nature of social organizations. The 
principles with which we shall get acquainted in the 
methodology serve the purpose of securing the knowledge 
acquired in the business model of the enterprise software 
at the highest possible degree of clarity and certainty. 
From this point of view, a systematic methodology of 
structuring and visualizing the enterprise software 
requirements is both necessary and sufficient to 
revolutionize the software engineering from guesswork to 
scientific work. This methodology is the realization of the 
methodology of deductive science in the context of 
enterprise software.  
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