

# Advanced Coating Technology for Infrastructure

Contract number 70NANB10H020

15 March 2014

MesoCoat, Polythermics

#### **Overview**

- Team Introduction
- Project Introduction
- Technology Overview
- Results and discussion
- Future Plans
- Summary







## **Project Goals**

Develop a novel coating technology using a

#### high-intensity infrared light source

to fuse and bond nanocomposite metal coatings and claddings to infrastructure components

- Mitigate corrosion in infrastructure
- Reduce hazardous materials usage (heavy metals, VOCs, Cr<sup>+6</sup>)







## Value proposition

- Faster application rate (40X)
- Improved Life (2-4X)
- Metallurgical bond
- Better cladding (smooth, pinhole free, low dilution)
- Low heat input to substrate (small HAZ)
- High corrosion resistance
- High ductility
- High resistance to mechanical damage
- Completely automatic application
- Excellent resistance to chemicals
- Lower initial cost
- Wide range of applications









## MesoCoat, Inc.

# Advanced Materials and Specialty Metals Company:

- Develops, manufactures and markets advanced nanocomposite materials, and innovative fabricated metal products
- Fast becoming a world leader in metal protection and repair through their revolutionary "long life" coating and "high speed" cladding technologies





















### Polythermics, LLC

Polythermic plastic coating systems are a result of

over 40 years of industry development and innovation.

By combining the long-term performance of polypropylene and polyethylene with the stability of an advanced thermoepoxy, Polythermics coating systems establish a new standard for steel and polymeric concrete protection.







### **Technology Review - MesoCoat**











#### **CermaClad**<sup>TM</sup>

- CermaClad™ is a new weld overlay technology suitable for applying metallurgically-bonded claddings to large areas
  - MW-class thermal torch (base tool is 500KW)
  - 2000-50,000+ sq. mm spot size
  - 1-100sq m/hour, 80-500+lbs/hour deposition rate
- Original developed at Oak Ridge National Lab; Exclusively licensed to MesoCoat
- CermaClad™ is a high energy density fusion cladding process for large area applications where corrosion and/or wear limit the life of metal structures
- CermaClad™ technology utilizes a high intensity light source, which is effectively an artificial sun captured in a reflector to rapidly fuse metal and cermet coatings on steel pipes, plates and bars







#### **CermaClad**<sup>TM</sup>



■ Beam Width: 12 – 30 cm

■ Transition Speed: 10 – 50 mm/sec

Cladded Area: 80 – 580 sq. ft./hour

■ **Beam Width**: 0.5 – 0.7 cm

■ Transition Speed: 20 – 70 mm/sec

■ Cladded Area: 3 – 19 sq. ft./hour







#### **R&D** Center





#### Significance:

This new facility has helped MesoCoat in expanding its processing capabilities and ensure faster processing to satisfy customer needs.







#### Production of pinhole free Al-alloy coatings





#### Significance:

Al coatings will also provide the intended corrosion resistance to eliminate the lifelimiting flaws for 100 year life coatings for infrastructure applications.







# Excellent corrosion resistance of Al coated coupons



#### Significance:

1000 hours of salt fog testing verified the fact that the developed coatings are in fact able to offer the desired corrosion resistance.







# Polythermics - Thermoplastic Top Coats

- ✓ Simplified Application Procedures
- ✓ Lightweight Efficient Installation Equipment
- ✓ Advanced Coating Technology













# Application of thermoplastic topcoats



#### Significance:

- A key feature of this thermally applied basecoat and topcoat technology is the extent of intermolecular bonding between the basecoat and the underlying surface (the primer coating).
- Long term resistance to debonding from permeation and corrosion undercutting and greatly enhanced.







## **Thermoplastic Topcoats - Testing**



Accelerated corrosion test (GM 9540P) on

- a) 1mm thick top coat of **polyethylene** on 80 µm thick Al basecoat
- b) 1mm thick top coat of **polypropylene** on 80 µm thick Al basecoat







# SS316 L Coatings



- Hardness: HV(300) = 197.03  $\pm$  11.73
- Surface of coatings is smooth

| Element<br>(wt %)         | Fe    | Ni   | Cr   | Mn   | Мо   |
|---------------------------|-------|------|------|------|------|
| Composition before fusion | 68.88 | 10.2 | 16.6 | 1.3  | 2.12 |
| Composition after fusion  | 69.3  | 8.93 | 17.3 | 1.23 | 2.4  |











#### **Control Over Microstructure**





- Microstructure can be controlled by water quenching the samples after processing
- Due to water quenching, hardness (HV) was increased from  $197.03 \pm 11.73$  to  $341.09 \pm 8.28$
- Water quenching leads to formation of martensitic colonies.
- Martensitic steels have good corrosion resistance







# Structurally Amorphous Metal (SAM) Alloy Coatings











## **CermaClad Design Modification**









## **HDIR- Thermal Modeling**

#### Temperature distribution









### Infrastructure Applications















#### **Technical Accomplishments**



- Fusion of Al/Ni/SAM/SS316L coatings to steel substrate in air without the use of fluxes
- Defect-free coatings
- Phase control
- High corrosion resistant coatings
- Process modeling and control
- New lamp/system design







# **Summary / Value proposition**

- Faster application rate (40X)
- Improved Life (2-4X)
- Metallurgical bond
- Better cladding (smooth, pinhole free, low dilution)
- Low heat input to substrate (small HAZ)
- High corrosion resistance
- High ductility
- High resistance to mechanical damage
- Completely automatic application
- Excellent resistance to chemicals
- Lower initial cost
- Wide range of applications









#### **Thank You**

**Corporate Headquarter** 



**Demonstration Plant** 







