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INTRODUCTION

• Fine-grained entity recognition: labeling entity mentions in
context with one or more specific types organized in a hierarchy

Photographer ∈ Artist ∈ Person

• Two phases:
• a preliminary phase where the data is provided along with a
limited annotated set of samples (50 documents)

• human feedback was provided for the preliminary submissions
based on a user model of how analysts might interact with the
systems
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DATASET

KBP 2020 RUFES dataset

• follows the three-level x.y.z hierarchy

• 200 fine-grained entity types
−→ course-level entity types (14), APP, FAC, LOC, etc.

−→ fine-grained entity types, Publication.Magazine.NewsMagazine,
APP.CommunicationSoftware.SocialMedia, etc.

• 100, 000 development source documents

• 50 annotated documents

• 100, 000 the evaluation source documents
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ULTRA FINE-GRAINED ENTITIES METHODS

We separated RUFES in two sub-tasks:

• Entity extraction: the detection and the classification of
fine-grained entity types including the named, nominal, and
pronominal mentions for each mention (labeled as NAM, NOM,
and PRO, respectively);

• Within-document entity coreference resolution: the detection
of the referential mentions in a document that point to the
same entity.
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DATA PRE-PROCESSING

The provided data was organized into two formats:

• ./rsd/: “raw source data” (rsd) plain text form of the new article
• ./ltf/: “logical text format” (ltf) derived from the rsd version,
fully segmented and tokenized version of the corresponding rsd

Figure 1: Data formatting example for the KBP 2020 RUFES dataset.
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ULTRA FINE-GRAINED ENTITY EXTRACTION MODEL
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Figure 2: BERT-based model and the additional Transformer layers proposed
by Boros, Hamdi et al., 2020; Boros, Pontes et al., 2020.
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ULTRA FINE-GRAINED ENTITY EXTRACTION MODEL

• Pre-trained and Fine-tuned
language model

• BERT is a bidirectional stack of
Transformer encoders

• Masked Language Model
• Next Sentence Prediction

• n×Transformer:
• stack of identical layers: multi-head
self-attention mechanism +

position-wise fully connected
feed-forward network

• multitask (coarse + fine)

• bert-large-cased + 2 ×
Transformer + CRF

Figure 3: Transformer architecture
[Vaswani et al., 2017].
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ULTRA FINE-GRAINED ENTITY EXTRACTION MODEL

multitask learning←− this method has a label independence
assumption←− not valid for fine-grained entity extraction

−→ following the three-level x.y.z hierarchy, offering more
confidence to the last predicted entity subtype (.z)

GPE.ProvinceState −→ check the ontology −→ ProvinceState /∈
GPE −→ LOC.ProvinceState

ORG.CommercialOrganization.SocialMedia −→ check the
ontology −→ SocialMedia /∈ CommercialOrganization −→
APP.CommunicationSoftware.SocialMedia
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WITHIN-DOCUMENT ENTITY COREFERENCE RESOLUTION MODEL

NeuralCoref https://github.com/huggingface/neuralcoref
• previously trained on OntoNotes 5.0 dataset
https://www.gabormelli.com/RKB/OntoNotes_Corpus

• a rule-based mentions detection module (spaCy) to identify a set
of potential coreference mentions;

• a feed-forward neural-network which computes a coreference
score for each pair of potential mentions

• applied in a within-document context
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CONFIGURATIONS

Preliminary Phase
• 1-first-rufes submission bert-large-cased + 2 × Transformer +
CRF without coreference

• 2-first-rufes submission bert-large-cased + 2 × Transformer +
CRF

After Feedback Phase
• 1-feedback-rufes & 2-feedback-rufes submissions = 2-first-rufes
+ Rule-based Feedback Inclusion
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FEEDBACK INCLUSION

−→ the first 40 errors detected in 10 random documents were
reported

• 46% wrong type (mention-level entity types that do not exactly
match the gold mention-level entity types)

• 12% missing mentions
• 11% extraneous mentions (a mention span does not exactly
match or overlap with any gold mention span)

• 11% wrong entity coreference, either missing, incorrect or
spurious

• 5% wrong extents (a mention span and gold mention span
overlap but have different extents)
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FEEDBACK INCLUSION

−→ wrong type errors

• related to entities that had one of the ontology terms included
in the entity

• “Norovirus” was recognized as GPE (geopolitical entity) instead of
Pathogen.Virus, “virus” ∈ “Norovirus” & “virus” ∈ Pathogen.Virus

• ∀ entities that included a fine-grained ontology type (level .z
from x.y.z) i.e. “Airport”, “Hospital”, “Highway”, a rule was created
to change the predictions into the correct types
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THE SCORING RESULTS (F-SCORE) FOR RUFES 2020 EVALUATION FOR
ALL OUR SUBMISSIONS

Submission strong men-
tion match

strong typed
mention
match

mention
ceaf

typed
mention
ceaf

entity ceaf fine grain
typing

1-first-rufes 0.868 0.745 0.552 0.503 0.551 0.3188
2-first-rufes 0.868 0.745 0.578 0.503 0.567 0.3188
1-feedback-rufes 0.868 0.745 0.578 0.504 0.567 0.3204
2-feedback-rufes 0.868 0.745 0.578 0.504 0.567 0.3239
Median 0.805 – – – 0.578 0.2313
Maximum 0.868 – – – 0.689 0.4162

Table 1: Median and Maximum scores are computed on the best-performing
submission from each participant, as shared by RUFES organizers.
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CONCLUSIONS

• The BERT+n×Transformer has great potential for identifying
ultra fine-grained entity types

• BERT-alone in comparison with BERT+n×Transformer creates
more spurious cases Boros, Hamdi et al., 2020

• n×Transformer > 2 could lead to overfitting
• This type of model appears to be adapted for fine-grained entity
extraction but we propose to refine the model in order to be
able to take into consideration the inter-dependencies between
entity types

• Improving the entity coreference model (re-training, etc.)
• Further analysis remains to be done
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