TRANSFORMER-BASED METHODS FOR RECOGNIZING ULTRA FINE-GRAINED ENTITIES (RUFES)

Authors: Emanuela Boros and Antoine Doucet

TAC 2020 Workshop

February 22-23, 2021

This work has been supported by the European Union's Horizon 2020 research and innovation program under grants 770299 (NewsEye) and 825153 (Embeddia).

- 1. Introduction
- 2. Dataset
- 3. Ultra Fine-grained Entities

3.1 Data Pre-processing
3.2 Entity Extraction Model
3.2 Within-document Entity Coreference Resolution Model
3.3 Experiments & Results

4. Conclusions & Perspectives

INTRODUCTION

• Fine-grained entity recognition: labeling entity mentions in context with one or more specific types organized in a hierarchy

 $\textit{Photographer} \in \textit{Artist} \in \textit{Person}$

- Two phases:
 - a preliminary phase where the data is provided along with a limited annotated set of samples (50 documents)
 - human feedback was provided for the preliminary submissions based on a user model of how analysts might interact with the systems

DATASET

DATASET

KBP 2020 RUFES dataset

- follows the three-level x.y.z hierarchy
- 200 fine-grained entity types

 \rightarrow course-level entity types (14), APP, FAC, LOC, etc.

 \rightarrow fine-grained entity types, Publication. Magazine.NewsMagazine, APP.CommunicationSoftware.SocialMedia, etc.

- 100,000 development source documents
- 50 annotated documents
- 100,000 the evaluation source documents

ULTRA FINE-GRAINED ENTITIES METHODS

We separated RUFES in two sub-tasks:

- Entity extraction: the detection and the classification of fine-grained entity types including the named, nominal, and pronominal mentions for each mention (labeled as NAM, NOM, and PRO, respectively);
- Within-document entity coreference resolution: the detection of the referential mentions in a document that point to the same entity.

The provided data was organized into two formats:

- ./rsd/: "raw source data" (rsd) plain text form of the new article
- ./ltf/: "logical text format" (ltf) derived from the rsd version, fully segmented and tokenized version of the corresponding rsd

TOKEN FIRST_LEVEL SECOND_LEVEL Georgetow B-ORG B-EducationalInstitution University I-ORG I-EducationalInstitution officials B-PER B-Professional on 0 0 Thursday 0 0 announced 0 0 that 0 0 uditional 0 0 additional 0 0 on 0 0 campus 0 0 on 0 0 student 0 0 on 0 0	B-College I-College 0 0 B-College 0 B-College 0 0 0 0 0 0 0 0 0 0 0 0 0	PORTIN_LEVEL B=NAM I=NAM 0 0 0 0 0 8=NOM 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
--	--	---

Figure 1: Data formatting example for the KBP 2020 RUFES dataset.

ULTRA FINE-GRAINED ENTITY EXTRACTION MODEL

Figure 2: BERT-based model and the additional Transformer layers proposed by *Boros, Hamdi et al., 2020; Boros, Pontes et al., 2020.*

ULTRA FINE-GRAINED ENTITY EXTRACTION MODEL

- Pre-trained and Fine-tuned language model
- **BERT** is a bidirectional stack of Transformer encoders
 - Masked Language Model
 - Next Sentence Prediction
- n×Transformer:
 - stack of identical layers: multi-head self-attention mechanism + position-wise fully connected feed-forward network
- multitask (coarse + fine)
- bert-large-cased + 2 \times Transformer + CRF

[Vaswani et al., 2017].

 $\begin{array}{l} \textbf{multitask learning} \leftarrow \textbf{this method has a label independence} \\ \textbf{assumption} \leftarrow \textbf{not valid for fine-grained entity extraction} \end{array}$

 \rightarrow following the three-level x.y.z hierarchy, offering more confidence to the last predicted entity subtype (.z)

GPE.ProvinceState \rightarrow check the ontology \rightarrow **ProvinceState** \notin **GPE** \rightarrow **LOC.ProvinceState**

ORG.CommercialOrganization.SocialMedia \rightarrow check the ontology \rightarrow **SocialMedia** \notin **CommercialOrganization** \rightarrow **APP.CommunicationSoftware.SocialMedia**

WITHIN-DOCUMENT ENTITY COREFERENCE RESOLUTION MODEL

NeuralCoref https://github.com/huggingface/neuralcoref

previously trained on OntoNotes 5.0 dataset

https://www.gabormelli.com/RKB/OntoNotes_Corpus

- a rule-based mentions detection module (spaCy) to identify a set of potential coreference mentions;
- a feed-forward neural-network which computes a coreference score for each pair of potential mentions

· applied in a within-document context

EXPERIMENT & RESULTS

Preliminary Phase

- 1-first-rufes submission bert-large-cased + 2 × Transformer + CRF without coreference
- + **2-first-rufes** submission $bert-large-cased + 2 \times Transformer + CRF$

After Feedback Phase

 1-feedback-rufes & 2-feedback-rufes submissions = 2-first-rufes + Rule-based Feedback Inclusion

 \rightarrow the first 40 errors detected in 10 random documents were reported

- 46% wrong type (mention-level entity types that do not exactly match the gold mention-level entity types)
- 12% missing mentions
- 11% extraneous mentions (a mention span does not exactly match or overlap with any gold mention span)
- 11% wrong entity coreference, either missing, incorrect or spurious
- 5% wrong extents (a mention span and gold mention span overlap but have different extents)

\rightarrow wrong type errors

- related to entities that had one of the ontology terms included in the entity
- "Norovirus" was recognized as GPE (geopolitical entity) instead of Pathogen.Virus, "virus" ∈ "Norovirus" & "virus" ∈ Pathogen.Virus
- ∀ entities that included a fine-grained ontology type (level .z from x.y.z) i.e. "Airport", "Hospital", "Highway", a rule was created to change the predictions into the correct types

THE SCORING RESULTS (F-SCORE) FOR RUFES 2020 EVALUATION FOR ALL OUR SUBMISSIONS

Submission	strong men- tion match	strong typed mention	mention ceaf	typed mention	entity ceaf	fine grain typing
		match		ceaf		
1-first-rufes	0.868	0.745	0.552	0.503	0.551	0.3188
2-first-rufes	0.868	0.745	0.578	0.503	0.567	0.3188
1-feedback-rufes	0.868	0.745	0.578	0.504	0.567	0.3204
2-feedback-rufes	0.868	0.745	0.578	0.504	0.567	0.3239
Median	0.805	-	-	-	0.578	0.2313
Maximum	0.868	-	-	-	0.689	0.4162

Table 1: Median and Maximum scores are computed on the best-performing

 submission from each participant, as shared by RUFES organizers.

CONCLUSIONS

- The **BERT**+*n*×**Transformer** has great potential for identifying ultra fine-grained entity types
- **BERT-alone** in comparison with BERT+n×**Transformer** creates **more spurious cases** *Boros, Hamdi et al., 2020*
- *n*×Transformer > 2 could lead to overfitting
- This type of model appears to be adapted for fine-grained entity extraction but we propose to refine the model in order to be able to take into consideration the inter-dependencies between entity types
- Improving the **entity coreference model** (re-training, etc.)
- \cdot Further analysis remains to be done

THANK YOU FOR YOUR ATTENTION!

EMANUELA BOROS: EMANUELA.BOROS@UNIV-LR.FR

This work has been supported by the European Union's Horizon 2020 research and innovation program

UNDER GRANTS 770299 (NEWSEYE) AND 825153 (EMBEDDIA).