
IBM Research AI Systems for TAC2020 KBP: RUFES Track

Parul Awasthy and Ken Barker and Jian Ni and Taesun Moon and Radu Florian
IBM Research AI

Yorktown Heights, NY 10598
{awasthyp, kjbarker, nij, tsmoon, raduf}@us.ibm.com

Abstract

Fine-grained entity typing extracts entity men-
tions from text and classifies them into types
drawn from a relatively large and detailed
type system. The TAC 2020 KBP RUFES
task (Recognizing Ultra Fine-grained Enti-
ties) aims to drive research on techniques for
fine-grained entity typing with limited man-
ually annotated training data. We explore
three approaches with varying dependence on
supplied annotations: a baseline supervised
learning system trained only on the available
data, a weakly supervised system that adapts
data from a different type system and cor-
pus genre, and a synthetic data augmentation
system that uses supplied annotations to gen-
erate similar data automatically. All three
systems show above-median performance on
the fine-grained typing metric, with the fully-
supervised system performing best overall.1

1 Introduction

Fine-grained entity typing has been found useful
for many NLP applications such as Question An-
swering, Natural Language Understanding, Event
Extraction, and Knowledge Graph Construction
(Aliod et al., 2006; Lewis et al., 2019; Wang et al.,
2020; Nguyen and Nguyen, 2019). This task is
more challenging than traditional coarse-grained
entity typing, in which mentions of entities in text
are to be labeled with one of a small number of
unambiguous types, such as Person, Organization,
or Location. It is also less amenable to the usual su-
pervised learning approaches: having a large num-
ber of fine-grained classes requires considerably
more training data, and mentions are often more
ambiguous and contextual with respect to those
types. Existing benchmarks (Ling and Weld, 2012)
have little gold annotated data, and rely on silver

1Distribution Statement “A” (Approved for Public Release,
Distribution Unlimited)

Figure 1: Example of text with RUFES fine-grained
labels.

annotations. These benchmarks usually also focus
on named entities only.

1.1 RUFES Task

The TAC 2020 KBP: Recognizing Ultra Fine-
grained Entities (RUFES) track goes beyond pre-
vious benchmarks in breadth and depth, chal-
lenging participants to explore novel approaches
for extracting and classifying entities, given a
large type system and limited training data. The
shared task defines a shallow (three-level) hi-
erarchical taxonomy of 265 fine-grained entity
types that are appropriate for information extrac-
tion from news text. There are fourteen coarse-
grained, level 1 types (such as ORG, PER, and
Pathogen) with 251 fine-grained subtypes (such as
ORG.EducationalInstitution, PER.Artist.Musician,
and Pathogen.Virus.Coronavirus). The task ex-
tends the target mentions to named, nominal and
pronominal mentions (NAM, NOM, and PRO).
Moreover, it requires within-document coreference
of entity mentions. Figure 1 shows an example
with RUFES annotations.

The task is made even more challenging
(and representative of real-world applications) by
having a type system that mixes entities and
role types without distinction and providing lit-
tle information on their semantics. For exam-
ple, “Brookfield High School” may be of type
ORG.EducationalInstitution.SecondarySchool or
of type FAC.Building.School (or both). A mention
of “corn” may be of type ConsumerGoods.Food,
but only if it is intended to be bought and eaten by



a consumer, not if it is bought by a bakery to make
corn bread.

The RUFES evaluation has two phases. In the
first phase (Evaluation Window 1), participants sub-
mit entity extractions over a large (100,000 docu-
ment) development corpus. The RUFES organizers
return feedback on ten documents, including error
logs and gold annotations for the first 40 system er-
rors. Participants use the feedback to improve their
systems for the second evaluation phase, for which
they submit new system output on the development
corpus. The phase-2 output is scored to produce
the official task results.

2 Data

We use data from different sources in develop-
ing our systems for the RUFES task, including
annotated and unannotated data distributed by
the RUFES organizers, in-house data from other
projects, and publicly available structured and un-
structured data.

RUFES organizers shared 50 sample documents
with gold-standard annotations as well as a large,
unannotated development corpus of 100,000 docu-
ments of the same genre. All documents are Wash-
ington Post news articles. In this paper we refer to
these datasets as “the 50 sample documents” and
“the 100,000-document development corpus”.

From the feedback gold annotations returned af-
ter the first evaluation phase, we produced a small,
gold-standard dataset to be used as a held-out test
set in our experiments, allowing us to use the full
50 sample documents for training and tuning. In
this paper we refer to this extra, held-out set as
“the 10 feedback documents”. We note that these
documents are not complete documents, since the
gold annotations in the feedback stop after the first
40 errors. As such, the documents may not be
representative of the distribution of the complete
documents in the evaluation corpus.

2.1 Data Transfer
One approach for working in a domain with lit-
tle training data is to adapt existing datasets from
similar domains.

2.1.1 KLUE Data
Our in-house KLUE dataset (Florian et al., 2004)
uses an entity type system similar enough to the
RUFES coarse-grained types that KLUE-annotated
data can be used without adaptation. Twelve of the
KLUE entity types are direct matches with RUFES

coarse-grained types. We remove all mentions from
the KLUE data that do not correspond to RUFES
types. For the two RUFES coarse types not in
the KLUE type system (Document, Pathogen), we
extend the KLUE dataset with examples generated
from the DBpedia Abstract corpus (section 2.1.2).

The KLUE dataset cannot be used for fine-
grained entity typing, since its type system con-
tains only coarse types. But we can use this data
for training a coreference resolution model (section
4) as well as for a coarse-grained entity detection
and classification model that can be cascaded with
a fine-grained typing model (section 3.2.1).

2.1.2 The DBpedia Abstract Corpus
The DBpedia Abstract corpus (DBPA) consists
of Wikipedia abstracts (the introductory section
of Wikipedia articles) annotated with DBpedia re-
sources. The hyperlinks in Wikipedia articles are
automatically converted to DBpedia URIs, giving
a large, broad-domain corpus in seven languages
annotated with entity links. The English DBpedia
Abstract corpus contains 4,415,993 abstracts with
39,650,948 linked entities.

Since DBpedia resources cover similar seman-
tic territory to the fine-grained RUFES types, our
hypothesis is that it should be possible to adapt
a corpus with DBpedia annotations for training a
model to detect RUFES types. The most significant
challenge in adapting the corpus is how to map the
roughly three million unique DBpedia resources
linked in the corpus to RUFES types.

Rather than try to map the huge DBpedia vocabu-
lary to RUFES types, we concentrate on populating
the RUFES type system with instances, and map-
ping those instances automatically to DBpedia re-
sources. We devise four procedures for populating
RUFES types with instances.

1. Map the RUFES types to DBpedia ontology
classes. The majority of DBpedia resources
(more than 90%) are classified into a shal-
low, top-level ontology of 685 classes (DBO).
Many of the classes are mappable to RUFES
types. DBpedia resources that belong to DB-
pedia ontology classes mappable to RUFES
types are candidate instances of those types.

2. Mine Wikipedia Categories. Wikipedia Cate-
gories noisily group related Wikipedia pages.
Many RUFES types can be mapped to
Wikipedia Categories, and the pages within
those categories used as instances of the



type. The resulting Wikipedia page names
can be converted automatically to DBpedia
resources.

3. Generate labels from RUFES type names and
examples, and expand them through Word-
Net. Words and phrases associated the RUFES
types (including type names naı̈vely converted
to phrases) are expanded to synonyms and hy-
ponyms with WordNet (Miller, 1995). These
names are mapped to DBpedia resources by
string matching against DBpedia labels.

4. Populate RUFES types with instances from
high-precision lists. We generate web queries
from type names (and their synonyms and
hyponyms) to find lists of instances. In many
cases, Wikipedia includes such lists, which
can be scraped for Wikipedia titles, which
can be converted automatically to DBpedia
resources.

Using these techniques we generate a map
with 1,981,985 unique, canonicalized DBpe-
dia resources mapped to 261 RUFES types.
(We found no mappings for FAC.GardenPark,
LOC.GeographicPoint, ORG.Court.LocalCourt, or
PER.CivilServant.PolicyAdvisor). The type with
the most instances is PER.Professional.Athlete
(430,062). The median number of instances per
type is 251.

We use the map to replace entity links the DB-
pedia Abstract corpus with RUFES types, giving a
corpus with 12,437,702 RUFES type annotations.
This corpus can be used directly for training a fine-
grained entity typing model.

3 Fine-Grained Entity Typing

We explore different approaches for extracting and
typing fine-grained entities with each of our three
submission systems. Building a supervised system
usually works well for entity typing when there
is sufficient training data. Since the goal of the
RUFES task is to extract entities given limited train-
ing data, we also explore a weakly supervised ap-
proach that transfers data from another domain, and
a synthetic approach that automatically augments
the small amount of supplied data. In this section
we describe each of our three systems in detail.

3.1 Supervised System
Following the work of (Devlin et al., 2019), we
train a supervised token classification model us-
ing Hugging Face transformers (Wolf et al., 2019).

We randomly divide the 50 sample documents
into 39 train and 11 dev documents and train a
model on this data. The architecture for this model
(with an example) is illustrated in figure 2. An
input sentence is tokenized and passed through a
transformer-based model to generate a contextu-
alized vector representation for each word token.
The vectors from the final transformer layer are
then passed to a linear classifier layer mapped to
the RUFES label space to get the RUFES label
predictions for each token.

3.2 Weakly Supervised System

Our weakly supervised system is a two-step cas-
caded system similar to (Awasthy et al., 2020). The
first step is a coarse-grained entity detection and
typing model. The second is a fine-grained model
trained on the adapted DBpedia Abstract corpus
(section 2.1).

3.2.1 Coarse-Grained Entity Extractor
The DBpedia Abstract corpus has entity annota-
tions for only those text spans with hyperlinks in
the original Wikipedia articles. Many spans that
could reasonably be annotated are not. This limits
the usefulness of the corpus for training span detec-
tion. The weakly supervised model, therefore, is
expected to predict fine-grained types only, given
mention spans and top-level (coarse-grained) types
detected by a coarse-grained model. We train the
coarse-grained model on the extended KLUE data
(2.1.1), using the same transformer architecture as
our fully supervised system (section 3.1).

3.2.2 Fine-Grained Entity Classifier
For predicting the fine-grained RUFES types, we
train a weakly supervised model using the adapted
DBpedia Abstract corpus (section 2.1) as training
data. The model is based on the same transformer
architecture for token classification as our super-
vised system (section 3.1), with three significant
extensions. First, mentions spans are provided with
the input sentence by surrounding mention span
tokens with special boundary tokens. Second, the
top-level RUFES type is provided as a feature by
using a different special span start token for each
of the types. Finally, we add dictionary features to
the output vector for each token within a span to
be used as input to the linear classifier layer.

The dictionary features are generated from the
same data used to produce the DBpedia-to-RUFES
map (section 2.1). Each phrase that was used to



Figure 2: Architecture of a transformer-based token classification model

find a DBpedia resource for the map is normalized
and associated with a vector. Each position in the
vector corresponds to a RUFES type, with the value
equal to the frequency with which the normalized
phrase maps to the type. For example, the phrases
“Saint Sixtus” and “saint-sixtus” may have been
discovered through different instance populating
approaches to map to PER.ReligiousLeader,
ORG.ReligiousOrganization, and Consumer-
Goods.Food, one or more times each. The
dictionary will contain an entry for “saintsixtus”
with a vector containing frequencies for the three
fine types, discounted frequencies for their parent
types, and zeros elsewhere. The vectors are then
normalized to sum to one. When a token span that
normalizes to “saintsixtus” is seen in the input,
the transformer output vector for each token in
the span is extended with the dictionary vector.
This vector provides additional signal to the linear
classifier even for phrases without examples in the
training corpus.

Once the weakly supervised model is trained, we
further tune the system in three ways:

1. Fine-tune the model using the 50 provided
sample documents as further training data.

2. Apply a confidence threshold to the model
output.

3. Adjust the types and entity identifier for
pronominal spans (section 4.2).

We compare performance of a single, global con-
fidence threshold (constant threshold) and multiple
thresholds (multi-threshold) that are tuned sepa-
rately for each top-level type.

Experiments showing the contribution of the dif-
ferent kinds of tuning appear in section 5.1.2.

3.3 Synthetic Data Augmentation

Synthetic data augmentation has proven effective
for tasks such as Question Answering (Alberti et al.,
2019) and Event Extraction (Hong et al., 2018;
Tong et al., 2020). A common approach to gener-
ating synthetic data is to train a model on existing
data and use it to label more data for further training
Zhu (2008); Kingma et al. (2014). Unfortunately,
when there is little training data available, this ap-
proach heavily biases the model to the training data.
To mitigate the bias, we use a two-step approach.

We generate synthetic data from the unannotated
development corpus to augment the available data
using a cascaded approach as in Section 3.2: extract
mention spans and tentative mention labels using a
coarse-grained model and then specialize the men-
tion type using a secondary model. The secondary
model we train is not a standard parametric model,
but a k-Nearest Neighbor Graph (k-NNG) model
(Fritzler et al., 2019). We store the representations
of gold mentions in a k-NNG as a training step,
and at decode time retrieve the top k matching men-
tions from the graph. We then use a weighted vote
to pick the best possible fine-grained label from
the retrieved labels and the tentative mention label
produced by the first-level model. Once we have
annotations on 100 randomly selected documents
we train a full entity detection model on these 100
documents. We now provide a detailed description
of each stage.



k-NNG: Similar to the idea of few-shot learn-
ing proposed in (Fritzler et al., 2019) we create a
k-NNG with gold annotations of mentions. Unlike
Fritzler et al., who compute and save a represen-
tation of each token in a mention, we compute
a representation for each mention to store in the
graph. For each mention vector j, from sentence i,
represented by n token vectors {e1, e2, ..., en}, the
representation mij is computed as:

mij = concat(e1; en; seni) (1)

where seni is the sentence vector for sentence i.
This is obtained by using the <CLS> token from
the transformer. Using this sentence representation
along with the mention representation provides an-
other lens to look at the whole sentence to deter-
mine the fine-grained type.

Using the same train-dev split as in Section 3.1,
we insert each of the mention representations into
a k-Nearest Neighbor graph.

Mention Extraction: Given an unannotated
document sampled from the 100,000 document
development corpus, we again use a token clas-
sification model (section 3.1) to extract mention
spans and a candidate type label l1.

Fine-Grained Typing using k-NNG: For each
of the mentions extracted, we compute the mention
representation using equation (1). We query the k-
NNG with this mention representation and retrieve
the k nearest mentions and labels associated with
them l2 =

{
l21, l

2
2...l

2
k

}
. We then select the fine-

grained type using a threshold t to vote between l1

and all l2 types.

l̂ =

{
argmax(count(l)) max(count(l) ∀l ∈ l2) ≥ t

l1 otherwise
(2)

Synthetic Data Entity Extraction: We now
use these documents to train a fine-grained entity
extraction model, following the same method de-
scribed in Section 3.1.

4 Coreference Resolution

We run a coreference model after entity extraction
for all of our systems. This means the coreference
model runs last for supervised and synthetic data
models, and it runs after coarse-grained mention
extraction for the weakly supervised model.

4.1 Coreference Model

Our coreference model is an implementation of the
Bell-Tree mention synchronous coreference algo-
rithm described in (Luo et al., 2004). The model is
trained on our in-house KLUE data, as we didn’t
have data annotated with the RUFES type system.
However, because the system is a statistical coref-
erence model and the mention types are simply
features that are provided to it, the model is able to
perform coreference on new types.

4.2 Coreference Post-processing

We consider two modifications to the output of the
base coreference model.

First, the coreference model by default generates
unique, opaque identifiers for entity clusters. But it
also generates a canonical text string, which is the
most specific phrase appropriate to the mentions
within the entity cluster. In our systems’ outputs,
we replace the opaque identifier with the canonical
text. This may result in merged entity clusters for
distinct clusters having the same canonical text
identifier, which is similar to what appears in the
gold data seen in the 50 sample documents.

Second, we have observed that the base corefer-
ence model is weaker with pronominal referring ex-
pressions. In our systems’ outputs, for mentions of
type PRO whose mention text is a known personal
pronoun, we replace the entity identifier (canonical
text) and the predicted types list with the identifier
and types list of the most recent mention whose
top-level type is PER. For non-personal-pronoun
PRO mentions, we use the identifier and types list
of the most recent non-PER mention. This pronoun
post-processing significantly improves all three sys-
tems’ performance on the 10 feedback documents
(see section 5).

5 Experiments

5.1 System Experiments

5.1.1 Supervised System
We use Hugging Face transformers toolkit (Wolf
et al., 2019) to train our supervised model. We
train for 30 epochs with learning rate of 3e-5. We
train five models with different random seeds and
select the model with best performance on the de-
velopment set. We use xlm-roberta-large as the
pre-trained language model.

For the phase 1 submission we use 39 sample
documents for training and 11 for development.



For the phase 2 submission we use all 50 sample
documents for training and use the 10 feedback
documents for testing.

Pronoun post-processing (section 4.2 results in a
4-5 point improvement in F1 score for all test sets.

5.1.2 Weakly Supervised System
The initial model for the weakly supervised system
uses Hugging Face transformers for token classi-
fication, with bert-base-cased for the pre-trained
language model. Training for three epochs with
learning rate 5e-5 gives an F1 score of 0.935 on a
held-out test set. The final configuration is based
on ablation experiments for different configuration
parameters or components. We experiment with:

1. Training data size (maximum number of ex-
amples per type)

2. Confidence threshold type (global vs. per-
type)

3. Confidence threshold pruning (reject or back-
off)

4. Pronoun post-processing
5. Model fine-tuning on the 50 sample docu-

ments

Increasing the number of training examples per
class uniformly improves model performance on
the 50 sample documents by a small margin. For
example, the F1 score (as calculated by the RUFES
score submission script) is consistently roughly 0.3
percentage points higher for a model trained on
(maximum) 10,000 examples per class vs. 5,000
examples per class, independent of the other con-
figuration elements. Smaller training sizes are con-
sistently worse.

The system can be configured either with a con-
stant confidence threshold or individual thresholds
for each top-level RUFES type. For both configu-
rations, we tune the thresholds using the 50 sample
documents and test on the 10 feedback documents.
Annotations below threshold can either be rejected
or “backed off” to the top-level type. In our experi-
ments, backing off gives higher F1 scores.

Table 1 shows the effect of configuration ele-
ments in isolation and combination on Precision,
Recall, and F1 score as calculated by the RUFES
scorer on the 10 feedback documents.

The results show that tuned, per-type thresholds
outperform a single, global (constant) tuned thresh-
old. Pronoun post-processing helps in isolation
and in combination with multi-thresholding. Fine-
tuning the model using the 50 sample documents

configuration P R F1
10k base model 0.3100 0.3525 0.3171
+ct 0.3450 0.3442 0.3310
+mt 0.3880 0.3337 0.3428
+pp 0.3502 0.3891 0.3535
+mt +pp 0.4308 0.3735 0.3825
+sft 0.3802 0.3773 0.3700
+ct +sft 0.3857 0.3754 0.3715
+mt +sft 0.3866 0.3754 0.3720
+pp +sft 0.4171 0.4211 0.4107
+mt +pp +sft 0.4253 0.4195 0.4144

Table 1: Precision, Recall, F1 score on the 10 feedback
documents for the weakly supervised model trained on
a maximum of 10,000 examples per class. +ct: con-
stant threshold on all L1 types; +mt: multi-threshold
tuned per L1 type; +pp: pronoun post-processing; +sft:
additional model fine tuning on the sample 50 docu-
ments.

gives significant improvements across all other con-
figuration combinations.

Based on these experiments, we set the final
configuration of this system to the 10,000 example
model, fine-tuned on the 50 sample documents,
with tuned multi-thresholding and pronoun post-
processing.

5.1.3 Synthetic Data System

We randomly sample 100 documents from the de-
velopment corpus for phase 1 and 1000 documents
for phase 2. We use the phase 1 supervised model
to annotate the first-step mentions. We use the 39
training documents to build the k-NNG. Based on
experiments with different threshold values, we set
t at 5. Experiments with different distance met-
rics for k-NNG show that a Cosine distance with
k = 10 is effective. The k-NNG mention repre-
sentations are computed using the final layer of the
xlm-roberta-large model. We have experimented
using fine-tuned models to compute the mention
representations but the out-of-the-box pre-trained
xlm-roberta-large with no fine-tuning performs the
best.

Once we have silver annotations on this data, we
train an entity detection model using these synthetic
documents as the training set, the 39 sample docu-
ments as the development set and the remaining 11
documents as the test set. We use a setup similar
to the supervised system (section 5.1.1) and train 5
seeds. We select the model with best performance
on the test set.



System Fine-Grain F1
Supervised 0.4453
Weak Super. 0.4144
Synthetic 0.4189

Table 2: The final fine-grained F1 scores for our three
systems on the 10 feedback documents.

5.2 Cross-System Comparisons
Each system uses the development corpus and the
50 sample documents in some way for training
and tuning. Table 2 shows results comparing the
three systems on the 10 feedback documents that
we saved as a held-out test set. The F1 scores
for the systems correlate to the scores on the final
evaluation data, as reported by RUFES organizers
(see section 6).

5.3 Ensembling
Given the three very different approaches of our
systems, an obvious next step is exploring ways to
combine them in an ensemble.

We explore naı̈ve ensembling of our synthetic
data system and our weakly supervised system as
follows:

1. Measure the performance of each system on
different kinds of mentions.

2. Where both systems agree there is a mention,
use the types predicted by the system with
better performance for the kind of mention.

3. If the systems disagree on the kind of mention,
and the disagreement means there is a conflict
on which system is better for this mention, use
the types predicted by system 1 as default.

The kinds of mention we consider are mention
type (NAM, NOM, or PRO), top-level RUFES type,
and a combination of the two. For example, if we
are considering mention type, then for mentions of
type NOM, the ensemble prefers types predicted by
the system whose performance on NOM mentions
in the 50 sample documents was better, and so on.
If we are considering top-level RUFES type, then
for mentions of type PER, the ensemble prefers
types predicted by the system better at PER men-
tions, and so on.

We experiment with both systems as “system 1”
(the default system for conflicts).

Unfortunately, all experiments show insignifi-
cant improvement over individual system perfor-
mance. We defer more sophisticated ensembling
approaches to future work.

System StrongMention CEAF Fine-Grain
Supervised 0.838 0.594 0.4173
Weak Super. 0.789 0.570 0.3521
Synthetic 0.825 0.584 0.3936
Median 0.812 0.577 0.3226
Max 0.867 0.687 0.4173

Table 3: Phase 2 scores for our three systems on the
three metrics. Max and Median scores are calculated
on the best-performing submission from each partici-
pant, as shared by RUFES organizers.

6 Final Results and Discussion

The submitted outputs of systems are evaluated by
RUFES organizers using three metrics:

• Strong Mention Match: F1 score that mea-
sures the performance of the mention detec-
tion system on capturing the correct mention
boundaries, ignoring the types of the men-
tions.

• Mention CEAF: “Constrained Entity-
Alignment F-measure” metric proposed by
(Luo, 2005) to score Coreference output.

• Fine-Grain F1: a new metric proposed for
this task to measure the fine-grained men-
tion output. This combined metric evaluates
mention span detection, coreference, and pre-
dicted fine-grained types of mentions.

The results of the RUFES phase 2 evaluation
for each of our three systems on the 104 test doc-
uments, including the feedback documents, are
shown in Table 3. All three of our systems per-
form significantly better than the median on the
fine-grained typing score. Our supervised system
scores more than 18 F1 points above median; our
three systems score on average 15 F1 points above
median. Two of our systems perform slightly above
median on the mention detection (StrongMention)
and coreference (CEAF) metrics, with our third
model scoring slightly below median.

We note that the performance of our three sys-
tems is directly related to the extent to which the
system relies on the gold sample annotations. The
supervised system uses only the manually anno-
tated 50 sample documents for training. The syn-
thetic system generates new training data from
unannotated documents, optimizing for similarity
to the 50 sample documents. The base version of
the weakly supervised system does not use the sam-
ple gold annotations at all, and trains on a noisily
adapted corpus of a different genre. The competi-
tive performance of the final version, however, is



due in part to fine tuning the base model on the 50
sample documents. This is a somewhat disappoint-
ing result. One of the explicit goals of the RUFES
task is to explore techniques beyond simple su-
pervision using manual gold annotations, which
is expected to work poorly for such a large, com-
plex type system with limited training data. Yet
even with a very small amount of gold data, the
simple, supervised system performs best. Clearly
the unseen test data is a close match to the sample
data.

We argue that perhaps the superiority of the su-
pervised system over our other systems is not an
indictment of the low-data methods we propose.
Rather, it emphasizes the difficult challenges in cre-
ating evaluation frameworks that focus precisely
on the behavior we target in tasks such as these.

7 Conclusion

We have described three approaches to the fine-
grained entity extraction task that vary in their de-
pendence on within-domain, manually annotated
training data. A simple, fully-supervised model is
trained on the supplied annotations only. A syn-
thetic data approach automatically generates new
data from an unlabeled corpus, intended to match
the properties of supplied annotations. A weakly
supervised approach adapts annotations from a dif-
ferent type system on an unrelated corpus for train-
ing, based on detailed analysis of the target types.
In our own experiments and in the official RUFES
task results, the performance of the systems is cor-
related to their dependence on the manually anno-
tated data, with the fully-supervised system per-
forming best.

8 Acknowledgements

This research was developed with funding from
the Defense Advanced Research Projects Agency
(DARPA) under Contract No. FA8750-19-C-0206.
The views, opinions and/or findings expressed are
those of the author and should not be interpreted
as representing the official views or policies of
the Defense Advanced Research Projects Agency
(DARPA)

References
Chris Alberti, Daniel Andor, Emily Pitler, Jacob De-

vlin, and Michael Collins. 2019. Synthetic QA cor-
pora generation with roundtrip consistency. In Pro-
ceedings of the 57th Annual Meeting of the Asso-

ciation for Computational Linguistics, pages 6168–
6173, Florence, Italy. Association for Computa-
tional Linguistics.

Diego Mollá Aliod, M. Zaanen, and Daniel Smith.
2006. Named entity recognition for question an-
swering. In ALTA.

Parul Awasthy, Taesun Moon, Jian Ni, and Radu
Florian. 2020. Cascaded models for better fine-
grained named entity recognition. arXiv preprint
arXiv:2009.07317.

DBO. The dbpedia ontology. https:
//wiki.dbpedia.org/services-resources/
ontology. Accessed: 02/12/2021.

DBPA. The dbpedia abstract corpus. http:
//downloads.dbpedia.org/2015-04/ext/
nlp/abstracts. Accessed: 02/12/2021.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2019. BERT: Pre-training of
deep bidirectional transformers for language under-
standing. In NAACL-HLT.

Radu Florian, Hany Hassan, Abraham Ittycheriah,
Hongyan Jing, Nanda Kambhatla, Xiaoqiang Luo,
H Nicolov, and Salim Roukos. 2004. A statistical
model for multilingual entity detection and tracking.
Technical report, IBM Thomas J. Watson Research
Center, Yorktown Heights, NY.

Alexander Fritzler, Varvara Logacheva, and Maksim
Kretov. 2019. Few-shot classification in named en-
tity recognition task. In Proceedings of the 34th
ACM/SIGAPP Symposium on Applied Computing,
pages 993–1000.

Yu Hong, Wenxuan Zhou, Jingli Zhang, Guodong
Zhou, and Qiaoming Zhu. 2018. Self-regulation:
Employing a generative adversarial network to im-
prove event detection. In Proceedings of the 56th
Annual Meeting of the Association for Computa-
tional Linguistics (Volume 1: Long Papers), pages
515–526.

Diederik P Kingma, Danilo J Rezende, Shakir Mo-
hamed, and Max Welling. 2014. Semi-supervised
learning with deep generative models. arXiv
preprint arXiv:1406.5298.

Patrick Lewis, Ludovic Denoyer, and Sebastian Riedel.
2019. Unsupervised question answering by cloze
translation. arXiv preprint arXiv:1906.04980.

Xiao Ling and Daniel S. Weld. 2012. Fine-grained
entity recognition. In Proceedings of the Twenty-
Sixth AAAI Conference on Artificial Intelligence,
AAAI’12, page 94–100. AAAI Press.

Xiaoqiang Luo. 2005. On coreference resolution per-
formance metrics. In Proceedings of Human Lan-
guage Technology Conference and Conference on
Empirical Methods in Natural Language Processing,
pages 25–32, Vancouver, British Columbia, Canada.
Association for Computational Linguistics.

https://doi.org/10.18653/v1/P19-1620
https://doi.org/10.18653/v1/P19-1620
https://wiki.dbpedia.org/services-resources/ontology
https://wiki.dbpedia.org/services-resources/ontology
https://wiki.dbpedia.org/services-resources/ontology
http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts
http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts
http://downloads.dbpedia.org/2015-04/ext/nlp/abstracts
https://www.aclweb.org/anthology/H05-1004
https://www.aclweb.org/anthology/H05-1004


Xiaoqiang Luo, Abe Ittycheriah, Hongyan Jing, Nanda
Kambhatla, and Salim Roukos. 2004. A mention-
synchronous coreference resolution algorithm based
on the bell tree. In Proceedings of the 42nd An-
nual Meeting of the Association for Computational
Linguistics (ACL-04), pages 135–142, Barcelona,
Spain.

G. Miller. 1995. Wordnet: a lexical database for en-
glish. Commun. ACM, 38:39–41.

Trung Minh Nguyen and Thien Huu Nguyen. 2019.
One for all: Neural joint modeling of entities and
events. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 33, pages 6851–6858.

Meihan Tong, Bin Xu, Shuai Wang, Yixin Cao, Lei
Hou, Juanzi Li, and Jun Xie. 2020. Improving event
detection via open-domain trigger knowledge. In
Proceedings of the 58th Annual Meeting of the Asso-
ciation for Computational Linguistics, pages 5887–
5897, Online. Association for Computational Lin-
guistics.

Xuan Wang, Xiangchen Song, Yingjun Guan,
Bangzheng Li, and Jiawei Han. 2020. Com-
prehensive named entity recognition on cord-19
with distant or weak supervision. arXiv preprint
arXiv:2003.12218.

Thomas Wolf, Lysandre Debut, Victor Sanh, Julien
Chaumond, Clement Delangue, Anthony Moi, Pier-
ric Cistac, Tim Rault, Rémi Louf, Morgan Funtow-
icz, and Jamie Brew. 2019. Huggingface’s trans-
formers: State-of-the-art natural language process-
ing. ArXiv, abs/1910.03771.

Xiaojin Zhu. 2008. Semi-supervised learning litera-
ture survey. Comput Sci, University of Wisconsin-
Madison, 2.

https://doi.org/10.3115/1218955.1218973
https://doi.org/10.3115/1218955.1218973
https://doi.org/10.3115/1218955.1218973
https://doi.org/10.18653/v1/2020.acl-main.522
https://doi.org/10.18653/v1/2020.acl-main.522
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771
https://arxiv.org/abs/1910.03771

