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Abstract. Our team (Yastil_R) made two submissions to the Epidemic Ques-

tion Answering track of TAC 2020. However, due to an overlooked error in 

the second submission, this paper only discusses Run_1. Nevertheless, our 

first submission tackles an important problem in the field of Information 

Retrieval. Specifically, we highlight that large-scale sentence retrieval is in-

herently difficult for pre-trained systems. As a result, this work aims to im-

prove the performance of these systems in such environments. To achieve 

this, we turn our attention to the cascade framework, which represents an 

established paradigm of applying pre-trained systems to large collections. 

Notably, the cascade framework consists of two stages. The first stage uti-

lizes non-neural systems to retrieve the top k sentences for a given query. A 

pre-trained system then ranks these sentences from most to least relevant. 

Due to the sequenced nature of retrieval and ranking, they can be consid-

ered as mutually exclusive events. Consequently, we argue that there is a 

strong correlation between the non-neural and pre-trained system's perfor-

mance. Hence, although counterintuitive, our work focused on improving 

the non-neural system's performance. We achieved this by assuming that re-

trieving passages instead of sentences would increase the likelihood of re-

trieving sentences with novel nuggets. This assumption was proven to be 

correct, as we were able to improve the pre-trained system's performance by 

18% on the preliminary dataset.  
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1 Introduction 

Pre-trained systems have garnered immense interest in recent years, primarily owing to 

their superior effectiveness compared to traditional retrieval systems, such as BM25 and 

Conv-KNRM [1]. Notably, this effectiveness has only been experienced on large-scale 

document retrieval challenges. However, the Epidemic Question Answering (EPIC-QA) 
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track of TAC 2020 was a sentence retrieval problem. In more detail, participants were 

provided with a set of 30 test queries and tasked with retrieving the top 1000 most rele-

vant sentences [2].  

Importantly, the ground truth file was created by associating each test query with a list 

of relevant atomic facts known as nuggets. For example, the query "Coronavirus origin" 

may have correlated to the following nugget: "Wuhan China". Sentences were then la-

belled as relevant to a specific test query only if they contained at least one nugget. To 

measure performance, the organizers defined a new metric and labelled it as Normalized 

Discounted Novelty Score (NDNS). In essence, the retrieval systems performance was 

largely determined by the number of unique nuggets that were present in the list of re-

trieved sentences.   

In this work, we argue that retrieving sentences negatively impacts the performance of 

pre-trained systems, as the amount of available context is vastly reduced. Consequently, 

our aim is to improve the performance of pre-trained systems in sentence retrieval. This is 

significant since highly accurate sentence retrieval has the potential to improve many 

Natural Language Processing tasks, including question answering, summarization and 

novelty detection [3]. Additionally, industry leaders like Google have started incorporat-

ing sentence retrieval into their products. For example, Google Search utilizes Featured 

Snippets to identify and highlight the relevant sentence or span of text that satisfies a us-

er's query [4].  

Indeed, pre-trained systems have surpassed human baselines in question answering by 

providing sentence-level answers [5]. Consequently, one may assume that this effective-

ness transfers to large-scale sentence retrieval, thus leaving little room for improvement. 

However, these two tasks are fundamentally different and therefore require different solu-

tions. Briefly, in question answering, the model is provided with a handful of sentences 

(in the form of a passage) and asked to identify the relevant sentence for a given question. 

Whereas in EPIC-QA, the model is provided with a collection of more than 14 million 

sentences and asked to identify the top 1000 most relevant sentences.  

The rest of this paper is organized as follows. Section 2 describes our proposed solu-

tion and the experiments that were used to analyze its effectiveness. Section 3 summarizes 

the results of our experiments, and finally, section 4 provides concluding remarks on our 

work. 

2 Methodology  

In large-scale retrieval, pre-trained systems do not examine the entire collection since this 

would result in excessive computational overheads. Instead, non-neural systems are used 

to retrieve the top k sentences for a given query. The pre-trained system then ranks these 

sentences in descending order of relevance. This type of staged retrieval is known as the 
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cascade framework and represents the most common way of applying pre-trained systems 

to large collections (see Figure 1) [6].  

 

 

 

 

Fig. 1. Traditional cascade framework with standard data pipeline 

Due to the sequenced nature of retrieval and ranking, one can argue that they are mutu-

ally exclusive events. Hence, we hypothesize that by improving the non-neural system's 

performance, one can subsequently improve the pre-trained system's performance. To test 

our hypothesis, we propose the data pipeline shown in Figure 2. As illustrated, the original 

sentence collection was concatenated to form a passage collection. These passages were 

indexed and retrieved by a selection of non-neural systems. The output of these systems 

was merged and subsequently split back into sentences before the ranking stage. Notably, 

the only difference between our data pipeline and that shown in Figure 1, is that the non-

neural systems retrieve passages instead of sentences. 

 

 

 

 

 

 

Fig. 2. Traditional cascade framework with our data pipeline 

It is important to recognize that our solution does not adapt the architecture of a pre-

trained system to sentence retrieval. Instead, we focused on improving the data pipeline 

within the cascade framework. This allowed us to provide a solution that can be applied to 

any pre-trained architecture.  

2.1 Hypothesis Testing  

Our solution assumes a strong correlation between the performance of pre-trained and 

non-neural systems in the cascade framework. To validate this hypothesis, we turn our 

attention to round 1 of the TREC-COVID challenge [7]. In more detail, we evaluate the 

pre-trained system's performance after ranking the output of different non-neural systems. 

Thus, our hypothesis is validated if peak performance is achieved when ranking the output 

of the highest performing non-neural system. 
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Further, we claimed that retrieving passages would improve the non-neural system's 

performance and subsequently improve the pre-trained system's performance. To under-

stand the reasons behind this performance gain, we compare the ranked outputs between 

the standard pipeline, shown in Figure 1, and our pipeline, shown in Figure 2. Specifical-

ly, we compare the number of unique nuggets and relevant sentences retrieved by both 

pipelines. 

It is worth emphasizing that NDNS is primarily determined by the number of unique 

nuggets in the results list. This means that the number of relevant retrieved sentences has 

little influence on performance. Consequently, to better understand the performance gain, 

we consider the metric counterpart of NDNS, which is Normalized Discounted Cumula-

tive Gain (NDCG). In essence, NDCG evaluates a retrieval system's performance by pe-

nalizing the score every time a non-relevant sentence appears higher up in the rank than a 

relevant sentence. 

2.2 Models 

This paper utilized various non-neural systems for retrieval. Specifically, our selection 

included BM25 [8], ColBERT [9], DeepCT [10] and docTTTTTquery [11]. These sys-

tems were chosen based on their high performance in popular retrieval challenges such as 

MS MARCO. To begin with, we turn our attention to Anserini BM25. In essence, BM25 

creates an inverted index that consists of term weights for each document in the collec-

tion. These weights indicate the topic of a particular document. For instance, in our paper, 

'pre-trained' and 'system' may receive the highest term weights. BM25 can then measure 

relevance by matching query terms to documents in which those terms have the highest 

weights.   

Each system in our selection, apart from BM25, was trained on the MS MARCO da-

taset. Although vastly different to EPIC-QA data, recent work suggests that MS MARCO 

represents an optimal training set for this challenge [12]. Notably, however, each system 

utilized a different training methodology that suited their functionality. Both ColBERT 

and DeepCT compute document representations offline using contextualized embeddings 

from the BERT architecture. However, DeepCT converts these document representations 

to term weights, while ColBERT stores them as a bag of words embedding. This means 

that DeepCT relies on BM25 to perform retrieval, whereas ColBERT relies on vector 

similarity between the query and document embeddings. 

On the other hand, docTTTTTquery uses Google's T5 transformer to expand docu-

ments in the collection. This expansion consists of generated questions that the document 

might be able to answer. BM25 is then used to index the expanded document collection 

and subsequently perform retrieval. Lastly, we turn our attention to the pre-trained BERT 

Large architecture. In more detail, BERT represents a general-purpose language model 

that has achieved state-of-the-art results in Information Retrieval. Hence, it formed the 

basis of our pre-trained ranking model. As described by the authors in [13], the input to 
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BERT was formed by concatenating the query and sentence into a sequence. BERT then 

computes the probability of the sentence being relevant to the query, i.e., relevance score. 

Sentences are then sorted in descending order of relevance. 

3 Results 

3.1 Preliminary Dataset 

In this section, we detail the experiments that were performed on the preliminary and 

TREC-COVID datasets. Firstly, we test the correlation between the performance of pre-

trained and non-neural systems in the cascade framework. The dataset used for this exper-

iment was sourced from round 1 of the TREC-COVID challenge. We selected TREC-

COVID since it was orders of magnitude smaller than the preliminary EPIC-QA dataset, 

hence vastly reduced computational costs. The collection consisted of approximately 50 

000 documents formed by concatenating the title and abstract fields of the metadata file. 

For this experiment, the chosen dataset did not matter since our hypothesis made a 

general assumption about pre-trained systems in the cascade framework. Figure 3 plots 

the non-neural system's performance on the x-axis. The corresponding y-value represents 

the pre-trained system's performance after ranking the non-neural system's output. Based 

on the observed trend, one can conclude that a strong correlation exists between the non-

neural and pre-trained system's performance.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Correlation between the performance of pre-trained and non-neural systems in the cascade 

framework 
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Secondly, we compare the performance of the standard pipeline to our pipeline (see 

Table 1). For this experiment, we utilized the preliminary EPIC-QA dataset, which con-

sisted of approximately 14 million sentences. Due to high computational overheads, our 

selection of non-neural systems was limited to BM25 and ColBERT. Nevertheless, the 

results of this experiment are valid since both the standard pipeline and our pipeline uti-

lized identical non-neural systems. 

Table 1.  NDNS-Exact and NDCG performance of BERT using the standard pipeline and our pipe-

line 

Data Pipeline  BERT Performance 

(NDNS-Exact) 

BERT Performance  

(NDCG) 

Standard Pipeline 0.1564 0.0832 

Our Pipeline 0.1855 0.1139 

 

Lastly, we analyze how the additional context of passages helped our pipeline outper-

form the standard pipeline, as evident in Table 1. To begin with, Figure 4 compares the 

nugget recall of both pipelines for each test query. Essentially, a nugget recall value of 0.7 

implies that 70% of all unique nuggets are present in the output. By observing the trend in 

Figure 5, we see a strong correlation between nugget recall and performance. In more 

detail, Figure 5 plots the difference in performance against the difference in nugget recall 

between our pipeline and the standard pipeline for each test query.  

Similarly, we also compare the relevant sentence recall of each pipeline, as shown in 

Figure 6. A sentence was considered relevant only if it contained at least one nugget. Fig-

ure 7 illustrates the correlation between the difference in NDCG performance and sen-

tence recall of our pipeline and the standard pipeline.  
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Fig. 4. Nugget recall 

 

 

 

Fig. 5. Performance vs nugget recall 
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Fig. 6. Sentence Recall 

 

Fig. 7. Performance vs. sentence recall 
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3.2 Primary Dataset 

After validating the effectiveness of our approach on the preliminary dataset, we applied it 

to Task A of the primary round. It is worth emphasizing that our experiments showed a 

strong correlation between the non-neural system's recall and the pre-trained system's 

performance. As a result, we utilized our entire selection of non-neural systems for the 

primary round, i.e., BM25, ColBERT, DeepCT and docTTTTTquery. It was assumed that 

recall (and performance) could be further increased by merging the output of multiple 

non-neural systems. The NDNS performance of BERT after ranking the output of these 

systems is summarized in Table 2. Importantly, these performances correspond to Run_1.  

Table 2.  NDNS performance of BERT on the primary dataset 

NDNS Value  

Partial 0.3613 

Relaxed 0.3624 

Exact 0.4101 

 

4 Conclusion  

This work aimed to improve the performance of pre-trained systems in sentence retrieval. 

Based on our experiments, we realized a strong correlation between the non-neural and 

pre-trained system's performance in the cascade framework. Hence, although counterintui-

tive, we achieved our aim by improving the non-neural system's performance. Specifical-

ly, we proposed that the non-neural system should retrieve passages instead of sentences. 

It was found that the additional context of passages improved the non-neural system's 

performance. Further analysis showed that the observed performance gain was highly 

correlated to an increase in recall.  
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