RAMFIS: Representations of

 vectors and Abstract Meanings for Information Synthesis - TA2TAC 2019
Martha Palmer,
Rehan Ahmed, Cecilia Mauceri
University of Colorado, Boulder

Our Team

Univ.	Kartontology Colorado	Images and Video Jim Martin, (PI) Susan Brown, Rehan Ahmed, Chris Koski, ,...
Chris Heckman,	Ross Beveridge, Cecilia Mauceri,	
Colo. State	Rosa David White	
Brandeis	James Pustejovsky, Peter Anick	James Pustejovsky Nikhil Krishnaswamy

How did we achieve highest frame recall score?

- Efficient AIF object manipulation
- Merge multiple TA1s
- Streaming clustering
- Simple linking metrics

How did we achieve highest frame recall score?

- Efficient AIF object manipulation
- Merge multiple TA1s
- Streaming clustering
- Simple linking metrics

Software Engineering - Read/Write

- Read/Write Criteria
- Distributed
- Interfaces with many platforms
- Read

- Write
- Efficient triples writer - AIF2Triples
- The output can be split into smaller files (TA3 consumers liked this!)
- Developed at Colorado

Software Engineering - Compare \&

 Merge- Each object has a comparison function (not just Entity, Event, Relation) - Merge duplicate justifications, private data, system information etc
- Merging is initiated by a Node

Software Engineering - Compare \&

 Merge- Each object has a comparison function (not just Entity, Event, Relation) - Merge duplicate justifications, private data, system information etc
- Merging is initiated by a Node

Software Engineering - Compare \&

 Merge- Each object has a comparison function (not just Entity, Event, Relation)
- Merge duplicate justifications, private data, system information etc
- Merging is initiated by a Node
- Propagates through all sub-graphs

Software Engineering - Compare \&

 Merge- Each object has a comparison function (not just Entity, Event, Relation)
- Merge duplicate justifications, private data, system information etc
- Merging is initiated by a Node
- Propagates through all sub-graphs

Software Engineering - Compare \&

 Merge- Each object has a comparison function (not just Entity, Event, Relation)
- Merge duplicate justifications, private data, system information etc
- Merging is initiated by a Node
- Propagates through all sub-graphs

Software Engineering - Compare \&

 Merge- Each object has a comparison function (not just Entity, Event, Relation)
- Merge duplicate justifications, private data, system information etc
- Merging is initiated by a Node
- Propagates through all sub-graphs

Software Engineering - Compare \&

 Merge- Each object has a comparison function (not just Entity, Event, Relation)
- Merge duplicate justifications, private data, system information etc
- Merging is initiated by a Node
- Propagates through all sub-graphs

How did we achieve highest frame recall score?

- Efficient AIF object manipulation
- Merge multiple TA1s
- Streaming clustering
- Simple linking metrics

Benefits of Merging Multiple TA1

- Goal of AIDA to combine diverse data sources
- Additional coverage by using a diversity of models
- For example, increased coverage of reference KB links

Merging multiple TA1s

Merging the same source document across different TA1s

GAIA_1
HC0000A1T.ttl
HC0000AA3.ttl
HC0000AAP.ttl
HC0000AE1.ttl
\ldots

OPERA_3
HC0000A1T.ttl
HC0000AA3.ttl
HC0000AAP.ttl
HC0000AE1.ttl
\ldots

Merging multiple TA1s

Merging the same source document across different TA1s

Merging based
on Justifications

'TAC 2019 Submissions

TA 1	Triples pre clustering	Triples post clustering
GAIA_1	$31,987,759$	$30,324,882$
GAIA_2	$48,423,300$	$29,532,733$
OPERA_3	$23,290,306$	$12,665,445$
GAIA_1 + Michigan_1	$65,437,918$	$51,143,310$
GAIA_1 + OPERA_3	$45,787,436$	$35,134,812$
GAIA_1 + JHU_5	$60,421,533$	$55,194,984$
\ldots	\ldots	\ldots

TAC 2019 Submissions

TA 1	Entities pre clustering	Entities post clustering	Events pre clustering	Events post clustering
BBN_1	270,168	232,785	107,050	89,836
GAIA_1	358,436	309,358	37,205	31,151
GAIA_2	459,044	310,437	34,127	23,743
OPERA_3	339,718	200,776	13,126	10,068
GAIA_1 + OPERA_3	587,977	458,931	43,526	36,800
GAIA_1 + JHU_5	758,978	690,166	85,393	75,820
\ldots	\ldots	\ldots	\ldots	\ldots

How did we achieve highest frame recall score?

- Efficient AIF object manipulation
- Merge multiple TA1s
- Streaming clustering
- Simple linking metrics

Diagram

Linking Candidates

PERSON: "Tr"

LOCATION: "Tr"

For all Entities of

- Same type
- Same name substring

Compare all pairs

Photo attributions: Melania Trump - By Regine MahauxWeaver Justin Trudeau - By Presidencia de la República Mexicana Trump Tower - By Potro Tribune Tower - By Luke Gordon

Linking Candidates

PERSON: "Tr"

LOCATION: "Tr"

For all Entities of

- Same type
- Same name substring

Compare all pairs

Photo attributions: Melania Trump - By Regine MahauxWeaver Justin Trudeau - By Presidencia de la República Mexicana Trump Tower - By Potro Tribune Tower - By Luke Gordon

Linking Candidates

PROTEST

- Patient: Ukrainian Government

PROTEST

- Topic: Black Lives Matter

For all Event of

- Same type
- Same role label

How did we achieve highest frame recall score?

- Efficient AIF object manipulation
- Merge multiple TA1s
- Streaming clustering
- Simple linking metrics

Similarity Criteria

Entities

Type matching
Fuzzy Name matching
Justification overlap
Events
Type matching
Participant matching
Justification overlap

Similarity Criteria

Entities

AIDA Ontology Types

> Type matching
> Fuzzy Name matching Justification overlap PERSON, ORGANIZATION, GEOPOLITICAL
ENTITY
LOCATION

Events

Type matching
Participant matching Justification overlap

ControlEvent
MovementEvent
ConflictEvent

Similarity Criteria

Entities

Type matching Fuzzy Name matching \longrightarrow Justification overlap
\section*{Events}
Type matching
Participant matching Justification overlap
Participant matching Justification overlap
President Obama
Senator Obama
Obama?
Mr. Obama ?
Michelle Obama
Mrs. Obama
Barack Obama
Barack H. Obama
Barack Hussein Obama
Barack Hussein Obama Sr.
Barack ?

Similarity Criteria

Entities

Type matching NYC New York City Fuzzy Name matching \longrightarrow New York State New York?
NY?
NYU
New York, New York

Events

Type matching
Participant matching Justification overlap

Similarity Criteria

Entities

Type matching Fuzzy Name matching Justification overlap

Events

Type matching Participant matching Justification overlap

PROTEST

- Patient: Entity 1
- Topic: Entity 2

PROTEST

- Patient: Entity 3
- Topic: Entity 2

PROTEST

- Patient: Entity 1

Similarity Criteria

Entities

Type matching Fuzzy Name matching Justification overlap

Events

ImageJustification Threshold

Type matching Participant matching Justification overlap

TextJustification Threshold

Intersection over union > 0.8

Cross-Document Co-Reference Performance

Baseline coref scores on annotated datasets (cross-doc)

Event Coref Bank Data - scores for \cap

	Gold standard	TA1 output	\cap	$\mathbf{B}^{3} \mathbf{P}$	$\mathbf{B}^{3} \mathbf{R}$	$\mathbf{B}^{3} \mathbf{F 1}$	MUC \mathbf{P}	MUC \mathbf{R}	MUC F1
Events	3437	5107	918	95.9	42.75	59.14	63.04	10.96	18.67
Entities	4268	8820	864	98.1	64.33	77.7	95.08	54.2	69.04
Both	7705	13927	1782	95.7	57.05	71.5	54.71	10.96	18.26

Baseline coref scores on annotated datasets (cross-doc)

DEFT Richer Event Descriptions BCUB score

	Precision	Recall	F1
Events	80.11	14.14	24.05
Entities	46.45	49.55	47.95
Combined	83.97	30.83	45.11

Room for improvement? Yes!

Graph Queries

	$\operatorname{Prec}(1 a)$	Recall(1a)	F1(1a)	Recall(1b)	Frame Recall
GAIA1_OPERA3	0.24	0.11	0.15	0.14	$\mathbf{0 . 0 5}$

Zero-Hop Queries

	AP-B	AP-W	AP-T
GAIA1_OPERA3	0.0667	0.0667	0.0667

Future Work

- Linking using graph embeddings
- Nearest neighbor KB search
- Vector similarity
- Affine mapping between embedding vectors

Future Work

- Linking using graph embeddings
- Nearest neighbor KB search
- Vector similarity
- Affine mapping between embedding vectors

Event Linking by example (1)

A day after MH17 was shot down over Ukraine's warring eastern provinces on July 17, 2014, the United States government concluded from available evidence that the plane had been brought down by a Russian-made surface-to-air missile launched from rebel-held territory in eastern Ukraine. American officials said at the time that they believed the missile battery had most likely been provided by Russia to pro-Russian separatists.

Event Linking - Building Knowledge Graph

Event Linking - Knowledge Graph

Event Linking as a graph problem

More specifically, a sub-graph isomorphism problem.

Event Linking as a graph problem

More specifically, a similarity based sub-graph

 isomorphism problem.

How do we measure this structural similarity?

Link Prediction - TransE (Bordes et al.

"Relationships as translations in the embedding space: In this paper, we introduce TransE, an energy-based model for learning low-dimensional embeddings of entities. In TransE, relationships are represented as translations in the embedding space: if (h, I, t) holds, then the embedding of the tail entity t should be close to the embedding of the head entity h plus some vector that depends on the relationship"

Learning Embeddings with Link Prediction

Composing Embeddings

By the TransE architecture, we learn embeddings for (h, r, t) that follows $h+r \approx t$

Therefore, to compose the embeddings of h (head) and t (tail) that explicitly accounts for the context of the triple we can follow:

Given $(h, r, t) \in K G$:

- Composition(tail) $=(\mathbf{h}+\mathbf{r})+\mathbf{t}$
- Composition(head) $=\mathbf{h + (t - r)}$ (since, $\mathbf{h} \approx \mathbf{t}-\mathbf{r})$

Composing Embeddings - ECB Example

Document 1 event

Police apprehended Jackson at about 2:30 a.m. and booked him for the misdemeanour before his release , making for a long night with a playoff looming on Sunday at Pittsburgh against the Steelers

Document 2 event

Chargers receiver Vincent Jackson was arrested on suspicion of drunk driving on Tuesday morning five days before a key NFL playoff game

Composing Embeddings - using Blender's AIDA parser

Composing Embeddings Similarity

Preliminary results for Event Linking on ECB corpus

Method	BCUB Recall	BCUB Precision	BCUB F1	MUC Recall	MUC Precision	MUC F1
TA2 system only	$(377 / 886)$ 42.53%	$(852.8 /$ $886)$ 96.25%	58.99%	$(54 / 529)$ 10.2%	$(54 / 86)$ 62.79%	17.56%
Graph Embeddings (CC)	$(548 / 886)$ 61.83%	$(390 / 886)$ 44%	51.41%	$(270 / 529)$ 51.03%	$(270 / 512)$ 52.73%	51.87%
Graph Embeddings + TA2 system	$(430 / 886)$ 48.54%	$(550 / 886)$ 62.08%	54.48%	$(200 / 529)$ 37.8%	$(200 / 412)$ 48.5%	42.5%

Future Work

- Linking using graph embeddings
- Nearest neighbor KB search
- Vector similarity
- Affine mapping between embedding vectors

Nearest Neighbor DB Search

Challenge: Fast scalable approach for identifying co-reference candidates

Solution: Vector representation of DB entries stored in kd-tree

1. Multimodal Embedding Space
Donald Trump Jr.
Donald Trump
Trump
President Trump

Image attribution:
Kremlin.ru [CC BY 4.0 (https://creativecommons.org/licenses/by/4.0)]
2. Kd-tree partitions space

3. Making search a log_k operation

Future Work

- Linking using graph embeddings
- Nearest neighbor KB search
- Vector similarity
- Affine mapping between embedding vectors

Image Encoding

Image Encoding

Image Encoding

*CNN = Convolutional Neural Network

We establish a mapping between these two features

We establish a mapping between these two features

$A(x)=M_{B \rightarrow A} B(x)$

Affine Map

Solving for the Affine Mapping
 Solving for the Affine Mapping

Minimize the euclidean distance between
$\mathbf{A}(\mathbf{x})$ and $\mathbf{M}_{\mathbf{B} \rightarrow \mathbf{A}} \mathbf{B}(\mathbf{x})$

Solving for the Affine Mapping State.

Minimize the euclidean distance between
$\mathbf{A}(\mathbf{x})$ and $\mathbf{M}_{\mathbf{B} \rightarrow \mathrm{A}} \mathbf{B}(\mathbf{x})$

Cross-TA1 linking with diverse CNN models produces 99%

accuracy

BBN: generated from FaceNet trained on CASIA-WebFace; Columbia: generated from FaceNet trained on VGGFace2;

Summary

High frame recall is achieved using

- Efficient object manipulation
- Input from multiple TA1s
- Simple linking metrics
- Streaming clustering

Paths to improvement

- Graph embeddings
- Multimodal nearest neighbor KB search
- Affine mapping between vector spaces

