
RAMFIS System Report TAC 2018

Cecilia Mauceri, Shafiuddin Rehan Ahmed, and Timothy O'Gorman
University of Colorado Boulder

I. INTRODUCTION

As TA2 performers, our directive is to meld knowledge
elements resulting from TA1s multi-modal extractions from
individual documents into a single knowledge base where
that information is integrated into a single structure, and
contradictions and confirmations can be recognized. For the
TAC 2018 evaluation, we focused on cross-document co-
reference linking, as shown in Figure 1. In this document,
we will go into detail on our architecture, linking procedure,
and challenges we faced during the evaluation.

II. JENA DATABASE

As we are integrating information into a very large triple
store of facts, we rely upon Apache Jena[1] – in particular,
TDB2 – to handle queries into the knowledge base. In the
current (non-streaming) form, we load all data into a single
database, and develop clusters using queries into the entire
KB. Since we need the information from the entire data
before clustering, it wasnt practical nor possible to load it
into memory. TDB2 provides an in-file based solution to
handle this situation. It also does some indexing on the
triples that gives a reasonable performance on the entire data.
However, for the purpose of linking, we extracted all the
items of each class into serialized forms outside of Jena to
avoid querying TDB2 on each run and running operations
such as partial string matching through SPARQL.

III. CONSUMING TA1 OUTPUT

Documents were loaded into the database by running
Jena TDB2Loader on all individual TA1 documents to form
a single knowledge base. Minor formatting issues in TA1
inputs were addressed with simple scripts run over those files,
but little pre-processing was done otherwise. The resulting
KB contained a great deal of redundancy, and certain justi-
fications asserted by TA1s were not actually justified in the
text – we estimate that if we had planned to develop methods
to remove redundant information from the TA1 inputs, it
could have dramatically reduced the size of the resultant KB.

Some formatting was done to make inputs match the
strict assumptions of the NIST SPARQL queries. As the
TA1s we worked with were not using those queries, their
format did not match specific assumptions – in particular,
they largely eschewed use of SameAsCluster representations
for clustering, and did not represent edge clusters using
CompoundJustification assertions. We added this to the KB
to make these assertions match the NIST assumptions.

IV. LINKING

Linking is performed in three steps. First, we cluster
together all entities which TA1s have already linked to
existing entries in the background knowledge base – a
step which provided a large portion of our links, for the
TA1s which provided such information. Second, we did
heuristic-driven entity linking (discussed in the entity linking
section) to link the remaining entities using name matching
across documents, and to link entities across TA1s through
justification matching. Finally, we used those entity clusters
to make event linking decisions.

To simplify the problem, we used an overarching con-
straint of linking entities and events of the same type.
This serves to improve performance in two ways, both by
partitioning the entity linking problem so that there are fewer
pairwise comparisons, and by enabling parallelization of the
problem. This filters out obvious non-links, although there
are natural edge cases (as in the distinction between GPE
and LOC) where it can be overly rigid.

We also made named-based entity linking decisions in a
pairwise manner based upon local information. This entails
that the coreference clustering occurs in a greedy manner,
which can naturally result in overly large clusters and prop-
agate error, as large linked clusters have an even greater
tendency to add more links. Therefore for this evaluation,
we choose very conservative comparison functions, valuing
precision over recall.

Links are the only changes we made to knowledge ele-
ments. We consumed the entities and events generated by
TA1 and added co-reference links, but did not otherwise
modify the extractions, other than changes to formatting to
match the NIST restrictions to the AIF format.

A. Entity Linking

Entity resolution varied greatly depending upon whether
the TA1 team provided entity linking information connecting
their entities to the background knowledge base (LinkAsser-
tion statements). Because the TA1 teams had so much more
information available in the surface text, we made two strong
assumptions – both that we trusted the links provided by
TA1s, and trusted that if they did not link an otherwise
valid entity to that KB entry, they were correct in doing
so. In practice, that means that when processing information
from the ISI team, we focused upon nil clustering, clustering
together the entities not linked to the external knowledge
base.

All such entities without external KB links were parti-
tioned by their type (e.g. person, geopolitical, etc) and the



Fig. 1. System Overview. This flow chart illustrates the process of adding TA1 output to the knowledge base and performing cross-document co-reference
linking. We perform linking in two steps. First we link entities, followed by events. The event linker uses links found by the entity linker in addition to
other evidence.

Fig. 2. Details of a Linking Module. This flowchart shows the partition, compare, link pipeline. In this example, partitions are defined by entity type and
the first three characters of the entity name.



first three characters of their name string. For the TAC
2018 evaluation, the largest such partition was 8600, and
the average partition size was about 40.

The entity comparison function is rule-based and focused
upon name comparison. This uses a series of progressively
more lenient conditions, starting with exact match linking,
and backing off to partial match. Entities are also represented
by a context feature, which represents the names of entities
mentioned in proximity to each entity within a document.
This allows us to measure whether entities share relationships
to other entities, even when that relation is not explicitly
captured in the KB.

With partial string matching, context similarity measure,
and a fixed threshold, we build an adjacency list of the
entities for each partition. Using the adjacency list, we find
the connected components within the partitions to give us
clusters of coreferent entities. So entities with names Barack
and Obama, although are different string-wise, get clustered
together because they are both connected to the entity Barack
Obama. Also, a John with a context of John Smith does not
get clustered with a John with a context of John Doe. We
then proceed to add the sameAsClusters links into the KB
where the first entity of the cluster is the canonical entity
and all the other entities are cluster members. We also make
sure the cluster prototypes provided by the TA1s do not
end up becoming cluster members. In other words, a cluster
prototype is preferred over the first entity of the cluster to
be the canonical entity.

B. Event Linking

Although we developed supervised models trained on
some existing event data (EventCorefBank), we ended up
using rule-based methods for event linking in the pilot, due
to the scale of the pilot evaluation data being dealt with.
We focused upon a simple entity linking heuristic based
upon shared event arguments. In this approach, after the
entity linking pass was applied across the entire KB, for
each entity that had the same event-argument relation to
two events of the same event type, we simply assumed
that that pair of events was coreferent. Coreference clusters
were determined greedily by a sequence of those pairwise
decisions. Section 5: Querying the Database Our output
KB was very large. As individual TA1s primarily passed
us data using hard clustering assertions (locating multiple
justifications under a single entity or event), our TA2 entity
and event resolution was primarily additional information.
We therefore output a KB that was fundamentally a union
of all the TA1 documents, merged with the added set of
SameAsClusters provided by our entity and event linking
components.

Having the large output documents as TDB databases, we
then ran NIST SPARQL queries, as provided in the xml files
for classes, zero-hop queries and graph queries. Although
NIST provided scripts for parsing KBs, those tools seemed to
be explicitly written only for TA1 performers, both because
they loaded KBs in memory (not practical with our KB
sizes) and because of the inefficient SPARQL query issues

noted below. We were limited in coverage of some graph
representations, therefore, as NIST only provided SPARQL
format for the simplest, one hop graph queries (it is quite
possible that this pilot system would not have found matches
with the more complex, multi-hop graph queries).

In practice, we concluded that the provided NIST queries
were not designed to be applied at scale, and we needed
to write scripts to re-format and optimize the queries. Our
re-ordering code structured the queries to start by finding
entry points – which were either hasName assertions or
combinations of source documents and justification start and
end points – and to then add links from there. This allowed us
to run the SPARQL queries on our large (30+ gb) knowledge
base.

Scripts were then written to convert those outputs to the
NIST xml output format, and validation of those xmls against
the provided Validation toolkit. This was complicated by the
absence of any documentation for the format; we primarily
relied upon an example output nestled within the NIST query
toolkit.

V. CHALLENGES AND WORKAROUNDS

1) The primary challenge was that as an independent TA2,
we did not have any prior knowledge of the expected
input. We therefore were surprised by the size of the
incoming KB. Having more examples of the expected
inputs and outputs at each stage of the pipeline would
have dramatically helped in giving us more accurate
representations of the task.

2) The flexibility of the AIF was compounded by the of-
floading of query processing to each team. In practice,
we felt that there was no forcing function requiring a
consistent output between teams.

3) The intractibility of NIST SPARQL queries resulted in
many wasted hours both within our team and related
teams we worked with. The NIST xmls and output
format were also both undocumented, which hindered
our ability to develop our own tools. Good prior
warning about the NIST formats would have made our
work much more efficient.

4) The sheer size of the resultant KB was a challenge,
and it resulted in complications in even simple tasks
(such as writing the KB to disk).

5) Query efficiency played a large role in the run time of
our system. We found out that the order in which we
write the SPARQL statements was particularly crucial.
For example, if we want to get the type of an entity,
a query such as:

?statement ?type rdf:Statement .
?statement rdf:predicate rdf:type .
?statement rdf:subject ?entity_id .
?statement rdf:object ?entity_type .

Is way slower than:

?statement rdf:subject ?entity_id .
?statement rdf:predicate rdf:type .
?statement ?type rdf:Statement .



?statement rdf:object ?entity_type .

REFERENCES

[1] Carroll, J. J., Dickinson, I., Dollin, C., Reynolds, D., Seaborne, A.,
& Wilkinson, K. (2004, May). Jena: implementing the semantic web
recommendations. In Proceedings of the 13th International World
Wide Web Conference (pp. 74-83). ACM.


