



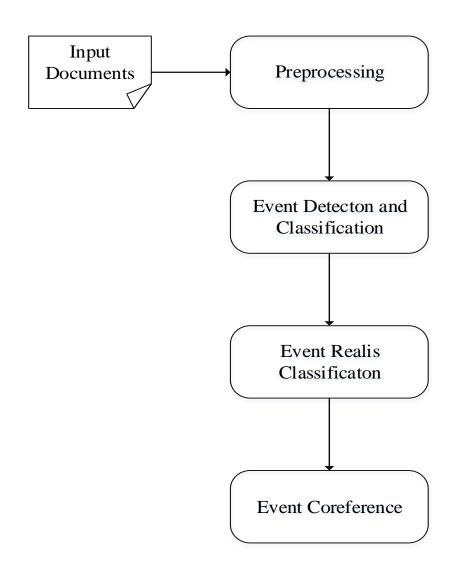
# SRCB at TAC KBP 2017 Event Nugget Track

Data Mining Lab
Ricoh Software Research Center (Beijing) Co.,Ltd.

(TeamID: srcb)







### Preprocessing includes:

- Sentence boundary
- Tokenization
- Vocabulary setup
- Word embedding



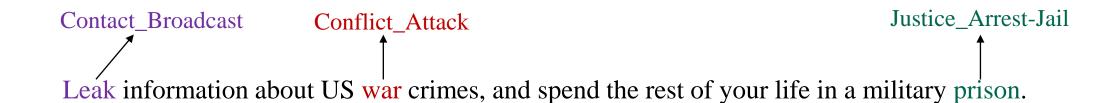
# **EN Detection and Classification**



- To detect explicit mentions of relevant events and identify event types and subtypes.
- A sequence labelling problem.
- An ensemble model which combines a neural network model and a Conditional Random Fields (CRFs) model.



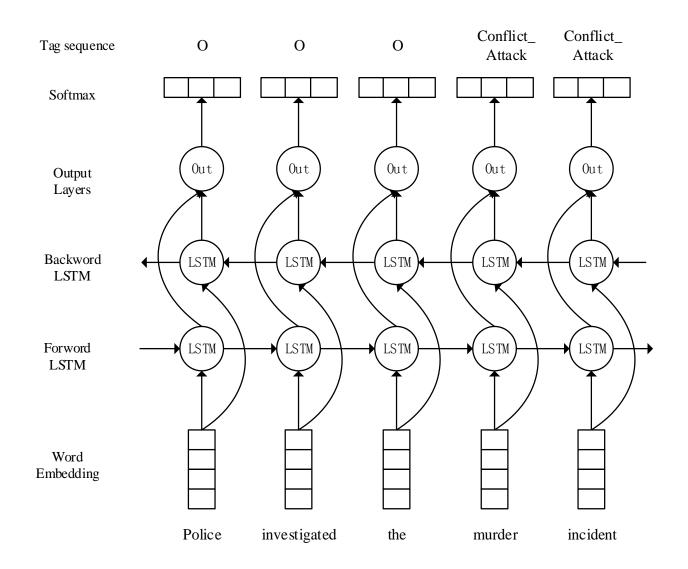
He said the killings were in self-defense and he fled the state because he could not get a fair trial.





## **Neural Network Model**





- **Bidirectional LSTM** is adopted to capture both past and future contexts for a given word.
- 18 event labels are defined according to 8 event types and 18 subtypes.
- Continuous words with the same type label are regarded as the same event mention with the specified type value.



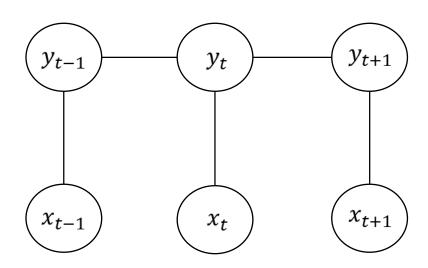


### Features:

- Token
- Lemma
- Stemming
- POS tag
- Dependency type
- NER nearby
- Position in sentence
- Sentence position in document
- Trigger word dict
- WordNet

### 33 labels:

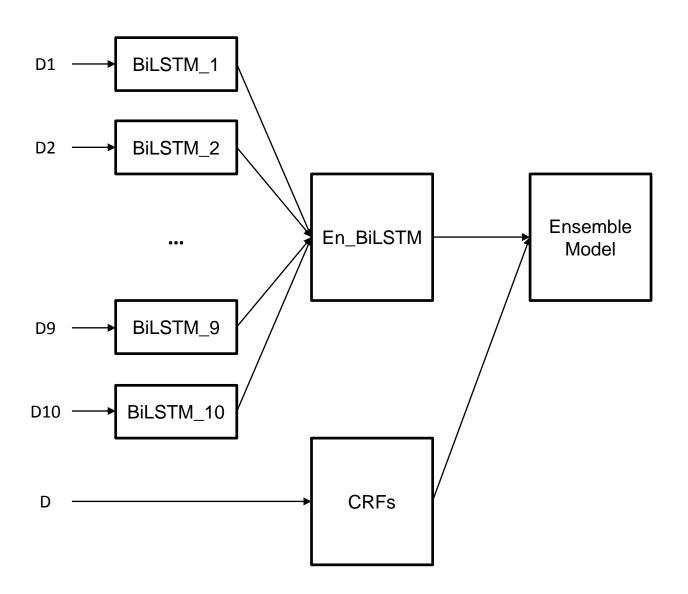
- 1 subtype
- 2 subtypes





# **Ensemble Model**





The whole training dataset is denoted as D.

#### En\_BiLSTM

- The dataset D is split into 10 parts. 10 BiLSTM models are trained separately using corresponding 9 of 10 as training data and the remaining as validation data. The training dataset used for model *i* is denoted as Di.
- For each Di, **over-sampling** technique is adopted to increase the number of event labels with fewer instances.
- **Voting strategy** is adopted to combine outputs of the 10 BiLSTM models.

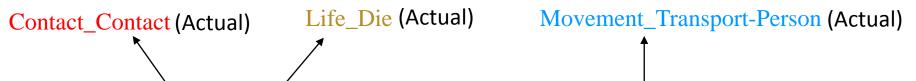
#### **Ensemble Model**

- Combine: En\_BiLSTM and CRFs outputs.
  - Strategy: If conflict happens between two models, the results of CRFs are kept.

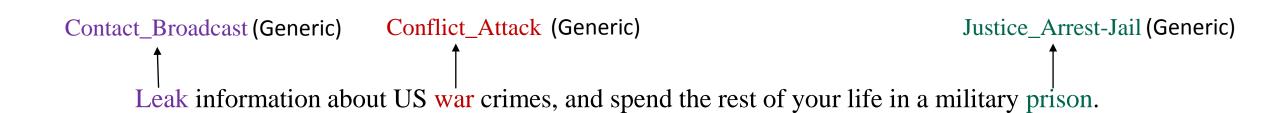




To identify three REALIS values for event mentions (Actual, Generic, Other)



He said the killings were in self-defense and he fled the state because he could not get a fair trial.





# **EN Realis Classification**



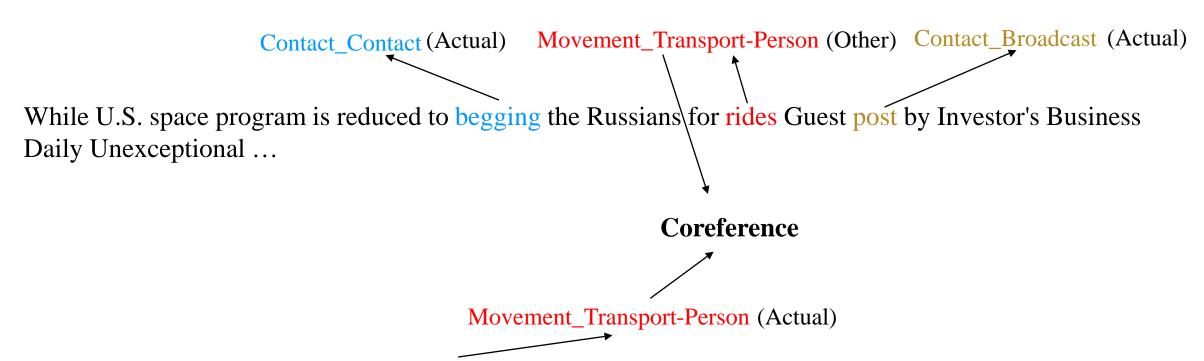
A SVM model is used to classify REALIS value for event mentions.

| Features   | Description                                |
|------------|--------------------------------------------|
| Token      | Word itself                                |
| POS tag    | POS tag of current word                    |
| NER nearby | NER tags for nearby words                  |
| Tense      | Whether the word is ended with "ed" or not |
| WordNet    | WordNet index                              |





To Identify the coreference links between event mention instances within a document.



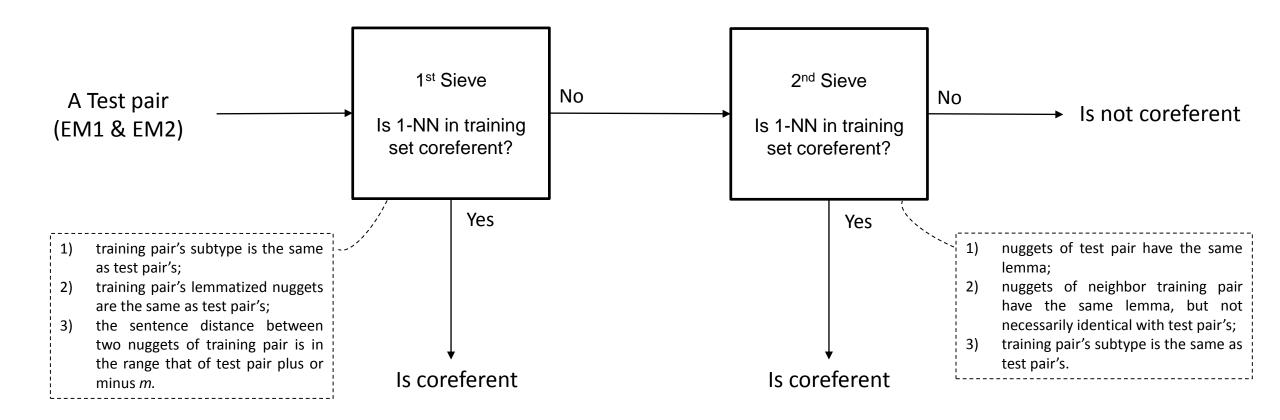
Meanwhile, U.S. astronauts have to ride Russian spacecraft to fix toilets on the International Space Station.





Classification problem: 2-pass sieve method.

The method was proved significantly efficient by UTD team @TAC2016.



© 2017 Ricoh Software Research Center (Beijing) Co., Ltd.





### **Datasets**

- For development, LDC2017E02 (2014 and 2015), LDC2015E29 and LDC2015E68 are used as training data, and LDC2017E02 (2016) as testing data.
- For evaluation on 2017 datasets, LDC2016E31 and LDC2017E02 (2016) are further included as training data.

# Neural network training

- Construct one vocabulary including most frequent words in documents. Words that are not in vocabulary are labeled by a special token "UNK".
- Word embedding are pre-trained using Wikipedia English corpus.
- The training stage of each model took about 1.5 hours.





### Performance on development data

|                             | Micro Average |       |       | Macro Average |       |       |  |
|-----------------------------|---------------|-------|-------|---------------|-------|-------|--|
| Attributes                  | Prec          | Rec   | F1    | Prec          | Rec   | F1    |  |
| plain                       | 61.81         | 59.88 | 60.83 | 61.61         | 60.12 | 60.86 |  |
| mention_type                | 51.92         | 51.02 | 51.47 | 52.12         | 52.10 | 52.11 |  |
| realis_status               | 43.14         | 44.15 | 43.64 | 42.45         | 45.10 | 43.73 |  |
| mention_type+realis_status  | 37.20         | 35.90 | 36.54 | 38.20         | 36.10 | 37.12 |  |
| Overall Average CoNLL score | 32.01         |       |       |               |       |       |  |

Compared with other systems developed in 2016 TAC KBP, our model got better scores on plain and mention\_type.





## On development data

- BiLSTM model outperforms CRFs in F1 measure.
- However, CRFs can identify events in higher precision.

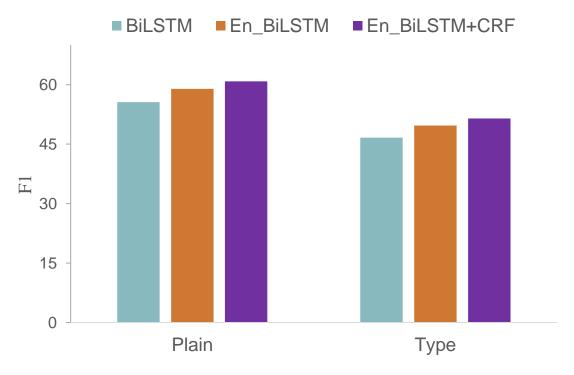






### On development data

- The ensemble of 10 BiLSTM models (En\_BiLSTM) outperform one single BiLSTM model.
- Then ensemble of En\_BiLSTM and CRF models outperform En\_BiLSTM model.







We submitted 3 runs to En detection and coreference.

The best performance of the 3 runs on 2017 official evaluation data are listed below.

|                             | Mi    | cro Aver | age   | Macro Average |       |       |  |
|-----------------------------|-------|----------|-------|---------------|-------|-------|--|
| Attributes                  | Prec  | Rec      | F1    | Prec          | Rec   | F1    |  |
| plain                       | 68.04 | 66.53    | 67.27 | 68.07         | 68.04 | 68.06 |  |
| mention_type                | 56.83 | 55.57    | 56.19 | 57.02         | 56.82 | 56.92 |  |
| realis_status               | 47.95 | 46.89    | 47.42 | 48.77         | 48.73 | 48.75 |  |
| mention_type+realis_status  | 39.69 | 38.81    | 39.24 | 40.47         | 40.17 | 40.32 |  |
| Overall Average CoNLL score | 35.33 |          |       |               |       |       |  |

- Our ensemble model significantly outperforms other systems on EN plain and EN mention\_type.
- For EN coreference, sieve-based method (srcb1) performs better than ME-based method (srcb2).





# THANK YOU!