Event Argument Evaluation

Marjorie Freedman (ISI)

Ryan Gabbard (ISI) Jay DeYoung (BBN)

Outline

- Overview of EAL Task
- Participants \& Approaches
- 2017 Results

Event Argument Task

Event Argument Task

In a document

- Identify what events occurred along with their type
- Identify key arguments (e.g. participants, dates, locations) and associate them with the correct events
- Provide arguments realis status (ACTUAL, OTHER, GENERIC)
- Group arguments into event hoppers

A separatist group called the Kurdistan Freedom Falcons (TAK) claimed responsibility for an explosion late on Monday which wounded six people, one of them seriously, in an Istanbul supermarket. Istanbul governor Muammer Guler told Anatolia news agency the explosion in the Bahcelievler district of Turkey's largest city injured six people. The agency said 15 other people had been hurt. "We consider the explosion that took place tonight in an Istanbul supermarket to be a response to the barbaric policies against the Kurdish people7

Event2:	Role	Fillers
	ATTACKER	TAK
Conflict. Attack	TARGET	Six people 15 other people
	PLACE	the Bahcelievler district Istanbul An Istanbul supermarket
	DATE	Monday (2006-02-13)

| Event1: | Role | Fillers |
| :--- | :--- | :--- | :--- |
| Life.Injure | Agent | TAK |
| | Victims | Six people
 15 other people |
| | PLACE | the Bahcelievler district
 Istanbul
 An Istanbul supermarket |
| | DATE | Monday (2006-02-13) |

2017 Event Ontology

EAL Event Label (Type.Subtype)	Role	Allowable ARG Entity/Filler Type	EAL Event Label (Type.Subtype)	Role	Allowable ARG Entity/Filler Type
Conflict.Attack	Attacker	PER, ORG, GPE	Movement.TransportArtifact	Agent	PER, ORG, GPE
	Instrument	WEA, VEH, COM		Artifact	WEA, VEH, FAC, COM
	Target	PER, GPE, ORG, VEH, FAC, WEA, COM		Destination	GPE, LOC, FAC
				Instrument	VEH, WEA
Conflict.Demonstrate	Entity	PER, ORG		Origin	GPE, LOC, FAC
			Movement.Transport-	Agent	PER, ORG, GPE
Contact.Broadcast	Audience	PER, ORG, GPE	Person	Artifact	PER
	Entity	PER, ORG, GPE	Personnel.Elect	Agent	PER, ORG, GPE
Contact.Contact	Entity	PER, ORG, GPE		Person	PER
Contact.Correspondence	Entity	PER, ORG, GPE		Position	Title
Contact.Correspondence			Personnel.End-Position	Entity	ORG, GPE
Contact. Meet	Entity	PER, ORG, GPE		Person	PER
Justice.Arrest-Jail	Agent	PER, ORG, GPE		Position	Title
	Crime	Crime	Personnel.Start-Position	Entity	ORG, GPE
	Person	PER		Person	PER
Life.Die	Agent	PER, ORG, GPE		Position	Title
	Instrument	WEA, VEH, COM	Transaction.Transaction	Beneficiary	PER, ORG, GPE
	Victim	PER		Giver	PER, ORG, GPE
Life.Injure	Agent	PER, ORG, GPE		Recipient	PER, ORG, GPE
	Instrument	WEA, VEH, COM	Transaction.Transfer-Money	Beneficiary	PER, ORG, GPE
	Victim	PER		Giver	PER, ORG, GPE
Manufacture.Artifact	Agent	PER, ORG, GPE		Money	MONEY
	Artifact	VEH, WEA, FAC, COM		Recipient	PER, ORG, GPE
	Instrument	WEA, VEH, COM	Transaction.TransferOwnership	Beneficiary	PER, ORG, GPE
				Giver	PER, ORG, GPE
				Recipient	PER, ORG, GPE
				Thing	VEH, WEA, FAC, ORG,COM

2017 Event Ontology

EAL Event Label (Type.Subtype)	Role	Allowable ARG Entity/Filler Type	EAL Event Label (Type.Subtype)	Role	Allowable ARG Entity/Filler Type
Conflict.Attack	Attacker	PER, ORG, GPE	Movement.Transport- Artifact	Agent	PER, ORG, GPE
	Instrument	WEA, VEH, COM		Artifact	WEA, VEH, FAC, COM
	Target	PER, GPE, ORG, VEH, FAC, WEA, COM		Destination	GPE, LOC, FAC
				Instrument	VEH, WEA
Conflict.Demonstrate	Entity	PER, ORG		Origin	GPE, LOC, FAC
			Movement.Transport-	Agent	PER, ORG, GPE
Contact.Broadcast	Audience	PER, ORG, GPE	Person	Artifact	PER
	Entity	PER, ORG, GPE	Personnel.Elect	Agent	PER, ORG, GPE
Contact.Contact	Entity	PER, ORG, GPE		Person	PER

${ }^{\text {Contact.Correspo }}$ Event types and subtypes the same as:

Justice.Arrest-Jail

- Event nugget evaluation
- 2016 event argument evaluation

Life.Die
2-5 potential event-specific argument roles per event +
Life.Injure

Manufacture.Arti DATE \& LOCATION for all events

- Not all arguments need to be known
- Arguments can be
- Dates, EDL entity types, string fillers (e.g. crime)
- Named OR underspecified (e.g. the unnamed suspect)

What is Required to Fill an Event Frame

1. Finding events, arguments, and their roles (2014 task)
A. Recognize the presence of the event \rightarrow overlap with the event nugget task but no requirement that the exact phrase is found; instead allow sentence length justifications
B. Find a mention (base filler) where the participation in the event (along with the role) is clear \rightarrow similar to mention level argument extraction as in event detection in ACE
C. Link the base filler to a canonical argument string \rightarrow use within document coreference and temporal resolution; similar to ColdStart requirement that slot-fills reference a named entity (and not a local mention)
D. Assign a realis label to assertion about the event and argument \rightarrow overlap with the event nugget task, but also incorporate understanding of the argument itself (e.g. failed participation)
2. Link the argument assertions such that arguments that correspond to the same "real world" event are grouped together (Added in 2015)

Chronology of EAL Task

	Information Target	Scoring Method	Submission	Lang
2014	Table of arguments	Assessment	EAL file	En
2015	1. Table of arg. + role 2. Arg. + role grouped into frames	Assessment	EAL file	$\begin{aligned} & \text { En } \\ & \text { Ch } \end{aligned}$
2016	1. Table of arg. + role 2. Arg. + role grouped into frames 3. Corpus-level frame coreference	Gold Standard for 1 \& 2 Assessment for 3	EAL file	$\begin{aligned} & \text { En } \\ & \text { Ch } \\ & \text { Sp } \end{aligned}$
2017	1. Table of arg. + role 2. Arg. + role grouped into frames	Gold Standard	EAL file or ColdStart++ KB	En Ch Sp

2017 Reference Data (1)

- Relied on the shared Rich ERE document set
- ~80 documents per language
- Languages differ in
- Total number of event hoppers
- Average number of arguments per hopper

			Avg. Arg. per
\# Hop.	\# Arg.	Hopper	
English	2,952	7,845	2.7
Chinese	2,487	5,518	2.2
Spanish	2,049	5,917	2.9

Number of Hoppers and Arguments in the Gold Standard Reference

2017 Reference Data (2)

- With a few exceptions, relatively even distribution over 30 event types
- Broadcast and Attack events are particularly frequent in Chinese documents
- Overall, many event types each of which

Per-Type \% of Gold Standard Hoppers occurs at relatively low frequency

25\%

Ev. Subtype	\#	\%
Transport-Person	1,264	16
Broadcast	832	11\%
Transfer-M	770	10\%
\% Arrest-Jail	215	\%
Injure	88	1\%
Trans.Transa	88	1\%
Broadcast	1,047	19\%
Attack	958	17\%
Transport-Person	727	13\%
Cont.Contact	82	1\%
Transaction	57	\%
Correspondence	40	1\%
Transpo	956	16
Attack	780	13\%
Broadcast	700	12\%
Artifact	123	2\%
\sim Injure	109	
Trans.Transaction	91	2\%
Most \& Least Frequent Event Types of Event Argument Assertions		

Participants \& Approaches

Participants \& Type of Submission

Site	EN	CH	SP	Sub
A2KD_Adept	X	X		CS++
ISCAS_Sogou		X		CS++
SAFT_ISI	X	X	X	CS++
Tinkerbell	X	X	X	CS++
BBN	X	X	X	EAL
BUPT_PRIS	X			EAL
CMU CS	X	X	X	EAL

Cold Start++	EAL
July evaluation window	Sept evaluation window
Process full ColdStart corpus (30K docs per language)	Process shared subset $(\sim 80$ docs per language)
EAL valid files extracted from	EAL files submitted directly by participant
KB by a NIST script	Only EAL performance is
Performance measured in - Cold Start queries - EDL	
- EAL	

Approaches to Argument Assertions

> ... She will attend the conference. Next week's meeting \rightarrow (Contact.Meet, Participant, she=Marjorie Freedman, Other) (Contact.Meet, Date, next week=W48-207, Other)

- Finding arguments: typically, pipeline approach to (1) detect triggers and (2) find arguments, exceptions:
- BBN: joint inference over triggers and arguments by using a low threshold to over predict triggers
- BUPT_PRIS: joint-attention based model
- Resolving arguments (e.g. co-reference, date resolution)
- Ignored by some systems \rightarrow hurts system performance
- Core NLP coreference used by many
- Labeling of actual, other, generic: Most used Rich ERE trained classifiers
- BBN: rules for actual vs. other
- Only Tinkerbell reports significant differences between languages
- Used English system on machine translations of Spanish

Approaches to Hoppers Varied
... She will attend the conference. Next week's meeting \rightarrow

Contact.Meet

* Participant, she=Marjorie Freedman, Other
* Date, next week=W48-207, Other
- Several relied on their event nugget co-reference
- BUPT, CMU_CS (some runs)
- Tinkerbell trained classifiers to produce similarity scores of nuggets
- BBN used a sieve based approach

Evaluation Results

Argument Score

- Align (EventSubtype, Role, Argument_Entity, Realis) assertions with gold standard
- Canonical Argument String serves as surrogate for Entity ID
- ArgScore: Error-based metric

INJURE	VICTIM	At least six	Actual
INJURE	VICTIM	six people	Actual
INJURE	PLACE	Bahcelievler district	Actual
INJURE	PLACE	Istanbul	Actual
INJURE	DATE	Mon.(2006- 02-13)	Actual
ATTACK	ATTACKER	TAK	Actual
ATTACK	TARGET	At least six	Actual
\ldots	\ldots	\ldots	

- Each document: $T P(d)-\beta F P(d)$
- Over corpus:
$\frac{1}{N} \sum_{d \in D}[\max (0, \arg (d))]$

English Argument Scores

Chinese Argument Scores

Spanish Argument Scores

Linking (Hopper) Score

- Compare system hoppers with gold standard hoppers with $\mathrm{B}^{\wedge} 3$
- Like argument score, measured at entity (and not mention) level
- Scoring of Hoppers
- Ignores argument false positives

Event1	Role	Fillers
	Agent	TAK
Life.	Victims	Six people Injure
	PLACE	other people the Bahcelievler district Istanbul An Istanbul supermarket
	DATE	Monday (2006-02-13)

- Limited by system recall

Event2:	Role	Fillers
	ATTACKER	TAK
Conflict	TARGET	Six people 15 other people
	PLACE	the Bahcelievler district Istanbul
	DATE	An Istanbul supermarket

English Linking (Hopper) Scores

Chinese Linking (Hopper) Scoresß

Spanish Linking (Hopper) Scores

Analysis of Argument Scores

Precision and Recall

ColdStart++ vs. EAL Only

Performance Across Languages (1)

	Arg. Precision \& Recall: Chin Precision Chinese slightly outperforms English - Across systems - For precision and recall			
	Recall		Ch	En
20				
0		A-EA		
Arg. Precision \& Recall: English			24	23
60 Precision		B-CS	23	--
40	Recall	C-CS	14	13
	Recall	D-EA	12	10
20		E-CS	12	2
0	$\square \square \square \square \square \square \square \square-$	F-CS	11	7
		G-EA	--	5

Performance Across Languages (2)

Spanish performance lags English

- Across systems
- Especially for recall

Why?

- Less training data
- Less accurate linguistic processing (parsing, coreference, etc.)
- Characteristic of test set
- Properties of language

Performance Across Languages (3)

Argument F1

	Ch	En	Sp
A-EA	$\underline{\mathbf{2 4}}$	$\mathbf{2 3}$	$\underline{\mathbf{8}}$
B-CS	$\mathbf{2 3}$	--	--
C-CS	14	13	--
D-EA	12	10	4
E-CS	12	2	0
F-CS	11	7	3
G-EA	--	5	--

- System rank is relatively constant across languages
- At current performance levels, techniques transfer relatively well between languages
- But, current performance levels are low in absolute terms

Actual vs. Other vs. Generic

Arg. Precision \& Recall: Chinese

Arg. Precision \& Recall: English

■ With Realis

- Ignore Realis

Arg. Precision \& Recall: Spanish

Ignoring realis distinction (actual, generic, other)

- Improves precision \& recall
- Improves performance in all languages
- But, absolute performance remains low (i.e. F1: ~30 for top performing EN \& CH)

What's Next?

- 2018 is TBD
- 2014-2017 EAL tasks have resulted in
- More training data (RichERE)
- A scoring package that measure event argument performance at the level of a KB assertion
- https://github.com/isi-nlp/tac-kbp-eal
- Two shared tests sets
- What would help improve system performance?
- Are people interested in this task outside of TAC
- Would it help to share 2016 and 2017 system output for future comparison?
- Hosted with scorer?

