

Carson Tao¹, Kahyun Lee¹, Michele Filannino^{1,2}, Kevin Buchan¹, Kathy Lee³, Tilak Arora³, Joey Liu³, Oladimeji Farri³, and Özlem Uzuner⁴

> ¹ State University of New York at Albany, Albany, NY, USA ² Massachusetts Institute of Technology, Cambridge, MA, USA ³ Philips Research North America, Cambridge, MA, USA ⁴ George Mason University, Fairfax, VA, USA

November 14th, 2017 – Text Analysis Conference, Gaithersburg, MD, USA

Extracting and Normalizing ADRs from Drug Labels

Summary

- based (VigiAccess) features with an extended topology
- syntactic features.
- mapping tool (STMT) + abbreviation extraction

• Task 1: CRFs on morphological + embedding-based features; CRFs on morphologic, constituency, dependency, and gazetteer-

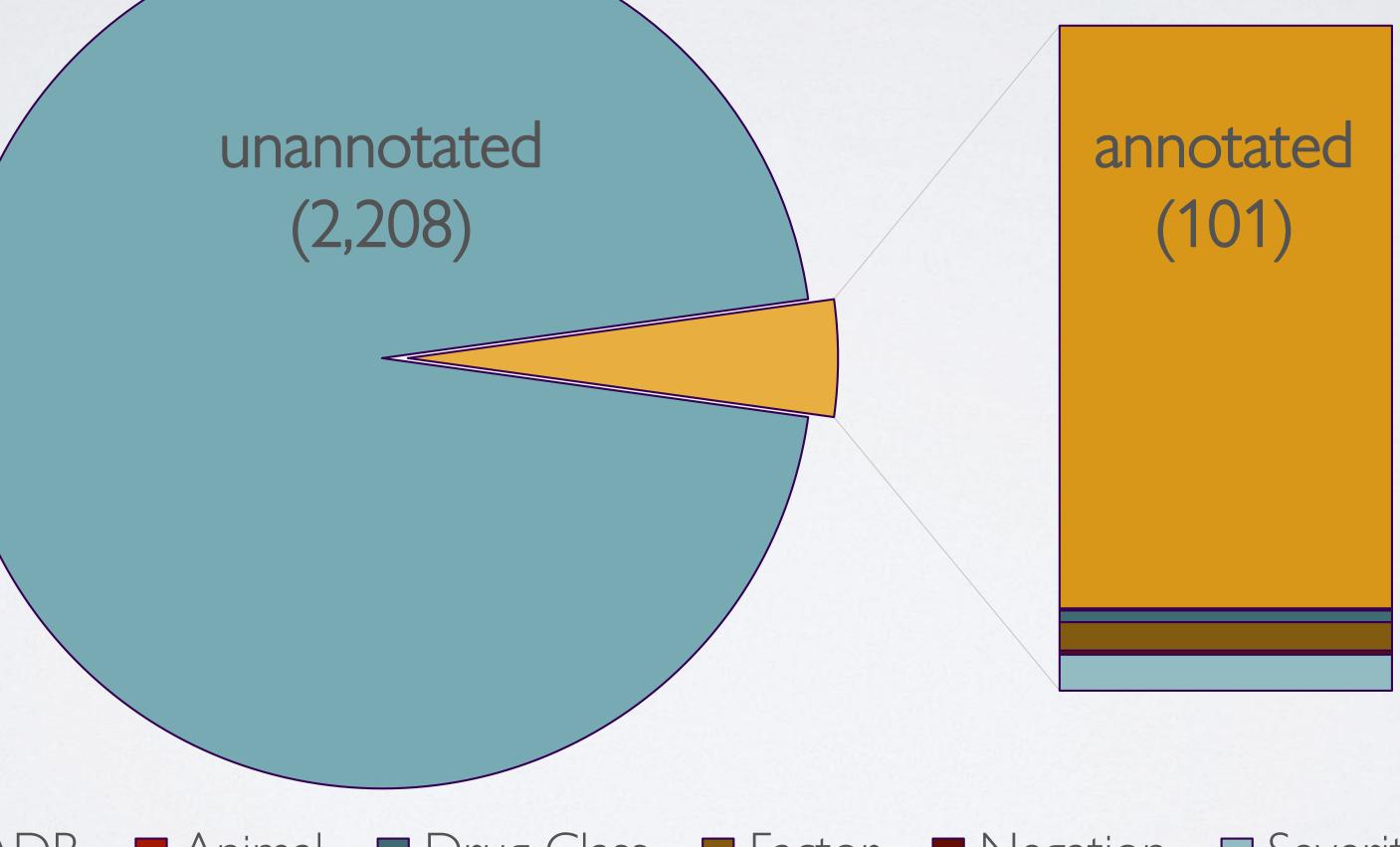
• Task 2: Logistic Regression on morphological, semantic, and

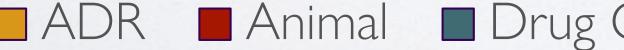
• Task 3 & 4: Rule-based approach using MetaMap + sub-term

Part I - Extraction

An Important Task • Extract clinically relevant entities (e.g., ADRs, drug classes)

- A crucial component in drug labels
- Compare ADRs extracted from different labels ^[1]
- Conduct pharmacovigilance by identifying new ADRs ^[2]





Data

■ ADR ■ Animal ■ Drug Class ■ Factor ■ Negation ■ Severity

• TAC ADR 2017^[3] – Official training Set

VigiAccess.org^[4] – 18,310 unique ADRs from VigiBase

Data

• MIMIC III ^[5] – A large critical care database (clinical notes)

- Feature Extraction:
 - Normalized tokens e.g., fibrosis, nausea, grade D (normalized from 4) proteinuria
 - POS tags e.g., NNP, CD, VB
 - Word embeddings: 100D word vectors ^[6] trained from:
 - MIMIC III clinical notes
 - TAC ADR 2017 official training set 2,309 drug labels
 - Window size on tokens and POS tags: ± 2^[7]
- 5-fold Cross Validated on CRFs
 - 101 annotated records •

ADRs Extraction

Results: ADRs Extraction

F1-measure (exact match) on the training and test sets

Dataset	Vectors	ADR	Animal	Drug	Factor	Negation	Severity	Micro-Avg
Training	MIMIC III	0.756	0.798	0.155	0.523	0.258	0.587	0.730
Training	TAC	0.762	0.786	0.143	0.532	0.309	0.592	0.735
Test 1	TAC	N/A	N/A	N/A	N/A	N/A	N/A	0.701
Test 2	N/A	N/A	N/A	N/A	N/A	N/A	N/A	0.629

Test 1: Results from the 1st and 2nd run. Test 2: Result form the 3rd run.

Discussion

• Entities that contain multiple or overlapped phrases increased alanine transaminase (ALT) \rightarrow M1: increased alanine transaminase M2: increased ALT exacerbation of pre-existing diabetes mellitus \rightarrow M3: exacerbation diabetes mellitus

ADRs Extraction

- A pure machine learning-based system
- Small feature set
- Word embeddings trained on TAC ADR (dataset)
- No external resource (1st and 2nd run, task 1)

Part II – Normalization

- Identifying positive ADRs
- Not independently performed
- 2 tasks
- Find no exception on the training set

Task 3

Rule-based filtering from the output of the previous

Normalization of positive ADRs

Rule based approach

Negfinder, Peregrine, etc

- lack of training data (2,927 unique instances from 101 files)

Task 4

- robust pre-existing tools such as MetaMap, Mgrep,

MetaMap BioMedical concept detector developed by Dr. Alan

- Aronson at NLM[8]
- Tested various combinations of MetaMap options
- NLM database with 'Term Processing' and 'Ignore' Word Order' option

- (by Term Processing) Inputs are not chunked into separate component

Abbreviation Extractor

- Frequent usage of abbreviation in drug labels Needs to reduce ambiguity from the use of abbreviation (Example 1) SJS – Schwartz-Jampel Syndrome /
 - (Example 2) PML Not recognized by MetaMap

Stevens-Johnson Syndrome

Cases when AE's effective

- When NER system fails to detect full expansions.
- different medical concept.

(Examples) increased AST (Aspartate Aminotransferase), increase in ALT (Alanine Aminotransferase), extrapulmonary TB (Tuberculosis), pulmonary TB (Tuberculosis)

When abbreviations are combined with other words and make

Abbreviation Extractor <ADCETRIS® Label >

) 5.9 WARNING: PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY (PML)

BOXED WARNING: WARNING: PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY (PML) WARNING: PROGRESSIVE MULTIFOCAL LEUKOENCEPHALOPATHY (PML) JC virus infection resulting in PML and death can occur in patients receiving ADCETRIS [see Warnings and Precautions (EXCERPT:

See Full Prescribing Information for complete boxed warning.

5.11 Serious Dermatologic Reactions

Stevens-Johnson syndrome (SJS) and toxic epidermal necrolysis (TEN), including fatal outcomes, have been reported with ADCETRIS. If SJS or TE appropriate medical therapy.

- Substitute abbreviations with full expansions

Collect acronyms and build dictionary for each drug label

- Another BioMedical concept detector developed by Dr. Chris Lu at NLM[9]
- Chunked inputs into separate components - find sub-terms and their synonymic terms - substitute sub-term with synonymic terms to find relevant CUI

(Example) 'Fetal Harm' : not recognized by MeteMap STMT detects and substitutes 'harm' to the synonymic term, 'damage' -> 'Foetal Damage'

STMT

<F1-measures of Task 3>

Dataset	Precision	Recall	F1-measure
Training	1.000	1.000	1.000
Test	0.732	0.689	0.703

* The score on the training set is assuming we have perfect outputs from previous tasks.

Result

<F1-measures of Task 4>

Dataset	Precision	Recall	F1-measure
Training	0.900	0.809	0.852
Test	0.853	0.728	0.780

* The score on the training set is assuming we have perfect outputs from previous tasks.

Result

Extracting and Normalizing ADRs from Drug Labels

Carson Tao mtao@albany.edu

Kahyun Lee klee27@albany.edu

References

[1] Food and Drug Administration. Guidance for Industry-Adverse Reactions Section of Labeling for Human Prescription Drug and Biological Products—Content and Format. Rockville, MD: US Department of Health and Human Services. 2006.

[2] Guidance D. Guidance for Industry. Center for Drug Evaluation and Research (CDER). 2013 Feb;37:38. [3] Adverse Drug Reaction Extraction from Drug Labels. US National Library of Medicine. https://bionlp.nlm.nih.gov/tac2017adversereactions/ (accessed November 13, 2017). [4] VigiAccess. (n.d.). Retrieved October 26, 2017, from http://www.vigiaccess.org/ [5] Johnson AE, Pollard TJ, Shen L, Lehman LW, Feng M, Ghassemi M, Moody B, Szolovits P, Celi LA, Mark RG. MIMIC-III, a freely accessible critical care database. Scientific data. 2016;3. [6] Pennington J. Socher R. Manning C. Glove: Global vectors for word representation. InProceedings of the 2014 conference on empirical methods in natural language processing (EMNLP) 2014 (pp. 1532-1543). [7] Tao C, Filannino M, Uzuner Ö. Prescription extraction using CRFs and word embeddings. Journal of Biomedical Informatics. 2017 Aug 1;72:60-6.

[8] Aronson AR. Effective mapping of biomedical text to the UMLS Metathesaurus: the MetaMap program. InProceedings of the AMIA Symposium 2001 (p. 17). American Medical Informatics Association. [9] Lu CJ, Browne AC. Development of Sub-Term Mapping Tools (STMT). In AMIA 2012.