uc3m

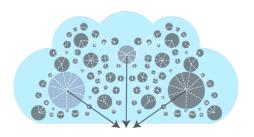
Machine learning vs. knowledge based approaches to ADR identification

Topics

- . Short about us
- . Identifying ADRs
- . Machine Learning for semantic relations identification
- . Results
- . Challenges

SHORT ABOUT US

Focus on text-analytics for Pharmaceuticals. Since 1998



Other text sources

Scientific literature - FDA -Patents – Business opportunities

Voice of the Patient

Electronic Health Records

SHORT ABOUT US

Advanced Databases Group, Universidad Carlos III de Madrid

- Research lines:
 - Natural language processing
 - Accessibility
- Resources produced:
 - Drug-drug-interaction collection (DDI Corpus)
 - DINTO ontology

Our goal at TAC ADR

66

Combine Knowledge Based with Machine Learning

Based approaches to leverage ADR identification"

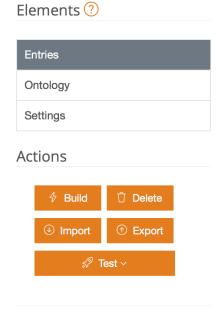
Identifying ADRs

TOPIC EXTRACTION NLP and Resource based approach

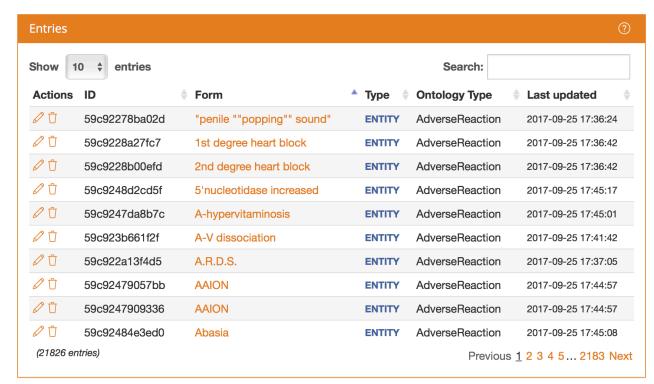
。SIDER

。UMLS

Training corpus



Do you need more information? Check out the documentation, or just drop us a line through our support form.



+ Add new entry

TOPIC EXTRACTION NLP and Resource based approach

。SIDER

。UMLS

Training corpus

sementity:

class: instance

type: Top>AdverseReaction

meddra_llt: AAION

meddra_llt_id: 10068247

meddra_pt: Optic ischaemic neuropathy

meddra_pt_id: 10030924

cui_id: C2242711

meddracui id: C0155305

source: SIDER

sementity:

class: instance

type: Top>AdverseReaction

meddra IIt: AAION

meddra_llt_id: 10068247

meddra_pt: Arteritic anterior ischaemic optic neuropathy

meddra_pt_id: 10030924

cui_id: C2242711

meddracui id: C2242711

source: SIDER

Dictionary	#entries
Adverse Reactions	21,826
Factor	41
Severity	158
Animal	27
DrugClass	101

TOPIC EXTRACTION NLP and Resource based approach

And some rules to identify negation:

```
<<without|exclude|decrease|reduce>> :-
ENTITY{"type":"NegationLeft", "label":"$1"}
+ CONSUME{}
<<{AFFECTEDADR}>> :-
ENTITY{"type":"AffectedAdr", "label":"$1"}

"...without associated bleeding events. ..."
```

. MeaningCloud Insights Engine API supports this rule syntax

Machine Learning for semantic relations identification

Machine learning for semantic relations identification

Representing ADR mention context through a set of features:

> M1TXT, M2TXT, BWTXT: the text of both/between mentions.

ADRMention – Other pairs (where Other is Severity, DrugClass, Negation, Animal or Factor)

- > C1BOW, C2BOW: bag-of-words of both mentions.
- > C1POS, C2POS: part of speech of both mentions.
- ➤ PB1POS, PA1POS, PB2POS, PA2POS, PWPOS: the PoS tags of the two tokens before after/between both mentions.
- > WA1TXT, WB2TXT, WA2TXT, WB1TXT: the two tokens after/before the mention.
- ➤ LA1LEM, LB2LEM, LA2LEM, LB1LEM: the lemmas of the two tokens after/before both mentions.
- > LWLEM: the lemmas between of the two mentions
- > NTOKB: the number of tokens between the two mentions.

Machine learning for semantic relations identification

And the algorithm?

- SVM, support vector machines (using scikit-learn on Python)
- Specifically, SVC implementation:
 - Default parameter values
 - Linear kernel

But, no deep learning??!!

Of course (CNN), but not in the official runs.

Results

Results

• Task 1. ADR and related entities

Type	P	R	F1
Exact (+type)	54.79	66.33	60.01
Exact (-type)	55.78	66.34	60.60

Table 3: Task 1 results on the test set.

Type	P	R	F1
AdverseReaction	63.82	70.77	67.12
Severity	37.13	49.52	42.44
Factor	4.05	7.65	5.3
Negation	10.59	53.76	17.7
DrugClass	19.23	39.63	25.9
Animal	76.56	56.98	65.33
Macro	54.79	66.33	60.01

Low precision!!

Table 4: Task 1 results by type of mention on the test set.

• Task 2. Relations between ADRs and entities

Type of Relation	P	R	F1
Negated	8.43	4.86	6.17
Hypothetical	5.95	9.56	7.34
Effect	24.94	25.74	25.33
Macro	12.19	15.59	13.68

Table 5: Task 2 results on the test set.

Type of Relation	P	R	F1
Negated	1.12	27.59	2.15
Hypothetical	35.5	52.49	42.36
Effect	24.93	48.77	32.99
Macro	46.7	49.97	47.32

Oh, oh!!

Table 6: Task 2 results using correct mentions on the test set.

Results

• Task 3. Positive ADRs

	P	R	F1
Micro	70.03	71.42	70.71
Macro	69.23	72.93	70.13

Table 7: Task 3 results on the test set.

• Task 4. Normalization through MedDRA

	P	R	F 1
Micro	73.40	80.25	76.67
Macro	72.10	80.38	75.29

Table 8: Task 4 results on the test set.

Pretty good!! Only a few negated mentions?

Using dictionaries with semantic information produces nice results

Challenges

Challenges

Negation identification requires more effort (not only on the ADRs field).
 Some weird things found in the test set:

Eg.: The most frequently observed malignancies other than non-melanoma skin cancer ...

Negation?

CNNs and the use of syntactic features improves results

	Р	R	F1
Other	0.71	0.81	0.76
Negated	0.72	0.40	0.51
Hypothetical	0.75	0.75	0.75
Effect	0.76	0.61	0.68
Avg / total	0.73	0.73	0.73

Challenges

- Recall must be improved:
 - o separated multiword mentions
 - o ADRs with no MedDRA code, enough lexical resources?
- How to approach errors when applying deep learning?
- Enough accuracy for practical applications? What does FDA think?

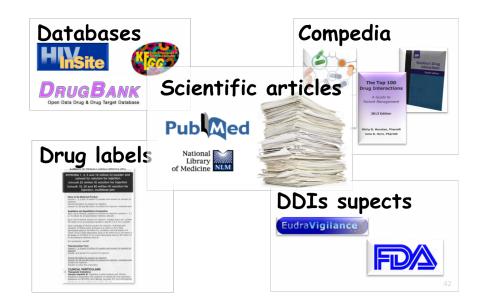
Thanks

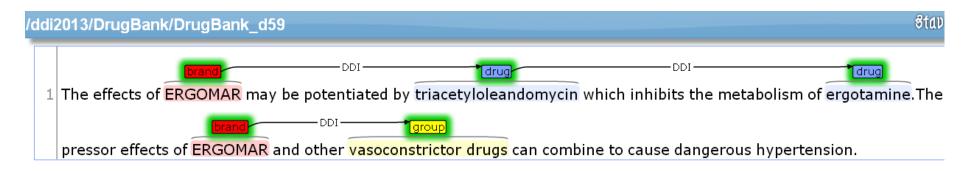
QUESTIONS?

LabDA Resources

Corpus DDI (Drug-Drug Interactions)

- 1,025 annotated documents, 18,502 entities and5,028 DDIs (by expert pharma)
- MedLine and DrugBank texts
- Annotatins guidelines and interannotator agreement.
- Available at labda.inf.uc3m.es
- Used at DDIExtraction 2011 and DDIExtraction 2013
 Semeval Tasks

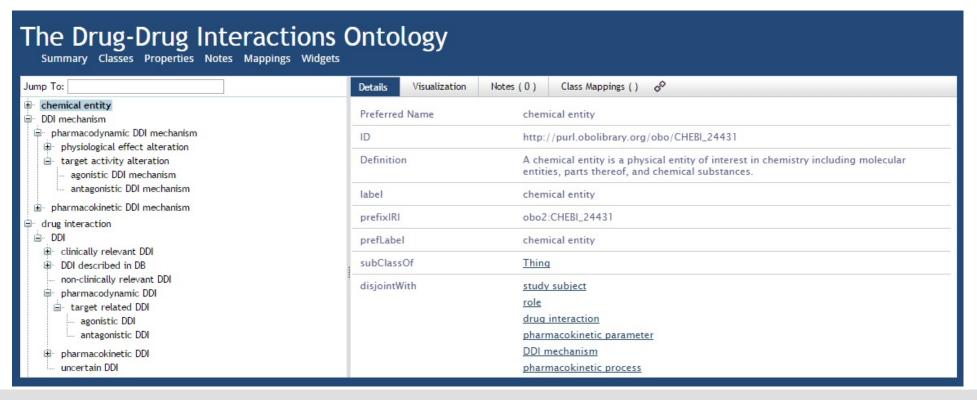




LabDA Resources

DINTO Ontology- knowledge about drugs and interations (11,555 DDIs and 8,786 pharmacological entities). Available at OBO Foundry

Application to Information Extraction and Prediction





MeaningCloud LLC

Automating the extraction of Meaning from any information source.

Address

35-37 36th Street 11106 Astoria NY

Contact Info

jmartinez@meaningcloud.com

Telephone

Phone: +1 (646) 403-3104

meaningcloud.com

