
The TAI System for Trilingual Entity Discovery
and Linking Track in TAC KBP 2017

Tao Yang, Dong Du and Feng zhang
Tencent AI Platform Department,

100190, Beijing, P.R. China
{rigorosyang, dongdu, jayzhang}@tencent.com

Abstract

In this paper we propose the TAI’s system
for the Tri-lingual Entity Discovery and
Linking (EDL) track in TAC-KBP 2017.
EDL track in TAC KBP 2017 is to extract
named and nominal entity mentions from
a collection of textual documents in three
languages (Chinese, English and Spanish),
and link them to an existing Knowledge
Base (BaseKB). To tackle this problem,
we propose a neural-network-based sys-
tem, which is called TAI’s system here.
TAI’s system consists of two parts: Men-
tion Detection sub-system (MD) and Enti-
ty Linking sub-system (EL). MD contain-
s a two-layers stacked deep bi-directional
Long Short Term Memory (BiLSTM) to
encode the input information and a Con-
ditional Random Fields (CRF) to produce
the entity tags. Besides, we also consider
many useful features into this framework
to improve the performance of ED. EL
consists of five modules: candidates gen-
eration module, pair-wise ranking module,
NOM Resolution module, NIL prediction
module and NIL cluster module. We con-
duct experiments on the released data sets.
The experimental results show that TAI’s
system achieves 70.5 of F1 score in the
typed mention ceaf and the 67.4 of F1 s-
core in the typed mention ceaf plus.

1 Introduction

The task of EDL track in TAC KBP 2017 is
required to automatically identify and classify
named entity mentions into five pre-defined en-
tity from a collection of textual documents in
three kinds of languages (Chinese, English and
Spanish), and then link each mention to an ex-

isting Knowledge Base (BaseKB). An EDL sys-
tem is also required to cluster the NIL men-
tions. The predefined entity types are: Person
(PER), Geo-political Entity (GPE), Organization
(ORG), Facility (FAC) and Location (LOC), and
the mention types are Named (NAM) and Nomi-
nal (NOM). Besides, the textual documents come
from Newswire (NW) and Discussion Forum (DF)
and 500 core documents are manually annotated
for evaluation.

2 Overview of TAI’s System

The architecture of TAI’s system is shown in
Figure 1. TAI’s system consists of two parts:
Mention Detection sub-system (MD) and Entity
Linking sub-system (EL). The MD contains pre-
processing, mention extraction. The EL consists
of candidates generation, candidates ranking, NIL
prediction, NOM resolution and NIL cluster.

Preprocessing

Mention Extraction

Mention Detection

Candidates Generation

Candidates Ranking

NIL Prediction

NIL Cluster

Entity Linking

NOM resolution

Figure 1: The architecture of TAI’s system

3 Mention Detection

3.1 Preprocessing
The training data used here is the training and e-
valuation golden data used in 2015 and 2016 EDL
track. In preprocess step, we firstly delete the xml
tags in the raw texts and the “<quote >” region-
s from the forum texts. For Chinese, traditional
characters are converted to simplified characters.
Then the cleaned texts are tokenized by using the
corenlp tool (Manning et al., 2014). Author el-
ements are also extracted. Furthermore, in order
to reduce the error of Chinese word segment, we
use the character sequence instead of the word se-
quence in Chinese language.

3.2 The Architecture of Mention Detection
We treat mention detection as a sequence label-
ing problem which each word aligned with one
tag. There is a strong dependency between the
adjacent tags, and conditional random fields (CR-
F) (Lafferty et al., 2001) are widely used to settle
this problem. However, the disadvantage of CR-
F is that it needs complicated feature engineering
work , which is very time-consuming. In order to
reduce the manual work in feature extraction, re-
cently, deep neural networks have been applied to
obtain effective features of sentences. Therefore
in this work we use the classical neural BiLST-
M + CRF neural network model to produce the
label sequence, which have been successfully ap-
plied to Named Entity Recognition (Lample et al.,
2016). To further improve the performance, we
adopt a two-layers stacked deep BiLSTM. The ar-
chitecture of mention detection is shown in Fig-
ure 2. NOM and NAM mentions are treated as
the same and jointly detected altogether in a single
model, except for that we extract specific features
for NOM mentions.
There are three layers in our model: input layer,
representation layer and output layer.
Input Layer. We denote X = {x1, x2, ...wn} and
Y = {y1, y2, ...yn} as the input and output se-
quence. This layer aims to generate the input fea-
ture by concatenating different raw features. There
are three kinds of raw features: the word embed-
ding, the character embedding and the additional
features. Section 3.3 will elaborate these features.
These features are concatenated to generate the fi-
nal input feature as follows:

Vi = [Vi,w, Vi,c, Vi,a, ...] (1)

Representation Layer. This layer aims to gener-
ate the high level abstraction representation, which
is implemented by a two-layers stacked BiLSTM:

−→
hi = two layer LSTM(Vi) (2)
←−
hi = two layer LSTM(Vi) (3)

hi = [
−→
hi ,
←−
hi] (4)

Besides, we add the skip connection between the
input layer and the second BiLSTM layer to al-
leviate the gradient vanishing problem (Wu et al.,
2016).
Output Layer. Considering the correlation be-
tween adjacent tag, we use a linear-chain CRF
model as our output layer:

Oi = Whi (5)

s(X,Y) =

n∑
i=1

Oi,yi +

n−1∑
i=0

Tyi,yi+1 (6)

p(Y |X) =
exp(s(X,Y))∑

y∈all y
exp(s(X, y))

(7)

L = −log(p(Y |X)) (8)

where W is a k × 2p matrix, k is this number of
distinct output tags and p is the second LSTM’s
hidden unit number. O is the n × k observation
matrix, T is the transition parameter matrix which
is learned during training. Since we only mod-
el the bigram dependency of output tags, Forward
and Viterbi algorithm can be used for training and
inference. The tag scheme we used here is the
BIEOS scheme.

3.3 Features
This model has millions of parameters and the
training data is quite small. So only using the
end-to-end model with word embedding is not
enough for the task. Therefor, we consider
following features into the model.

1. Word Embedding. We used the pre-trained
word embedding instead of random ini-
tialization word embedding. It is trained
by using the wang2vec tool (Ling et al.,
2015), which has a better performance than
word2vec (Mikolov et al., 2013). We also
found that pre-training on Gigaword instead

CRF CRF CRF CRF CRF

Additional
Features

Character
Embedding

Word
Embedding

Two BiLSTM
Layers

Chain
CRF

B E O O STag

BiLSTM Block

BiLSTM Block

Figure 2: The architecture of Mention Extraction

of Wikipedia yields a boost on the perfor-
mance. The reason is that our newsware pre-
diction texts are quite similar to Gigaword
source. Beside the character embedding for
Chinese, we still generate the word embed-
ding feature.

2. Character Embedding. For English and S-
panish words, character representation is nec-
essary, which could be used to reduce Out Of
Vocabulary(OOV) problem. We use anoth-
er BiLSTM to encode the character embed-
ding (Lample et al., 2016). The architecture
is shown in Figure 3. Since Chinese charac-
ter is quite ambiguity, we use the position-
al character embedding to alleviate this prob-
lem (Chen et al., 2015), which considers the
character’s position information during train-
ing the character and word embedding.

3. Dictionary Feature. We collected entities
form Wikipedia and Baike as the dictionary
feature. The entities include person,location,
organization and facility types.

4. POS and NER Feature. For English and S-
panish, we use corenlp (Manning et al., 2014)
to generate the POS and NER results, which
are used as kinds of features. For Chinese,
we use our company’s qqseg to produce the
POS and NER features.
qqseg can segment Chinese texts and gen-
erate the POS and NER results, and the N-
ER type includes PER, ORG, LOC and other
types. It is trained using the public and pri-
vate resources. The public resource consist-
s of China Daily, Microsoft’s label data and

so on; the private resource consists of the in-
ternal business and label data, which is quite
large. The NER model is CRF model, and
the segmenter’s algorithm is word grid search
plus language model to decide the best path.

5. Word Boundary Feature. For Chinese, we
add the word boundary feature to indicates
whether this character is at the word’s bound-
ary or in the word.

6. Nom’s Feature. We found some signals are
very high for the NOM detection. Such as
“a” , “The”, “�
”,“A�”. To better recog-
nize the NOM entity, we create such features
for some selected popular NOMs in the 2016
evaluation data, such as “president” and “I
[”.

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

LSTM

Character
Embedding

Forward
LSTM

Backward
LSTM

C h i n a

Figure 3: The architecture of character embedding

3.4 Model Configurations

All the parameters are selected based on the 5-fold
cross validation. We set batch size to 8, epoches
to 50, initial learning rate to 0.01. Learning rate
will decay linear proportional to the running epoch
number. For Chinese, English and Spanish, we
set the word embedding dimensions to 100,100,64
and the LSTM hidden unit number to 200, 100 and
128. The character embedding are randomly ini-
tialized, and dimensions for English and Spanish
are set to 25 and 32. All the additional feature’s
dimension are set to 10. Dropout rate for the input
layer is set to 0.5, all numbers are translated to ze-
ro before training.
To train the UNK word, we randomly make the s-
ingletons in the training data to be UNK as (Lam-
ple et al., 2016) did. Parameter optimization is per-
formed using the SGD, and early stop is used to
prevent the over-fitting.
Moreover we also tried to use the ensemble learn-
ing to further improve the performance of mention
detection. for each language we randomly select

four parts of the whole training data from the five-
fold splits twice to train two models with different
parameters initialization.

4 Entity Linking

In the entity linking (EL) task, each detected
mention (including NAM and NOM) should be
linked to an entity in the provided knowledge base
(namely the BaseKB), or labeled as NIL if it can-
not be found in the knowledge base. Finally all the
NILs should be clustered. Our EL system has five
sub modules.

4.1 Candidates Generation

In this module we need to generate candidate en-
tities for each detected mention. This module is
crucial for the EL performance because it greatly
influence the recall.
In the first step we offline built the alias-to-entities
dictionary. Specifically, firstly the mapping be-
tween the entity’s name and id in BaseKB are
added into this dictionary. Then we need to mine
as many as possible aliases for these entities. We
mine those entities’ aliases from the Wikipedia’s
title, anchor texts, disambiguate pages and redi-
rect information. We also add some aliases from
Baike and Google translation service for Chinese.
Besides, we also split the PER entity’s name into
substrings to generate its aliases.
For each NAM mention, The way to generate it-
s candidate entities set is as follows: firstly we
match the mention string with the aliases in this
dictionary, and all the candidate entities are added
into the set if found. Then Fuzzy matching is en-
abled to search again. We also search the whole
documents to find whether it is other mentions’
substring, such as Bush and George Bush. If it is
found, all the longer mention’s candidate entities
will be added into the set.
If the candidate entities set is empty, make it NIL
directly. If the candidate entity set size is more
than 100, it needs to be truncated. The truncation
is based on the entity’s prior popularity feature.

4.2 Candidates Ranking

For each NAM mention, we need to identify it-
s target entity from the candidate entities which
generated in section 4.1. We adopt the pair-
wise rank model lambdaMART to settle the prob-
lem. Specifically, the ranking pair consists of
the target entity et and the non-target entity ei:

< et, ei >, et should be ranking higher than all
the ei. Many handcrafted features are created, in-
cluding the mention level feature, entity level fea-
ture, mention-to-entity feature and entity-to-entity
feature. The features are listed as follows:

1. PageRank-Based Popular. This feature can
be used to measure the prior importance of
the given entity. It is calculated by page rank
algorithm based on the link information of
Wikipedia’s anchors and the structural infor-
mation of BaseKB.

2. Language Number. The feature is the lan-
guage numbers of this Wikipedia’s page. It
is still a popular class feature, there are more
language numbers, it’s more probably popu-
lar.

3. Mention Link Probability. It is calculated
by the Wikipedia’s anchors as follows:

link prob(m, c) =
count(m, c)∑
c′ count(m, c′)

(9)

m is the mention and the c is the linked
page(entity). count(m, c) is the total co-
occurrence count of m and c.

4. Document Type. The document type , NW
or DF.

5. Mention’s Entity Type. The entity type
which are extracted by mention detection, in-
cluding PER, LOC, ORG, FAC and GPE.

6. BaseKB’s Entity Type. Some selected
BaseKB entity types, as showed in table 1.

7. Entity’s Properties appeared in the Con-
text. This feature indicates that whether the
properties for some entity appearing in it’s
context.

8. Word similarity between the Entity and
the Context based on Bow. Entity’s descrip-
tion and the entity’s context are represented
by the bag of words, and then we compute the
jaccard and cosine similarity score between
the entity’s description and the entity’s con-
text.

9. Semantic similarity between the Entity
and the Context based on DSSM model.

We use DSSM model (Deep Structured Se-
mantic Model)(Huang et al., 2013) to pro-
duce entities’ semantic representation. First-
ly, we use the Wikipedia’s text to represen-
t each entity, the anchor as the target entity,
the surrounding words as the context. Then
DSSM model is pre-trained using these da-
ta. After that the network is fine-tuned by
the KBP training data. When predicting, we
will calculate the semantic similarity score
between each candidate entity and its contex-
t. The DSSM architecture is shown in Figure
4. pair-wise ranking loss is adopted:

L = max{0,M − (cos(et, c)− (cos(ei, c)))} (10)

10. Max WLM Score. The max WLM s-
core(Milne, 2007) between current entity and
the other mentions’ candidate entities. the
WLM score is calculated as follows:

WLM(e1, e2) = 1−
log(max(|S(e1)|, |S(e2)|)−max(|S(e1)

⋂
S(e2)|))

log(|W |)− log(min(|S(e1)|, |S(e2)|))
(11)

The W means the whole page set, the S(e1)
is the page set linked to e1. This score is
widely used to represent the semantic relat-
edness score between entities.

11. Global Coherent Score. The features men-
tioned above are local level features, which
consider entities independently (the WLM
feature considered the entity-to-entity seman-
tic relatedness, but it is still entity indepen-
dent). Semantic associations exists between
entities in a document, so collective disam-
biguation methods are proposed to jointly
disambiguate entities in a document. Solv-
ing this problem is a NP-hard problem and
the classic method is the graph-based model
proposed in (Han et al., 2011).
There are two types of edges in the graph:
mention-to-entity edge and entity-to-entity
edge. The weight of mention-to-entity edge
is the word similarity between the entity and
the context based on bow, the weight of
entity-to-entity edge is the WLM score. All
the weights are normalized as follows:

P (m→ e) =
Sim(m, e)∑

e∈Nm
Sim(m, e)

(12)

P (ei → ej) =
WLM(ei, ej)∑

e∈Nei
WLM(ei, e)

(13)

where Nm is the set of the neighbor entities
of mention m, Ne is the set of neighbor en-
tities of entity e. After the graph is created,
personalized page rank algorithm is adopted
as described in (Han et al., 2011).

200 Dim

300 Dim

Context’s
BOW

Consin Consin

300 Dim

200 Dim

300 Dim

Target
Entity’s BOW

300 Dim

200 Dim

300 Dim

Negative
Entity’s BOW

300 Dim

Figure 4: The architecture of DSSM

We tried two settings for entity linking, one is to
learn the ranking model in separate languages, and
the other is to combine the three languages’ train-
ing data to learn.

4.3 NIL Prediction
The target entity for this mention may be not in the
candidate entity set, namely the first ranked entity
is not the right answer. So we need to validation
it.
We adopt another binary classification model to
make the decision. Apart from the features used
by the ranking model, additional features are
added. They are the first ranked entity’s score, the
differential between the top score and the second
place’s score, the standard error of all the scores
and so on.

4.4 NOM Resolution
The ranking and NIL prediction models men-
tioned above are focusing on resolving the NAM
mentions’ target entities. We also need to resolve
the NOM mentions’. Many rules are proposed to
decide the NOMs link id. For Instance we can di-
rectly link “government” in the “the governmen-
t of United States” from the pre-compiled dictio-
nary; link the NOM to the nearest NAM with the

organization.organization
location.location

geography
location.country

location.administrative
division

location.statistical region
people.person

architecture.structure
government.governmental body

base.newsevents.news reporting organisation
government.government

government.legislative committee
aviation.airport

education.educational institution
base.prison.prison

government.governmental jurisdiction

Table 1: The selected entity type in BaseKB as EL
ranking features.

same type such as “ ÌR” in the “ I[ÌRS
C²”; select the most frequent GPE for the GPE
NOM in this document and so on.
Expect these rules, we also train a simple binary
classification model. We collected all the NAMs
which appear in the NOM’s context and then cre-
ate features for each NOM and NAM pair, to clas-
sify whether this NOM linked to this NAM. This
model’s feature includes the word bigrams, POS
and the dependency paths.
If the NOM is still not linked, make it NIL.

4.5 NIL Cluster

In the final step we need to cluster all the NILs.
This is mainly based on rules. Specifically for all
the NIL mention in the same doc, we cluster them
according to the mention string. Authors and the
text’s NIL mentions are clustered altogether. For
person mention, if mention string partially match,
we also cluster them. Some special rules are also
created. For example, for the “¢Ì” in CMN DF,
we always cluster it with the first author.
In this module we also correct the entity type
based on rules. Specifically, we build the link id
to entity type dictionary based on the 2015 and
2016 golden data which has high confidence, such
as EU to GPE. We adopt this dictionary to correct
the entity type.

5 Results

Because the number of model’s parameter is much
larger than the training data, we select 30 percent
training data as the development data to preven-
t over-fitting (has dev). The disadvantage of this
method is that it cannot train the model with the
whole training data set. To settle the problem, we
also train the model by using the entire training
data with dropout mechanics to prevent the over-
fitting (no dev). For Spanish’s mention detection,
one setting is that combining the English and S-
panish training data (spa combine).
As for entity linking task, we has two settings: one
is to learn the ranking model in separate languages
(el separate), and the other is to combine the three
languages’ training data to learn (el combined).
Three kinds of combinations are experimented:
no dev + el separate, has dev + el combined,
has dev + el combined + spa combine. The third
one achieves 69.7 F1 score which is the best a-
mong the three.

5.1 Predicted NIL NOM’s impact on the
mention ceaf

The five-fold cross validation experimental result-
s on the 2016’s evaluation data shows that if we
remove the NIL NOM from the final results, the
mention ceaf score will improve about 1 point sta-
bly. One possible reason is that removing NIL
NOM will reduce the strong typed mention match
F1 score, but the precision is better, and the men-
tion ceaf class metric is quite sensitive to the men-
tion detection’s precision or the NOM’s precision.
To confirm this, we generate a new run by re-
moving all the NIL NOM from the above op-
tion two. The final results agree with our con-
clusion, although the mention detection’s perfor-
mance degrades, the typed mention ceaf metric
grows up. the new run is our best run according
to the type mention ceaf metric, even better than
the above option three. table 2 shows the detailed
results.

6 Conclusion

In EDL track of TAC BKP 2017, we propose
TAI’s system to settle the problem, which contains
Entity Mention Detection sub-system (EMD) and
Entity Linking sub-system (EL). The experimen-
tal results show the effectiveness of our proposed
method. But it still has shortcoming. In the fu-
ture work, we can explore some more useful mod-

strong typed mention ceaf strong typed all match typed mention ceaf
Language Run Prec. Rec. F1 Prec. Rec. F1 Prec. Rec. F1
Trilingual option two 0.813 0.753 0.782 0.700 0.648 0.673 0.719 0.666 0.691
Trilingual new run 0.850 0.686 0.759 0.760 0.613 0.678 0.790 0.637 0.705

CMN option two 0.839 0.721 0.775 0.763 0.655 0.705 0.782 0.672 0.723
CMN new run 0.871 0.695 0.773 0.800 0.638 0.710 0.824 0.658 0.732
ENG option two 0.779 0.789 0.784 0.664 0.672 0.668 0.683 0.692 0.688
ENG new run 0.817 0.692 0.749 0.721 0.611 0.662 0.761 0.645 0.699
SPA option two 0.815 0.764 0.789 0.655 0.615 0.634 0.692 0.649 0.670
SPA new run 0.855 0.667 0.749 0.742 0.578 0.650 0.787 0.613 0.689

Table 2: The comparison between the option two and the new run.

el to improve the NOM resolution. Besides, NOM
mentions’ detection also needs to be further im-
proved.

References
Xinxiong Chen, Lei Xu, Zhiyuan Liu, Maosong Sun,

and Huan-Bo Luan. 2015. Joint learning of charac-
ter and word embeddings. In IJCAI. pages 1236–
1242.

Xianpei Han, Le Sun, and Jun Zhao. 2011. Collective
entity linking in web text: a graph-based method. In
Proceedings of the 34th international ACM SIGIR
conference on Research and development in Infor-
mation Retrieval. ACM, pages 765–774.

Po-Sen Huang, Xiaodong He, Jianfeng Gao, Li Deng,
Alex Acero, and Larry Heck. 2013. Learning deep
structured semantic models for web search using
clickthrough data. In Proceedings of the 22nd ACM
international conference on Conference on informa-
tion & knowledge management. ACM, pages 2333–
2338.

John Lafferty, Andrew McCallum, and Fernando CN
Pereira. 2001. Conditional random fields: Prob-
abilistic models for segmenting and labeling se-
quence data .

Guillaume Lample, Miguel Ballesteros, Sandeep Sub-
ramanian, Kazuya Kawakami, and Chris Dyer. 2016.
Neural architectures for named entity recognition.
arXiv preprint arXiv:1603.01360 .

Wang Ling, Chris Dyer, Alan W Black, and Isabel
Trancoso. 2015. Two/too simple adaptations of
word2vec for syntax problems. In Proceedings of
the 2015 Conference of the North American Chap-
ter of the Association for Computational Linguistics:
Human Language Technologies. pages 1299–1304.

Christopher D Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David M-
cClosky. 2014. The stanford corenlp natural lan-
guage processing toolkit. In ACL (System Demon-
strations). pages 55–60.

Tomas Mikolov, Kai Chen, Greg Corrado, and Jef-
frey Dean. 2013. Efficient estimation of word rep-
resentations in vector space. arXiv preprint arX-
iv:1301.3781 .

David Milne. 2007. Computing semantic relatedness
using wikipedia link structure. In Proceedings of
the new zealand computer science research student
conference.

Huijia Wu, Jiajun Zhang, and Chengqing Zong. 2016.
An empirical exploration of skip connections for se-
quential tagging. arXiv preprint arXiv:1610.03167
.

