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Abstract

This paper describes the SUMMA system for
the Trilingual Entity Discovery and Linking
(EDL) for the TAC 2017 Knowledge Base
Population track. We used an entity recogni-
tion based on a LSTM+CRF neural network
and two different approaches for entity linking
disambiguation: a nearest-neighbors search
engine and a distributed representation based
on previous work of Yamada et al. (2017). We
submitted 3 runs for named and nominal EDL
task, across all 3 languages (English, Spanish
and Chinese). Our system scored as first out of
24 teams for named mention linking (NERLC)
and mention clustering (CEAFmC) for English
and as third in the same metrics for Spanish.

1 Introduction

Our submission to the NIST TAC-KBP-20171 is an
attempt to apply our ongoing research on knowl-
edge base population within the SUMMA2 project
to TAC shared tasks. The goal of SUMMA is
to develop a scalable and extensible media moni-
toring platform with an extensible automated knowl-
edge base construction and cross-lingual capabili-
ties, thus having a significant overlap with TAC-KBP
tasks. Following last year’s submission, restricted
to English named entity disambiguation, we present
an enhanced version of our Entity Discovery and
Linking (EDL) system adapted to the TAC EDL task,
both for named and nominal entities, and in the three
languages: English, Spanish and Chinese.

1https://tac.nist.gov//2017/KBP/
2http://www.summa-project.eu/

The paper is organized as follows: Section 2
describes our contribution to the EDL track. Exper-
imental results are reported in Section 3. Section 4
concludes the paper.

2 Entity Discovery and Linking

2.1 Overview and submissions description

Five systems were submitted to the EDL track,
although two of them were discarded as their output
did not correlate with our intentions for such runs.

Our entity linking system submitted in run #1,
summa1, uses an information retrieval Nearest-
Neighbors-assisted rule based system (Amaral et
al., 2008) to rank candidates and generate addi-
tional features from Wikipedia data. Besides nearest-
neighbors search engine generated features and prior
features, features taken from the co-occurrences
between mentions and candidates in Wikipedia, and
coherence features (existence or absence of links
between Wikipedia articles) are used in the candi-
dates re-ranking steps in this first run.

Runs #4 and #5 follow a different approach for
their disambiguation step, as they are anchored
in English distributed representations provided by
Yamada et al. (2017) for English and trained repre-
sentations using the same method for Spanish. A
slightly different deep neural network from the one
described in Yamada et al. (2017) was used in these
two runs. Besides distributed representations, run #4
also receives as input data the nearest-neighbors simi-
larity (search engine generated) features, prior and
co-occurrences features used in run #1. The under-
lying idea of these two runs (#4 and #5) was to assess



whether these distributed representations captured
more relevant information for entity disambiguation
than the co-occurrences and link statistics extracted
from Wikipedia.

2.2 Entity Recognition
2.2.1 Pre-processing of NER datasets

To improve the results for the named entity recog-
nition, we preprocessed the following corpora that
were used for training: TAC 2015 (train); Ontonotes
(train); TAC 2016 (dev).

OntoNotes was processed to achieve congruence
with the TAC dataset, namely in the name tagging and
span boundaries. Specifically, we used the domains
of broadcast news, the newswire and the web data;
we shortened span boundaries and mapped spans
with ”Nationality, or Religious or Political Organiza-
tion” (NORP) tag to GPE, LOC, ORG or no tag (tag
removed).

2.2.2 Named Entity Recognition
The used system is based on the Bi-LSTM+CRF

algorithm described by Ma and Hovy (2016)3,
where we used GloVe (Pennington et al., 2014)
300 dimensional pre-trained embeddings for English
and we used the word2vec implementation in
Gensim (Řehůřek and Sojka, 2010) to train word
embeddings on the Spanish Wikipedia, where the
anchors have been replaced by the KBID, as
described by Yamada et al. (2017).

Regarding ensemble architectures, for English we
used an ensemble model from 10 runs with randomly
initialized weights; for Spanish, we train a multilin-
gual model using both Spanish and English train data;
and for the Chinese submission, we used the Stanford
CoreNLP (Manning et al., 2014) as the NER system.

The Spanish model trained only with Spanish TAC
dataset reported low scores mainly due the scarce
amount of train data available for the language. Our
architecture might be described as a jointly trained
ensemble and it is illustrated in Figure 1.

In this architecture, English and Spanish sub-
models share the same architecture. A gating layer
is then trained with the goal of linearly combining
the logits obtained from the English and Spanish sub-
models. The gating layer takes as input the list of

3Using as starting point the TensorFlow implementation in
https://github.com/guillaumegenthial/sequence tagging
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Figure 1: Joint ensemble architecture used for Spanish
NER.

pre-trained word embeddings for each sentence and
averages it, in order to obtain sentence representa-
tions. We take the dot product of these sentences and
apply a softmax layer that is subsequently used to
linearly combine the logits.

The logits obtained from the linear combination
are then given as input to a CRF layer, such that a
single transitions tensor is learned.

The training procedure is divided into 4 different
stages, alternating between English and Spanish and
with and without gating between the languages.

2.2.3 Nominal Entity Recognition
For nominal mentions we used a lexicon-based

system where the lexicon was constructed from
training data and compiled lists. Such lexicon was
divided between two extensive lists, one containing
possible nominal PER surface mentions and other
with GPE, FAC, LOC and ORG surface mentions. In
order to create the first list, we compiled people-
related nominal mentions concerning professions,
family relations and adjectives. Regarding the second
list, it contained man-made locations pointing to FAC,
natural locations to LOC, locations with some kind
of government to GPE and companies or groups of
people to ORG. Those lists were the core of the
nominal detection system. After being identified
in the text, the mentions enter a rule-based system
where they are awarded/withdrawn points if they
meet specific parameters. The rules take into account
the context (previous and following words) as well
as part-of-speech (POS) and dependency parsing



features, extracted using TurboParser4. More points
were awarded if TurboParser classified the word as
a noun and deducted if it was classified as a verb,
for instance. The same principle was applied to the
dependency relation that the word in question had in
the sentence, once again awarding more points if the
word was the subject of the sentence. In the case of
the word being identified in one of the lists as a FAC
or ORG, the article used immediately before was
taken into consideration, awarding more points if the
article was definite and deducting if it was indefinite.
Such system was only used in English and Spanish
submission, whereas no Chinese nominal detection
was performed.

2.2.4 NER post-processing step
As we used the same previously described entity

recognition system on each submission, summa1,
summa4 and summa5 share the same mentions
list as input for the entity linking step. As a post-
processing step, we apply a string matching proce-
dure to capture named mentions that were not recog-
nized by the entity recognition system. In particular,
we extract mentions with the exact same surface as
those previously detected in the document. These
new mentions are then tagged with the types of the
old ones, according to a voting procedure that is
biased towards the PER label. Later, in Section 2.3,
some of the mentions types are also reassigned in
order to promote label agreement between mentions
in the same mention cluster (after both the co-
reference and the linking steps).

2.3 Entity Linking
In this section, we describe the multiple approaches
undertaken towards named and nominal entity disam-
biguation. Run #1, summa1, is anchored in a
nearest-neighbors-assisted ruled-based entity linking
system, of which an earlier version was submitted to
TAC KBP EDL 2016 (Paikens et al., 2017). The
mentions detected as reported in Section 2.2 are
linked to KB entries according to the rule-based
strategy that will be described in the following
sections and summarized in Algorithm 1.

Run #4, summa4, of which steps are summa-
rized in Algorithm 2, shares the same initial
steps with summa1, up to the extraction of the

4https://github.com/Priberam/TurboParser

Algorithm 1 summa1 Entity Linking System
1: High-precision sub-string match mention coreference
2: Candidate generation
3: Candidate rank step #0: information retrieval engine

(kNN algorithm) + prior statistics
4: Candidate re-rank step #1: accounting for co-

occurrences between all mentions candidates
5: Candidate re-rank step #2: accounting for coherence
6: Attempt to fix NIL mentions with edit distance

threshold
7: Nominal mentions disambiguation
8: Global NIL clustering and cross-document coherence

following features: nearest-neighbors similarity
features, Wikipedia prior features and features taken
from the co-occurrences between all mention candi-
dates. It then follows a different approach for the
named disambiguation step. Following recent work
towards jointly mapping words and entities into the
same continuous vector space, we used the English
distributed representations provided by Yamada et al.
(2017) for English and trained Spanish representa-
tions using the same method. However, our ranking
neural network architecture differs from Yamada et
al. (2017). The differences will be outlined further in
the disambiguation section. The nominal resolution
and post-processing step is the same as in summa1.

Algorithm 2 summa4 Entity Linking System
1: High-precision sub-string match mention coreference
2: Candidate generation
3: Features generation: information retrieval engine

(KNN algorithm) + prior statistics + mentions candi-
dates co-occurrences

4: Distributed representation neural network disambigua-
tion

5: Nominal mentions disambiguation
6: Global NIL clustering and cross-document coherence

Run #5, summa5, only shares the initial high-
precision sub-string match mention coreference step
(mention clustering) and the final steps. Its candi-
date generation differs from summa4 in the way
the candidate list is expanded to reach optimal
coverage. The disambiguation step is similar to the
one used in summa4, with the only difference, that
no search engine features are used but a document
level coreference feature and a feature describing
the level of fuzziness that was used to retrieve a



candidate. As in summa4, the nominal resolution
and post-processing step is the same as in summa1.
Summa5 can be described in the Algorithm 3.

Algorithm 3 summa5 Entity Linking System
1: High-precision sub-string match mention coreference
2: Candidate generation (different from run #1 and #4)
3: Distributed representation neural network disambigua-

tion
4: Nominal mentions disambiguation
5: Global NIL clustering and cross-document coherence

Entity linking indexes In the search-engine-
assisted runs, due to the necessity of linking recog-
nized mentions to known entities, such task is inter-
twined with an auxiliary procedure, which involves
building a database, to be queried in run-time, in
which all linkable entities must be stored. For every
language, we generated two information-retrieval
indexes using Wikipedia as the source of informa-
tion. The first index stores the content of each entity
Wikipedia page as a bag of words, lemmas and
detected entities in an inverted index. A second index
is created, using the anchors information. Wikipedia
anchors are used to discover alternative names to
entities, to extract conditional probabilities of enti-
ties given those names and to derive co-occurrence
models of mention/entity pairs. Accordingly, each
record from such index corresponds to a unique
mention surface, and stores the information of all
the named entities that were linked from its anchor’s
occurrences, as for example, p(e|m), i.e., probability
of an entity given a mention m and the list of co-
occurrent entities with each pair mention/entity.

Mention coreference For each mention, we
perform a high-precision coreference step at the
document level by linking all the surface mentions
which are substrings of other mentions’ forms. To
preserve agreement within the coreference clusters,
we heuristically reassign some entity types with a
voting strategy.

Candidate generation Two candidate generation
mechanisms were implemented: one for summa1
and summa4 and another for summa5. In summa1
and summa4, for each mention, the candidates are
generated using the less ambiguous mention (defined
as the one with the largest span) in the corresponding

coreference cluster. Then, the candidate genera-
tion is performed based on the anchors’ statistics
in Wikipedia. In addition, for mentions with fewer
candidates (less than 50), we also consider as candi-
dates the entities whose titles have all the words of
the query mention. If even after such procedure,
the number of candidates is less than 10, the search
for candidate entities is performed in an alternate
mention index, in case of existence (i.e., another
index from other language that shares multiple entity
surface forms and/or the same alphabet).

In summa5, we only query the anchor index for
the candidate generation. First, we expand the candi-
date list by querying the index with increasingly
fuzzier searches on the anchor strings. The candidate
set is then augmented with a second round of queries,
where we restrict the set of possible candidates to
the highest ranked candidates from all mentions from
the current document. The score for ranking the
candidates is computed from the normalized TF-IDF,
boosted by the log(#(e|m)).

The criterion for expanding the candidate list with
increasingly fuzzier searches is the minimum number
of total inlinks, i.e. #(∗|m), for the set of candidates
for a mention. This hyperparameter was tuned on
training data to reach maximal coverage and was set
to 400. The fuzziness level of a query are: full string
match with an anchor, partial token overlap, partial
token overlap with edit distance 1 and prefix length
2.

Candidate ranking Let ci,k be the kth candidate
of mention mi and ssearch(ci,k,mi) be the score
of a nearest-neighbors search engine procedure that
reflects the similarity of the mention’s document with
the text of candidate ci,k composed by its Wikipedia
title and body. In the 3rd step of Algorithm 1, the
candidates of each mention mi are initially sorted
according to this ranking score ssearch(ci,k,mi).

A model is applied, and a score expressed by

smodel1(ci,k,mi) =

n∑
j=1

θj ∗ ci,kj

is obtained, in which ci,kj are ci,k’s features gener-
ated by the polynomial expansion of the nearest-
neighbors similarity features and prior features, such
as probability of an entity given a mention, and θi are



the feature weights, trained with a pairwise approach,
using SVM-rank (Joachims, 2002). For such training,
a file with a list of training queries is generated (one
query per mention), in which each line features a
mention candidate, with its features and a target
value, 1 if that candidate matches the gold one, and 0
otherwise.

Afterwards, a co-occurrence feature is computed
for the top-ranked candidates for all mentions.
Mention candidates co-occurrence feature values will
be greater whenever those entities co-occur with
more mentions and smaller the more ambiguous
those mentions are (mentions with a higher number
of candidates).

In the 4th step, another model is applied and a new
score, smodel2(ci,k), with the same expression as the
one in the previous step is obtained, but in this case
with the additional co-occurrence feature. After the
reorder by the score smodel2, one last reorder step is
applied, accounting for coherence, as discussed in
the next section.

Coherence re-rank Contrary to other state-of-the-
art entity linking methods that favor solutions in
which the entities of a same document are related
with each other and that consider all possible combi-
nation of mentions candidates (being therefore, NP
hard, (Kulkarni et al., 2009)), prior work typically
relax the general collective formulation either by
using continuous formulations (Kulkarni et al., 2009)
or by identifying sets of mentions or entities that are
somehow involved in a semantic relation (Hoffart et
al., 2011; Ratinov et al., 2011; Sil et al., 2015; Pan
et al., 2015) to tackle this problem of complexity. In
this step we focus on the top 10 candidates obtained
from the previous step and re-rank them to favor
coherence. Our envisaged coherence model resolves
each mention independently. To achieve coherence,
the score of a mention’s candidate is influenced by
its coherence with all the candidates of the other
mentions in the text:

scoherence(ci,k,mi) =
∑
j 6=i,l

sc(ci,k, cj,l)

|Cj |
, (1)

where Cj is candidate list of mention mj and
sc(ci,k, cj,l) is a score that accounts for the coher-
ence between the candidate under evaluation (ci,k)

and the lth candidate of other mention mj (cj,l), and
which is given by:

sc(ci,k, cj,l) =

{
1 + k

pj,l
, ci,k, cj,l share a link

1
2 + k

pj,l
otherwise,

(2)
where pj,l is the position of candidate cj,l according
to the previous ranking score and k is a constant that
represents the number of candidates considered for
coherence. This coherence score was empirically
designed to consider both coherence (as the exis-
tence or absence of a link) and information regarding
previous candidate order.

Our coherence model, in Equation 1, is similar
with the model that was independently proposed by
Globerson et al. (2016).

Distributed representations neural network
disambiguation Our implemented architecture
uses a simple multi-layer perceptron (MLP) classifier
with the learned representations, both from the text
and from candidate entities, as features, composed
by a relu hidden layer with dropout, followed by
a softmax output layer. Contrary to Yamada et al.
(2017), we also add context features and create an
intermediate representation of the external features
with a hidden layer. Figure 2 portraits a graphical
representation of how these features are concatenated
to form the candidate representation.

MLP Layer

Text 
Representation

Entity 
Embedding

Context 
Representation

Mention 
Features

Candidate Representation

Figure 2: Candidate representation for the neural network
disambiguation

For summa4 and summa5 the network is fed
with

• the text representations,



• the entity representations,

• the dot product between the text representations
and the entity representations,

• the context representations.

For summa4 we add the following intermediate
representations of the features from the previous step:

• NN-search-engine features,

• prior features,

• co-occurrence features.

For summa5 we add the following features:

• Indicator, if this candidate was ranked first prior
to the disambiguation for any other mention
from this document,

• the level of fuzziness that was used to generate
this candidate,

• prior features,

• character bigram overlap between the mention
and the prefix and the suffix of the anchor.

NIL disambiguation with edit distance threshold
After the named entity disambiguation, for every
mention that was not linked to any KBID, we
generate a new set of candidates for such mentions,
where their surface is compared with the other disam-
biguated named mention surfaces, their entities titles
and those entities links’ titles in the KB. If the Leven-
shtein distance between the unlinked mention surface
and those strings is smaller than 2, the corresponding
entities get through to the next phase, in which these
mentions are disambiguated in the exact same steps
described in Algorithm 1, up to the co-occurrences
re-rank step (steps 3 and 4). During this procedure,
previous disambiguated mentions are locked and
their selected KBIDs are not allowed to change.

Nominal mentions disambiguation The nominal
resolution is a step performed after the named
mention resolution. Two baseline approaches were
developed for nominal entity linking: the first
one, applied in summa4 and summa5, with the
rationale that a nominal mention is followed by a
previous mentioned named entity, aims at connecting
a nominal mention to the left-closest disambiguated
named mention entity that shares the same NER tag.

The other baseline approach, implemented in
summa1 follows the same procedure used in the
named resolution (and in the named NIL disambigua-
tion), but restricts the set of possible candidates to
the set of disambiguated named mentions entities
and their links’ entities (the procedure is the same
described in the previous section).

Global NIL clustering and cross-document coher-
ence Finally, the last step builds on top of the last
coherence step to promote a new type of coherence
that works at a corpora level. The underlying idea of
this step is to promote coherence along the entities
that co-occurred (with the same mention surface +
candidate pair) in different documents.

Let, for each mention mi, D(mi) be the set of
the entities to which the other mentions (mj 6=i) in
the document link to. For each entity ei,k to which
the surface of mention mi links to in the full corpus,
let C(ei,k,mi) be the set of entities that co-occur in
documents where the surface form of mi connects to
eik. We define the cross-document coherence score
as

scdc(ei,k,mi) = J(D(mi), C(ei,k,mi)), (3)

where J(.) is the Jaccard similarity:

J(A,B) =
A ∩B
A ∪B

.

Each mention mi is finally linked to the entity ei,k∗
with the highest cross-document coherence score, in
Equation 3.

3 Results

3.1 Entity Recognition evaluation
We evaluated the impact of using available datasets
for NER in TAC 2016 test set. The results reported
in Table 1 show that the TAC train data alone could
not achieve a great performance at NER and NERC
F-scores. The usage of TAC Ontonotes and ACE
improves the results as they add more examples to
the training step.

We believe the access to more datasets is a crucial
factor to improve the NER and NERC scores on TAC.
The best NER system from TAC 2016, USTC team
(Liu et al., 2016), reported they had access to an
in-house built dataset which led to their top perfor-
mance.



Table 1: Impact of the dataset for English named entity
recognition in TAC 2016

Dataset NER NERC
TAC 83.37 79.04

+ Ontonotes 87.35 83.82
+ ACE 87.26 83.97

For Spanish, the same was verified. Table 2
compares two approaches: one using a simple
LSTM+CRF model and another using our joint
ensemble approach reported in Section 2.2.2. Our
joint ensemble approach allowed us to use the
English dataset which improved the NER and NERC
F-scores.

Table 2: Impact of the approach and dataset for Spanish
named entity recognition in TAC 2016

Approach Dataset NER NERC
Simple TAC Spanish 82.92 79.51

Joint ensemble
TAC Spanish +
TAC English +

Ontonotes
85.58 82.69

3.2 Entity Linking evaluation
Step ablation Regarding the Nearest-Neighbors-
assisted ruled-based Entity Linking system,
submitted as summa1, we present the contribution
of each step to its performance in Table 3. Relevant
metrics are reported with the ENG and NAM filters,
at the end of steps 3, 4, 5 and 8. Every step led to
an improvement across all metrics, which offers a
cumulative noticeable improvement.

As it can be seen, the best performance is achieved
in the final step, with a cumulative improvement
across all steps of 2.4% with regard to mention
detection, type classification and linking (NERLC),
2.0% regarding document entity tagging (KBIDs)
and 2.9% with regard to clustering metrics: detection
and clustering (CEAFm) and detection, clustering and
type classification (CEAFmC). The biggest improve-
ments were due to 1) the SVM re-rank with the
co-occurrence features, contributing with 1% F1
improvement to the entity linking metrics, as the
co-occurrences prove to be relevant for the disam-
biguation; and 2) the NIL clustering and corpora-
level coherence, contributing with around 1.7% F1

improvement to the clustering metrics, as in this
step NIL mentions are clustered together and some
mentions are re-linked to other entities that have
higher cross-document coherence scores, which leads
to better clusters.

Feature ablation Contrary to Yamada et al. (2017),
in the system represented by summa4, we added
context representations and its contribution to the
performance is presented in Table 4. Such results
prove that the context features clearly contribute posi-
tively for the linking and clustering performance.

Table 5 evaluates the contribution of each set
of external features to the summa4 system perfor-
mance in the TAC KBP ELD 2016 evaluation corpus.
It is worth noticing that the difference between
training and testing with no external features and
with all features is less or equal to 0.6% in almost
all metrics (with the exception of the KBIDs metric),
which points to the fact that the distributed repre-
sentations of the text, entities and context already
provide much of the knowledge necessary for the
disambiguation. The best result is obtained with just
prior and co-occurrence features, as opposed to using
prior, co-occurrence and also the nearest-neighbors
similarity features, which points to the fact that from
the set of external features, they are the most relevant
ones and that when training with all those external
features, the system over-fitted to the training data.

Nominal resolution Our contribution to the
nominal resolution is small and the results are not
up to par with the ones in the named resolution.
However, experiments with nominal resolution show
us that with the nearest-neighbors search engine
system we are able to attain circa 0.92 recall F1 score,
using the set composed by the top-3 ranked candi-
dates retrieved for all the mentions in the document.
It is yet to be found a way to leverage such high recall
to improve precision without reducing too much the
recall, as it happens in both our baseline approaches,
where we attained around 0.25 both in precision and
recall, with the ENG-NOM filters. Future work may
involve experimenting with distributed representa-
tions of text and entities for nominal resolution.

Official scores For TAC KBP EDL 2017 we
submitted three runs, as previously described.
Regarding Monolingual English EDL (Table 6), our



Table 3: Step ablation in in Nearest-Neighbors-assisted ruled-based EL pipeline system (summa1’s system), for the
TAC KBP EDL 2016 evaluation corpus, with ENG-NAM filter.

NER NERC NERLC KBIDs CEAFm CEAFmC
first svm-rank
with nearest-neighbors
similarity features (step-3)

0.887 0.855 0.771 0.768 0.822 0.795

second svm-rank with
nearest-neighbors similarity
and co-occurrence features (step-4)

0.887 0.855 0.780 0.784 0.831 0.804

document-level
coherence (step-5)

0.887 0.855 0.783 0.788 0.834 0.807

NIL clustering and
corpora-level coherence (step-8)

0.887 0.856 0.795 0.798 0.851 0.824

Table 4: Impact of context representations in MLP classifier disambiguation (summa4’s system), for the TAC KBP
EDL 2016 evaluation corpus, with ENG-NAM filter, using no external usage of features.

NER NERC NERLC KBIDs CEAFm CEAFmC
without context representations 0.887 0.856 0.774 0.804 0.829 0.802
with context representations 0.887 0.856 0.788 0.817 0.842 0.815

Table 5: External feature ablation in MLP classifier disambiguation (summa4’s system), for the TAC KBP EDL 2016
evaluation corpus, with ENG-NAM filter.

NER NERC NERLC KBIDs CEAFm CEAFmC
no external features 0.887 0.856 0.788 0.817 0.842 0.815
just prior and co-occurrence features 0.887 0.856 0.795 0.839 0.852 0.825
prior, nearest-neighbors similarity
and co-occurrence features

0.887 0.856 0.794 0.838 0.848 0.820

NERC placed us in the 6th place, with 0.784 F1 score.
We then achieved 0.653 (5th place) for the entity
linking NERLC metric and 0.674 (4th place) for clus-
tering CEAFmC metric. Spanish results (Table 8) are
similar: 0.750 F1 score for NERC (6th place), 0.594
F1 score for NERLC (also 6th place) and 0.619 F1
score CEAFmC metric (5th place).

More impressive results were attained with the
NAM filter, specifically for Monolingual English
EDL (NAM). Although we start from a 4th place in
the NERC metric with 0.861 F1 score (best score was
0.873), we were able to achieve the 1st place both in
entity linking NERLC metric and clustering CEAFmC
metric, with 0.794 and 0.831 F1 scores, respectively
(Table 7). In the Monolingual Spanish EDL (NAM),
we rank 8th place in the NERC metric with 0.816 F1
score (best score was 0.873) and achieved 3st place
both in entity linking NERLC metric and clustering

CEAFmC metric, with 0.745 and 0.788 F1 scores,
respectively (Table 9).

4 Conclusions

This paper described the contribution of SUMMA to
the NIST TAC-KBP 2017. In this second year, we
competed in the EDL track. We developed work
on top of our TAC KBP submission of last year,
where our main contributions to the track were our co-
occurrence model and coherence steps, both intra and
inter-document, in which the latter coherence score
favors agreement between bags-of-entities along a
corpus in an original approach.

We also submitted a language independent system
to the EDL track, and although we still have a gap
to close in NER and NERC F1-scores comparing with
the best teams, we successfully managed to obtain
the 1st position in English Named disambiguation



Table 6: English results on the TAC-KBP EDL 2017 test data
Run NER NERC NERLC KBIDs CEAFm CEAFmC
summa1 0.819 0.782 0.647 0.737 0.692 0.670
summa4 0.819 0.782 0.653 0.748 0.695 0.674
summa5 0.820 0.784 0.597 0.720 0.676 0.655

Table 7: English results with NAM filter on the TAC-KBP EDL 2017 test data
Run NER NERC NERLC KBIDs CEAFm CEAFmC
summa1 0.885 0.859 0.784 0.773 0.849 0.827
summa4 0.885 0.859 0.794 0.791 0.853 0.831
summa5 0.887 0.861 0.716 0.757 0.831 0.809

Table 8: Spanish results on the TAC-KBP EDL 2017 test data
Run NER NERC NERLC KBIDs CEAFm CEAFmC
summa1
summa5

0.801 0.750 0.590 0.696 0.646 0.619

summa4 0.801 0.750 0.594 0.709 0.644 0.618

Table 9: Spanish results with NAM filter on the TAC-KBP EDL 2017 test data
Run NER NERC NERLC KBIDs CEAFm CEAFmC
summa1
summa5

0.857 0.816 0.736 0.737 0.819 0.784

summa4 0.857 0.816 0.745 0.755 0.821 0.788

both in NERLC and CEAFmC evaluation metrics and
3rd position in Spanish Named disambiguation, also
in NERLC and CEAFmC metrics.
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