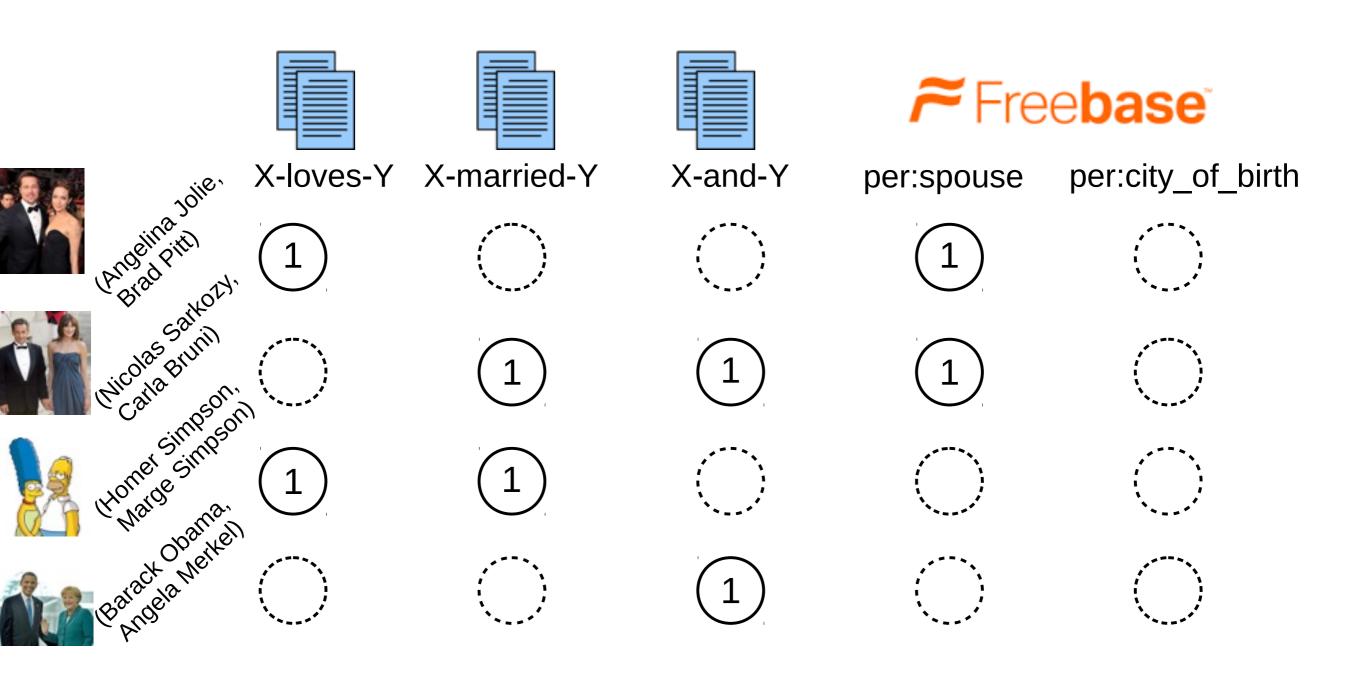
Cold Start KB and Slot-Filling Approaches UMass Amherst

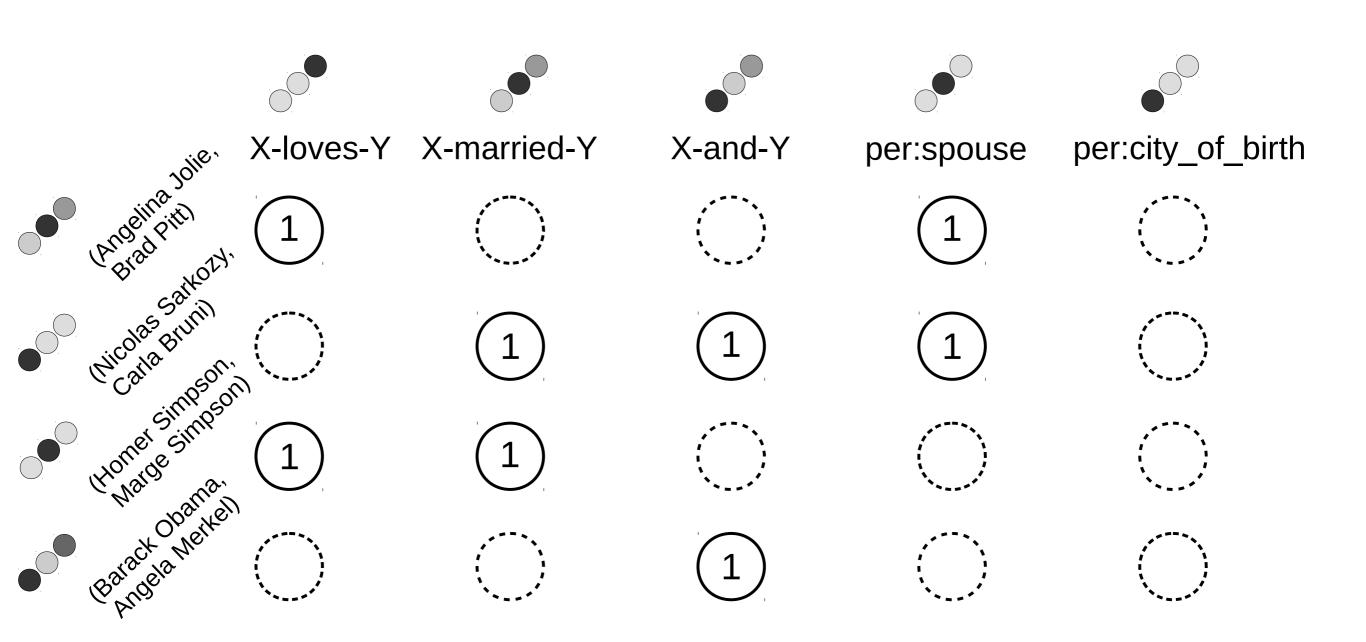
Ben Roth, Nick Monath, David Belanger, Emma Strubell, Pat Verga and Andrew McCallum

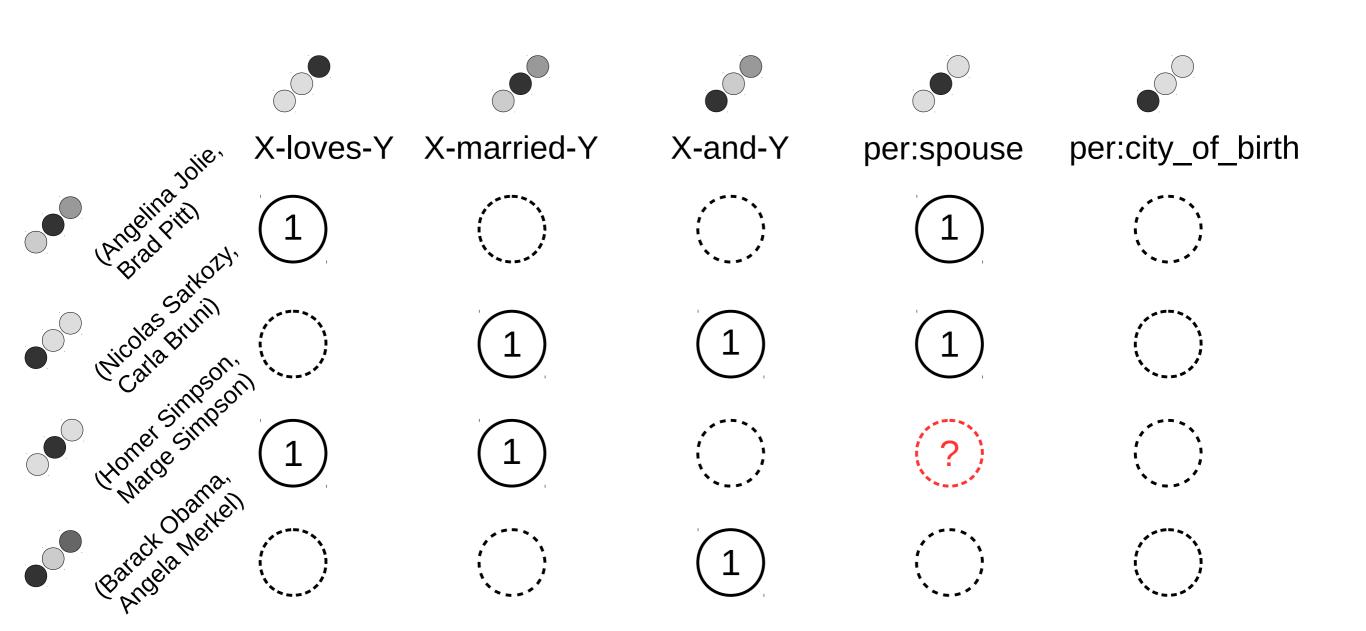
Outline

- Prediction Modules
 - · Universal Schema
 - · CNNs
 - SVMs
 - Rule-based
- Slot-Filling vs. KB architectures
 - Entity expansion
 - Entity linking
- Multi-hop queries and Precision



[Riedel et al., 2013]





per:spouse

Simpson X-married-Y

X-loves-Y Homer Sin.

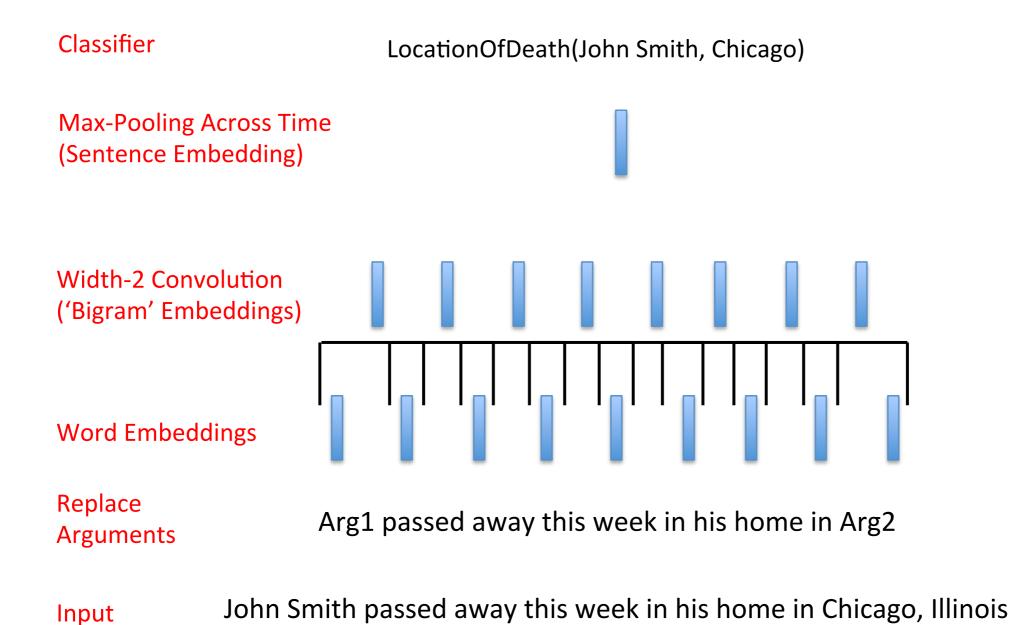
X-and-Y

per:city_of_birth

Universal Schema & Convolutional Neural Nets

- Universal Schema
 - (+) Induces smooth similarity measure between context patterns and relations
 - (+) makes use of co-occurrences of the whole corpus (Even if no direct distant supervision match)
 - · (-) Entity pairs only represented as aggregates, not mentions
 - · (-) Contexts are atomic units [PER] passed away in [LOC]
- Convolutional Neural Network
 - · related work: [Collobert et al., 2011], [Kalchbrenner et al, 2014], [Zeng et al., 2014, 2015], [Zhang and Wallace, 2015]
 - (+) Allow for **fine-grained analysis** of mention contexts
 - 'soft ngram' features
 [PER] passed away this week in his home in [LOC]
 - ngram features are known to perform well on KBP
 - (-) Requires sentence level distant supervision alignment

Relation Prediction with Convolutional Neural Nets



Outline

- Prediction Modules
 - Universal Schema
 - CNNs
 - · SVMs
 - · Rule-based
- Slot-Filling vs. KB architectures
 - Entity expansion
 - Entity linking
- Multi-hop queries and Precision

Support Vector Machines and Rule Based Modules

· SVM Module

- Set of Binary Support Vector Machine Classifiers
- Sparse n-gram features
- Trained on distant supervision data

Hand-written Rules Module

[ARG1] was born in [ARG2]

Alternate Names Module

Rules based on Wikipedia anchor text statistics

Single Modules Comparison

	Prec	Rec	F1
USchema	26.54	8.93	13.37
SVM	27.09	8.80	13.29
CNN	16.45	5.54	8.29
Rules	76.32	3.75	7.16
all	14.68	13.44	14.03
w/o CNN	22.32	14.43	17.53
all*ignoretags	9.01	16.5	11.65

Ablation Analysis

	Prec	Rec	F1
all	14.68	13.44	14.03
w/o CNN	22.32	14.43	17.53
w/o USchema	11.5	12.91	12.16
w/o SVM	17.16	11.89	14.05
w/o Rules	10.76	11.94	11.32

Outline

- Prediction Modules
 - Universal Schema
 - CNNs
 - SVMs
 - Rule-based
- Slot-Filling vs. KB architectures
 - Entity expansion
 - Entity linking
- Multi-hop queries and Precision

Slot-Filling vs. KB Pipeline

- Same prediction modules for both settings
- Only difference is in query expansion and entity linking
- Slot Filling:
 - Iterative query-based retrieval
 - Query is expanded and matched in documents
- KB Construction:
 - Knowledge-base is constructed ahead of time
 - All entities found by the NE-Tagger are linked or clustered

Query

Name: "Facebook"

Slot0: org:subsidiaries

Slot1: org:founders

"Facebook, Inc." "facebook.com"

Query

Name: "Facebook"

Slot0: org:subsidiaries

Slot1: org:founders

"Facebook, Inc." "facebook.com"

... reminiscent of **Instagram**'s parent company **Facebook Inc.** ... the \$19 billion buyout of **Whatsapp** by **Facebook** ...

Query

Name: "Facebook"

Slot0: org:subsidiaries

Slot1: org:founders

"Facebook, Inc." "facebook.com"

... reminiscent of **Instagram**'s parent company **Facebook Inc.** ... the \$19 billion buyout of **Whatsapp** by **Facebook** ...

ARG1	rel	ARG2
Facebook	org:subsidiaries	Instagram
Facebook	org:subsidiaries	Whatsapp

Query

Name: "Facebook"

Slot0: org:subsidiaries

Slot1: org:founders

"Instagram"

ARG1	rel	ARG2
Facebook	org:subsidiaries	Instagram
Facebook	org:subsidiaries	Whatsapp

Query

Name: "Facebook"

Slot0: org:subsidiaries

Slot1: org:founders

"Instagram"

.. prior to founding Instagram, Kevin Systrom was of the startup ... Mike Krieger co-founded Instagram with Kevin Systrom ...

ARG1	rel	ARG2
Facebook	org:subsidiaries	Instagram
Facebook	org:subsidiaries	Whatsapp

Query

Name: "Facebook"

Slot0: org:subsidiaries

Slot1: org:founders

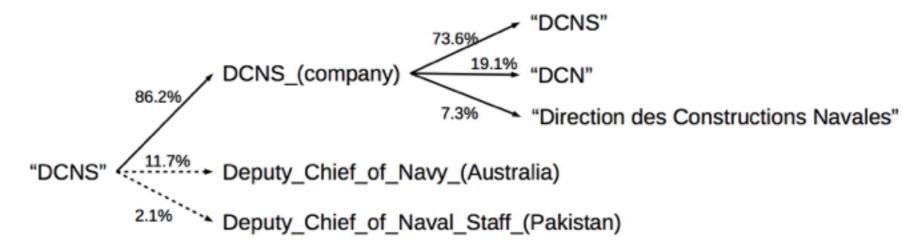
"Instagram"

.. prior to founding Instagram, Kevin Systrom was of the startup ... Mike Krieger co-founded Instagram with Kevin Systrom ...

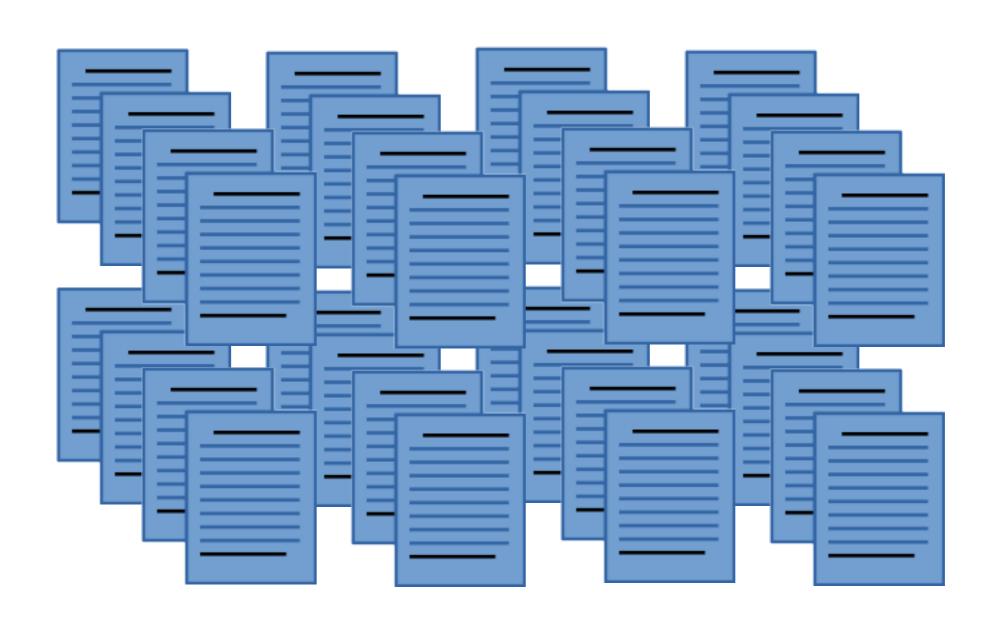
ARG1	rel	ARG2
Facebook	org:subsidiaries	Instagram
Facebook	org:subsidiaries	Whatsapp
Instagram	org:founders	Kevin Systrom
Instagram	org:founders	Mike Krieger

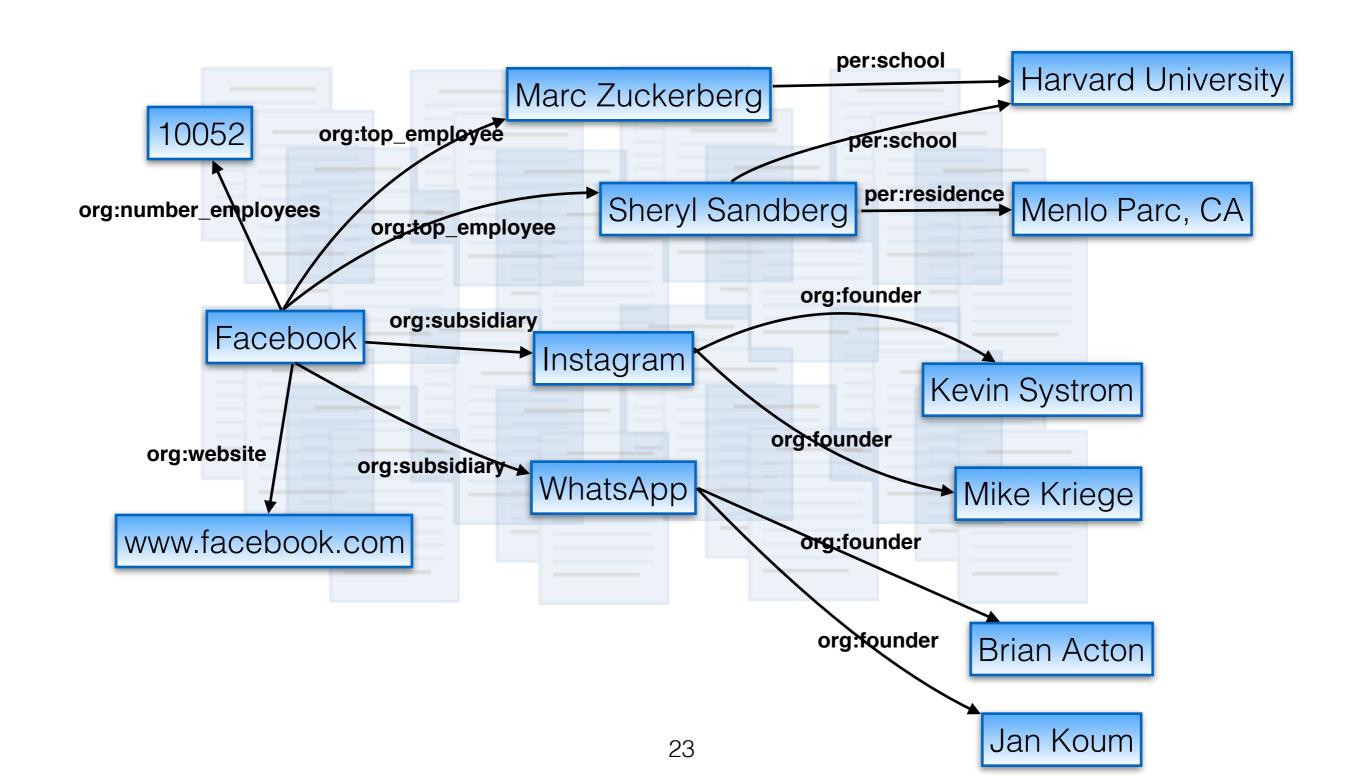
SF Setting: Entity Expansion

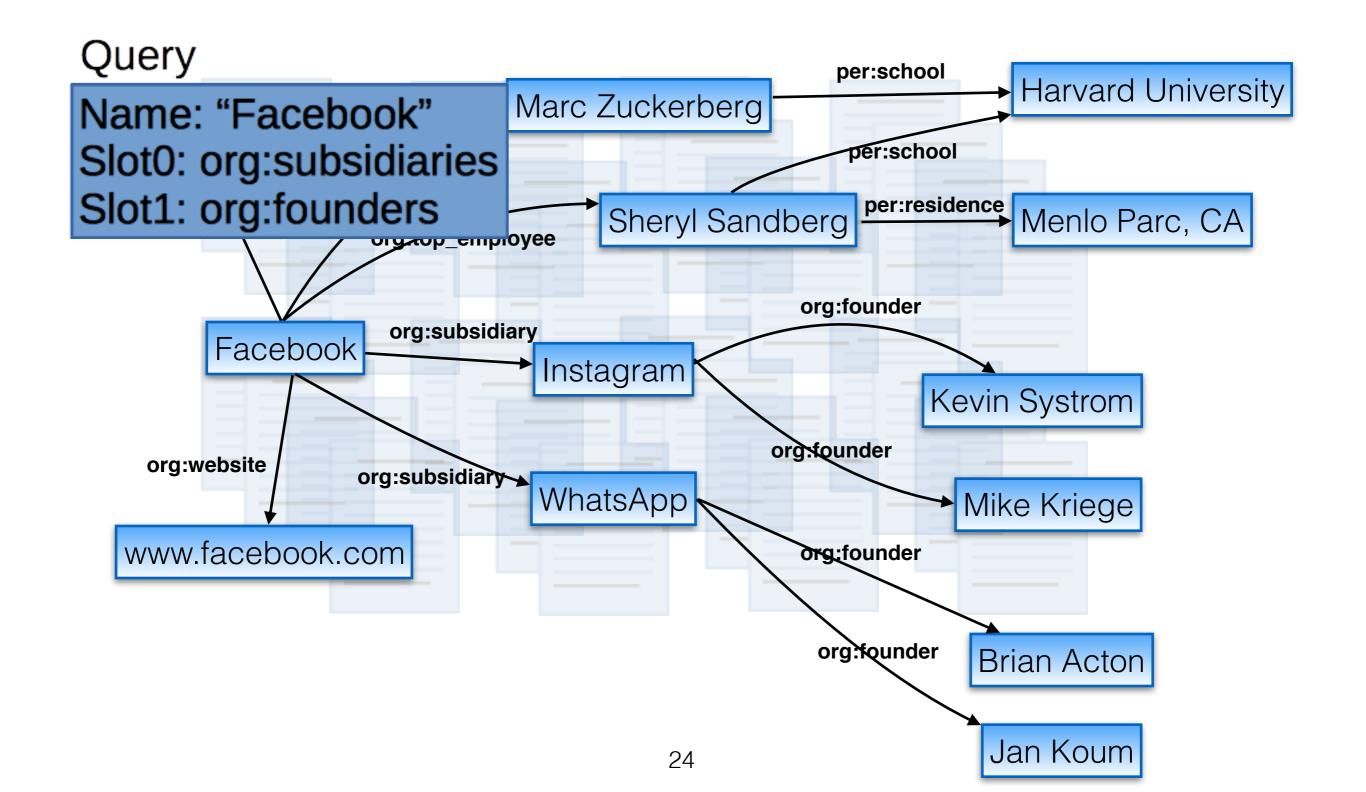
- Retrieval pipeline controls precision and recall
- Expand query to most likely anchor texts (recall)

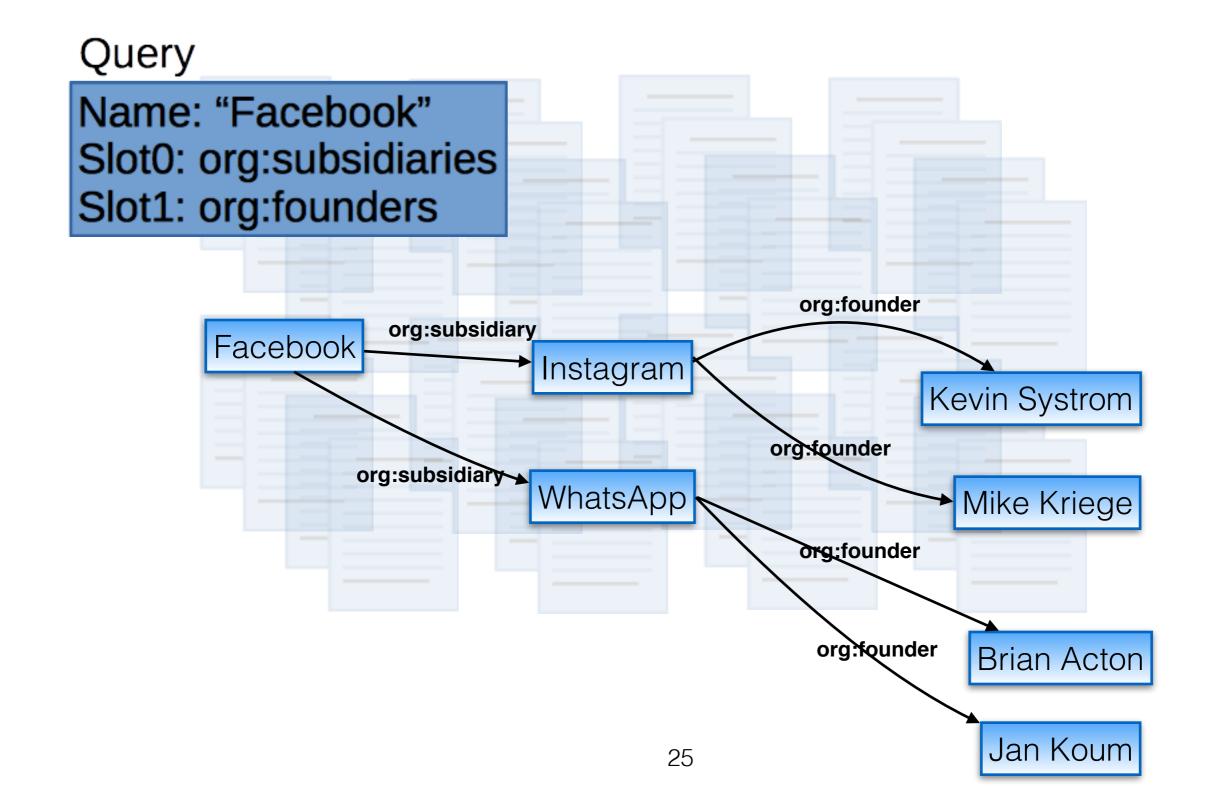


- Find single best expansion for document retrieval (precision)
 - PPMI on document collection
- After retrieval, use all expansions for query matching (recall)









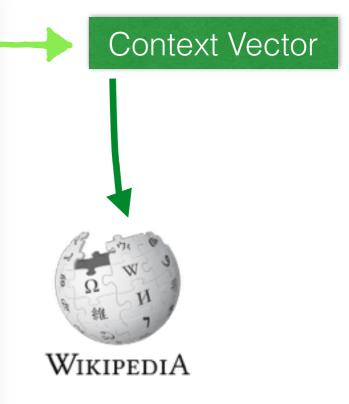
The American Federation of Teachers and the Boston Teachers Union, its local affiliate, have now demonstrated why they should be viewed through those skeptical spectacles. The BTU leadership urged its members to back Marty Walsh. The American Federation of Teachers, the BTU 's parent, was clandestinely scheming to elect Walsh and defeat John Connolly, a pointed BTU critic. Walsh shouldn't be blamed for the AFT 's electoral subterfuge. During his campaign, Walsh portrayed himself as intent on bringing change to the Boston schools.

- Perform within-doc coref & select canonical mention
- retrieve Wikipedia articles based on anchor text

The American Federation of Teachers and the Boston Teachers Union, its local affiliate, have now demonstrated why they should be viewed through those skeptical spectacles. The BTU leadership urged its members to back Marty Walsh. The American Federation of Teachers, the BTU 's parent, was clandestinely scheming to elect Walsh and defeat John Connolly, a pointed BTU critic. Walsh shouldn't be blamed for the AFT 's electoral subterfuge. During his campaign, Walsh portrayed himself as intent on bringing change to the Boston schools.

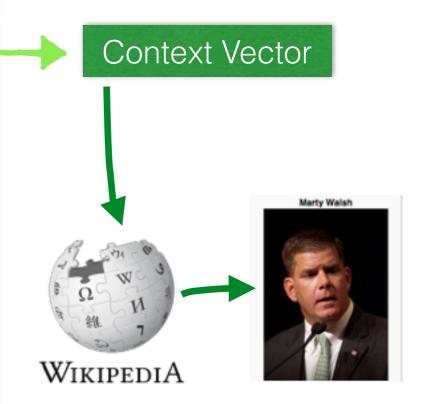
- Perform within-doc coref & select canonical mention
- retrieve Wikipedia articles based on anchor text

The American Federation of Teachers and the Boston Teachers Union, its local affiliate, have now demonstrated why they should be viewed through those skeptical spectacles. The BTU leadership urged its members to back Marty Walsh. The American Federation of Teachers, the BTU 's parent, was clandestinely scheming to elect Walsh and defeat John Connolly, a pointed BTU critic. Walsh shouldn't be blamed for the AFT 's electoral subterfuge. During his campaign, Walsh portrayed himself as intent on bringing change to the Boston schools.



- compute cosine similarity to current TAC document
- if threshold is exceeded link to article with highest similarity

The American Federation of Teachers and the Boston Teachers Union, its local affiliate, have now demonstrated why they should be viewed through those skeptical spectacles. The BTH leadership urged its members to back Marty Walsh. The American Federation of Teachers, the BTU 's parent, was clandestinely scheming to elect Walsh and defeat John Connolly, a pointed BTU critic. Walsh shouldn't be blamed for the AFT 's electoral subterfuge. During his campaign, Walsh portrayed himself as intent on bringing change to the Boston schools.



SF vs KB Pipeline Results

	Prec	Rec	F1
UMass_SF	20.20	13.20	15.97
UMass_KB	10.33	14.17	11.95

- SF and KB use same prediction modules (USchema+SVM)
- Only difference is linking/expansion
- => results underline importance of entity linking

Outline

- Prediction Modules
 - Universal Schema
 - CNNs
 - SVMs
 - Rule-based
- Slot-Filling vs. KB architectures
 - Entity expansion
 - Entity linking
- Multi-hop queries and Precision

Precision, Multi-hop queries...

	1-	hop queries Prec	2-hop querie Prec	s 1-hop queries F1	2-hop queries F1
UMass SF1		33.27%	8.91%	23.51%	8.11%
UMass SF5		31.75%	7.64%	21.79%	7.24%
UMass KB1 (SF5 equiv)		22.66%	3.76%	19.15%	5.41%

Precision, Multi-hop queries... ... and the Right to Remain Silent

	submission			not predicting 2-hop queries			S
Run	Prec	Rec	F1	Prec	Rec	F1	Г
SF1	0.2232	0.1443	0.1753	0.3327	0.1185	0.1747	
SF2	0.0901	0.1650	0.1165	0.2175	0.1321	0.1644	
SF3	0.2034	0.1528	0.1745	0.3172	0.1275	0.1819	
SF4	0.2186	0.1159	0.1514	0.3200	0.0984	0.1505	
SF5	0.2020	0.1320	0.1597	0.3175	0.1081	0.1613	
KB1	0.1033	0.1417	0.1195	0.2266	0.0971	0.1359	Г
KB2	0.0768	0.1657	0.1050	0.1729	0.1198	0.1415	
KB3	0.0883			l I	0.0842	0.1166	
KB4	0.1015	0.1204	0.1102	0.2070	0.0919	0.1273	

Precision, Multi-hops... Man vs. Machine

	Prec 1-hop queries	Prec 2-hop queries	exponent Prec ₁ ^X =Prec ₂
Humans	85.38%	75.97%	1.74
UMass_SF1	33.27%	8.91%	2.19
Top1 system	50.15%	21.21%	2.24

Precision, Multi-hops

- Precision decays quadratically in the number of hops.
- Humans are (over-proportionally) better at jointly predicting chains of relations.
- Not predicting the second hop gives better results in 7 out of 9 settings!
- => results motivate research on KB reasoning approaches.

Conclusion

- Universal Schema and SVM strongest components
- Entity linking most important problem for KB setting
- Precision is lost on multi-hop queries
 - Better not to predict hop 2 at all ...
 - Humans answer multi-hop queries jointly
 - Strong motivation for joint reasoning approaches