NYU at Cold Start 2015: Experiments on KBC with NLP Novices

Yifan He Ralph Grishman Computer Science Department New York University

The KBP Cold Start Task and Common Approaches

- The KBP Cold Start task builds a knowledge base from scratch using a given document collection and a predefined schema for the entities and relations
- Common approaches
 - Hand-written rules (Grishman and Min, 2010)
 - Supervised relation classifiers
 - Weakly supervised classifiers: distant supervision (Mintz et al., 2009; Surdeanu et al., 2012), active learning / crowd sourcing (Angeli et al., 2014)

Focus this year: NLP Novices

- Current approaches often require NLP expertise
 - NYU rules are tuned every summer for 7 years
 - Supervised systems: annotation and algorithm design
 - Crowdsourcing: secret documents?
- Can a domain expert construct an in-house knowledge base from scratch, by herself, (using tools)?

NYU Cold Start Pipeline

Based on string matching

NYU Cold Start Pipeline

Based on string matching

Entity Type and Relation Construction with ICE

- ICE [Integrated Customization Environment for Information Extraction]
 - easy tool for non-NLP experts to rapidly build customized IE systems for a new domain
- Entity set construction
- Relation extraction

Constructing Entity Sets

- New entity class (e.g. **DISEASE** in *per:cause_of_death*) by dictionary
 - users are not likely to do a good job assembling such a list
 - users are much better at reviewing a systemgenerated list
- Entity set expansion: start from 2 seeds, offer more to review

Expand entity set	
Ranked entities	
heart attack / YES heart disease / YES heart problems / YES kidney problems / YES heart failure / YES heart condition / YES brain injury / YES severe injuries / YES organ failure / YES brain cancer frostbite heart attacks congestive heart failure heart attacks congestive heart failure heart risks heart ailments kidney ailment apparent heart attack heart problem respiratory problems heart trouble	S Phrases Relations S Phrases Relations Members Type DESEASE Items brain cancer heart attack Add Expand Delete Save
● Yes ○ No ○ Undecided	
Rerank Save Exit	

Ranking Entities

- Entities are represented with context vectors
 - Contexts are dependency paths from and to the entity
 - V_{heroin}:{dobj_sell:5, nn_plant:3, dobj_seize:4, ...}
 - V_{heart_attack}:{prep_from_suffer:4, prep_of_die:3, ...}
- Entities ranked by distance to the cluster centroid (Min and Grishman, 2011)

Constructing Relations: Challenges

- Handle new entity types in relation (solved by entity set expansion: ICE recognizes **DISEASE** after it is built)
- Capture variations in linguistic constructions
 - ORGANIZATION leader PERSON vs. ORGANIZATION revived under PERSON ('s leadership)
- User comprehendible rules

Rules: Dependency Path

- Lexicalized dependency paths (LDPs) extractors
 - Simple, transparent approach; no feature engineering
 - Straightforward for bootstrapping
 - Most important component in NYU's slot-filling / cold start submissions (Sun et al. 2011; Min et al. 2012)

LDP ORGANIZATION — dobj-1:revived:prep_under — PERSON

Can user understand this?

Comprehendible Rules: Linearized LDPs

11

- Linearize LDP into English phrases
 - User reviews linearized English phrases
 - Based on word order in original sentence
 - Insert syntactic elements for fluency: indirect objects, possessives etc.
 - Lemmatize words except passive verbs

Bootstrapping: Finding Varieties in Rules

- Dependency path acquisition with the classical (active) Snowball bootstrapping (Agichtein and Gravano, 2000)
- Algorithm skeleton

ORGANIZATION leader PERSON1. User provide seedsConservative_Party:Cameron2. Collect arguments
from seedsORGANIZATION revived under PERSON3. New paths for reviewMicrosoft:Nadela4. Iterate

ORGANIZATION ceo **PERSON**

Experiments

- Entity set expansion and relation bootstrapping on Gigaword AP newswire 2008 data
 - Construct DISEASE entity type
 - Bootstrap all relations, only using seeds from slot descriptions
- **CoreTagger**: only use the core tagger which tags NP internal relations
- Setting 1: 5 iterations of bootstrapping, review 20 instances per iteration 553 dependency path rules
- Setting 2: 5 iterations of bootstrapping, review as many phrases as possible, bootstrap with coreference (Gabbard et al., 2011) 1,559 dependency path rules
- "**Proteus**": NYU submission that uses 1,402 dependency patterns, 2,495 lexical patterns, and an add-on distantly supervised relation classifier

Experiments

- Entity set expansion and relation bootstrapping on Gigaword AP newswire 2008 data
 - Construct DISEASE entity type
 - Bootstrap all relations, only using seeds from slot descriptions ۲
- **CoreTagger:** only use the core tagger which tags NP internal relations
- Setting 1: 5 iterations of bootstrapping, review 20 instances per iteration. dependency path rules

~20 min

per

relation

per

relation

7 summers

- **Setting 2**: 5 iterations of bootstrapping, review as much as possible, bootst ~1 hr with coreference (Gabbard et al., 2011) - 1,559 dependency path rules
- "Proteus": NYU submission that uses 1,402 dependency patterns, 2,495 • lexical patterns, and an add-on distantly supervised relation classifier

Results: Hop0

	Ρ	R	F
CoreTagger	0.71	0.06	0.11
CoreTagger +Setting1	0.44	0.08	0.13
CoreTagger +Setting2	0.54	0.13	0.21
CoreTagger +Proteus	0.46	0.25	0.32

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision

Results: Hop0+Hop1

	Ρ	R	F
CoreTagger	0.47	0.04	0.07
CoreTagger +Setting1	0.34	0.05	0.08
CoreTagger +Setting2	0.37	0.08	0.13
CoreTagger +Proteus	0.31	0.20	0.24

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision

Summary

- Pilot experiments on bootstrapping a KB constructor from scratch using an open-source tool
 - Builds high-precision/modest recall KBs
 - Friendly to domain experts who are not familiar with NLP: user only reviews plain English examples
 - Builds rule-based interpretable models for both entity and relation recognition

More To Be Done

- Better annotation instance selection
 - So that the casual user can perform similarly to a serious user
- More expressive rules beyond dependency paths
 - Event extraction
- Leverage existing KB

Thank you

http://nlp.cs.nyu.edu/ice http://github.com/rgrishman/ice

/event/disaster/structures_damaged

Filter options: Include deleted links | Timestamp YYYY-MM-DD... View options: Sort oldest to newest | Show full timestamp |

to YYYY-MM-DD...

Predicate

Show full attribution

Links

Subject /m/0gg9kfr 2011 Christchurch earthquake

- /m/0gg9kfr 2011 Christchurch earthquake 2
- /m/0gg9kfr 2011 Christchurch earthquake з
- /m/0qtwtw9 Chelyabinsk Event 4
- /m/0qtwtw9 Chelyabinsk Event 5
- /m/0qtwtw9 Chelyabinsk Event 6
- /m/0qtwtw9 Chelyabinsk Event 7
- /m/0j0z2w4 Port Said Stadium disaster 8
- /m/0gh6mkc 2011 Töhoku earthquake and 9 tsunami
- 10 /m/0gh6mkc 2011 Töhoku earthquake and tsunami
- 11 /m/0b4mlj Katowice Trade Hall roof collapse
- 12 /m/01v8cd Summerland disaster
- /m/0dc3pc Royal Suspension Chain Pier 13
- 14 /m/05252dm Tay Bridge disaster
- 15 /m/098sht Buncefield fire
- 16 /m/0d0vp3 September 11 attacks
- 17 /m/0807k3 1983 United States Senate bombing
- 18 /m/01y23_ 16th Street Baptist Church bombing
- 19 /m/0244k9 MGM Grand fire
- /m/053zwd 1996 Garley Building fire 20
- /m/07hxss 1992 Windsor Castle fire 21
- /m/0b_94y Whiskey Au Go Go fire 22
- /m/02vnpxc Uphaar Cinema fire 23
- 24 /m/0b27k1 Dee Bridge disaster

/event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged

/event/disaster/structures_damaged

/event/disaster/structures_damaged

/event/disaster/structures_damaged

/event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged /event/disaster/structures_damaged

Object/Value

/m/0j_2yw_ St Luke's Church, Christchurch /m/0gg7hn1 Hotel Grand Chancellor, Christchurch /m/0by116z Christchurch Hospital /m/0r944hl Ice Palace "Ural Lightning" /m/0qzqcvy Chelyabinsk Zinc Factory /m/0qtx4gt Chelyabinsk Drama Theatre /m/064pnfg Traktor Ice Arena /m/0b72l9 Port Said Stadium /m/02vk 7d Fukushima Daini Nuclear Power Plant

/m/02vkzy2 Fukushima Daiichi Nuclear Power Plant

/m/02r05rb Katowice International Fair /m/05bgrl4 Summerland Leisure Centre /m/0dc3pc Royal Suspension Chain Pier /m/04zighp The Tay Bridge /m/098sp5 Buncefield oil depot /m/09w3b The Pentagon /m/07vth United States Capitol /m/0bf9_v 16th Street Baptist Church /m/033vpy MGM Grand Las Vegas /m/05bgrkg Garley Building /m/0chgsm Windsor Castle /m/05bgrnw Whiskey Au Go Go /m/05bgrjk Uphaar Cinema /m/0cfgmk Old Dee Bridge

Entity Set Expansion/ Ranking

 In each iteration, present the user with ranked entity list, ordered by the distance to the "positive centroid" (Min and Grishman, 2011):

$$c = \frac{\sum_{p \in P} p}{|p|} - \frac{\sum_{n \in N} n}{|n|}$$

- where c is the positive centroid, P is the set of positive seeds (initial seeds and entities accepted by user), and N is the set of negative seeds (entities rejected by user)
- Update centroid for k iterations

Entity Representation

- Represent each phrase with a context vector, where contexts are dependency paths from and to the phrase
 - DRUGS share *dobj*(sell, X) and *dobj*(seize, X) contexts
 - DISEASE share prep_of(die, X) and prep_from(suffer) contexts
- Examples: count vectors of dependency contexts
 - V_{heroin}:{dobj_sell:5, nn_plant:3, dobj_seize:4, ...}
 - V_{heart_attack}:{prep_from_suffer:4, prep_of_die:3, ...}
- Features weighted by PMI; word embedding on large data sets for dimension reduction

Entity Representation II

- Using raw vectors cannot provide live response
- Dimension reduction via word embeddings
- Skip-gram model with negative sampling, using dependency context (Levy and Goldberg, 2014a)
- Equivalent of factorization of the original* feature matrix (Levy and Goldberg, 2014b)

Experiment of Entity Set Expansion

- Finding Drugs in Drug Enforcement Agency news releases
- 10 iterations, review 20 entity candidates per iteration
- Measure recall on a pre-compiled list of 181 drug names from 2,132 key phrases
- DISEASES: ICE 129 diseases; Manual 19 diseases

Constructing **Drugs** Type

Constructing **Drugs** Type (Weighted Result)

Recall score weighted by frequency of entities

Results - Agents

• 84 positive examples from 2,132 candidates

Results: Hop0 - w/ FM

	Ρ	R	F
CoreTagger	0.71	0.06	0.11
CoreTagger +Setting1	0.44	0.08	0.13
CoreTagger +Setting2	0.41	0.11	0.18
CoreTagger +Proteus	0.46	0.25	0.32

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision

Results: Overall - w/ FM

	Ρ	R	F
CoreTagger	0.47	0.04	0.07
CoreTagger +Setting1	0.34	0.05	0.08
CoreTagger +Setting2	0.31	0.10	0.15
CoreTagger +Proteus	0.31	0.20	0.24

TAC 2014 Evaluation Data; Proteus = Patterns + Fuzzy Match + Distant Supervision

Fuzzy dependency path match for small rule set

- Improve recall for small rule sets
 - Also tested in our 2015 KBP Cold Start submission
- Match two LDPs with edit distance on dependency chains
 - Weight of edit operations set by grid search on dev set (substitution: 0.8, insertion: 1.2, deletion: 0.3; feature-based see paper)
 - Substitution cost determined by word similarity based on word embeddings

Fuzzy dependency path matchbased extraction: example

Official Run Results

	NestedNames+Pattern+DS+FM		Pattern+DS			
	Ρ	R	F	Ρ	R	F
Hop0	0.44	0.20	0.27	0.51	0.18	0.27
Hop1	0.06	0.09	0.07	0.15	0.09	0.11
MicroAvg	0.17	0.15	0.16	0.30	0.14	0.20
MacroAvg			0.18			0.17

Main goal: testing the fuzzy match paradigm False positives on NIL slots from Fuzzy Match in Hop 0 was penalized heavily in Hop1