

## Neural Networks and Coreference Resolution for Slot Filling

<u>Heike Adel</u>, Hinrich Schütze Team CIS University of Munich (LMU)

> TAC workshop November 16, 2015

CIS at TAC: Neural Networks and Coreference Resolution for Slot Filling

1 / 21



CIS Slot Filling System: Overview

Improved Integration of Coreference Resolution

Relation Classification Models for Slot Filling

CIS Performance in the TAC Shared Task 2015

CIS at TAC: Neural Networks and Coreference Resolution for Slot Filling Heike Adel





Query (entity name + starting point)

















Query





Querv

CIS at TAC: Neural Networks and Coreference Resolution for Slot Filling

## Contents of this talk



CIS at TAC: Neural Networks and Coreference Resolution for Slot Filling

## How coreference could help slot filling



Find every sentence with mentions of the entity  $\Rightarrow$  Provide models next in pipeline with all (?) necessary information to fill the slots

## How coreference could help slot filling



- ► Find every sentence with mentions of the entity ⇒ Provide models next in pipeline with all (?) necessary information to fill the slots
- Get some slot fillers for free:
  - The mention "XX-year-old" already includes the fact that the entity is XX years old (same for "XX-based" or "XX-born")
  - The mention "his mother" already includes the fact that the subject of the sentence is a child of the entity

## How coreference could help slot filling



- ► Find every sentence with mentions of the entity ⇒ Provide models next in pipeline with all (?) necessary information to fill the slots
- Get some slot fillers for free:
  - The mention "XX-year-old" already includes the fact that the entity is XX years old (same for "XX-based" or "XX-born")
  - The mention "his mother" already includes the fact that the subject of the sentence is a child of the entity

 $\Rightarrow$  Coreference is a very important component of this task!  $\Rightarrow$  According to [Min and Grishman 2012, Pink et al. 2014], shortcomings of coreference resolution are one of the most important error sources!

# Analysis: Shortcomings of coreference resolution systems



 Nominal anaphora like "XX-year-old", "XX-based", "XX-born" are not recognized as coreferent to the entity in the previous sentence in most cases

# Analysis: Shortcomings of coreference resolution systems



- Nominal anaphora like "XX-year-old", "XX-based", "XX-born" are not recognized as coreferent to the entity in the previous sentence in most cases
- Pronouns referring to the same entity are often clustered in the same chain - unfortunately, the entity is often clustered in another chain
  - Unlinked chains
  - Wrongly linked chains



Heuristic:





Heuristic:





Heuristic:





Heuristic:



## Expansion of coreference integration



- CIS SF system for 2014 evaluation: only coreference resolution for entities from queries (<name>)
- BUT: consider a sentence like "He is her father."

## Expansion of coreference integration



8 / 21

- CIS SF system for 2014 evaluation: only coreference resolution for entities from queries (<name>)
- BUT: consider a sentence like "He is her father."
- Analysis: Coreference resolution for filler: important especially due to newly introduced inverse slots
  - ▶ 2014: 8 slots with PER fillers
  - ▶ 2015: 20 slots with PER fillers

## Expansion of coreference integration



- CIS SF system for 2014 evaluation: only coreference resolution for entities from queries (<name>)
- BUT: consider a sentence like "He is her father."
- Analysis: Coreference resolution for filler: important especially due to newly introduced inverse slots
  - ▶ 2014: 8 slots with PER fillers
  - ▶ 2015: 20 slots with PER fillers
- Now: coreference resolution for both <name> and <filler>
  - But only if filler is a person
  - Future work: Investigate the effect of coreference resolution for fillers in more detail

Extend it to other filler types as well

## Coreference resource



- Observation: Long runtime of coreference resolution systems
- Solution: Corpus pre-processing

## Coreference resource



- Observation: Long runtime of coreference resolution systems
- Solution: Corpus pre-processing
- ► TAC source corpus: ~65% pre-processed with [Stanford CoreNLP] so far
  - $\blacktriangleright~{\sim}30M$  chains and  ${\sim}105M$  mentions found
  - ${\sim}25M$  pronoun mentions

## Coreference resource



- Observation: Long runtime of coreference resolution systems
- Solution: Corpus pre-processing
- ► TAC source corpus: ~65% pre-processed with [Stanford CoreNLP] so far
  - $\blacktriangleright~{\sim}30M$  chains and  ${\sim}105M$  mentions found
  - $\sim 25M$  pronoun mentions
- Easily accessible format: chains of mention start offset end offset pairs
  - NYT\_ENG\_20090601.0015 14 2424-2441 87-95 170-178 812-820 890-892 1473-1483 1785-1793 2036-2044 2493-2495 211-250 1649-1657 798-892 587-595 1121-1129 1130-1132
- Resource will be publicly available



## Convolutional neural networks: Motivation



#### Extract most relevant n-grams

- Convolution: Create n-gram representations
- Pooling: Find most relevant n-grams
- ... independent of position in sentence
- ▶ Use n-gram based sentence representation for classification
- Wordvectors: implicit handling of synonyms





- Input: pre-trained word embeddings [word2vec]
- Context splitting
- Convolution and pooling for all contexts separately
- MLP (one hidden layer) and softmax for relation classification

## Recurrent neural networks: Motivation



- Create global sentence representation
- ... using all available information
- Possibly more robust against insertions (than e.g. patterns)
- Possibly better with longer sentence lengths (than CNN)

## RNNs for slot filling







- Input: pre-trained word embeddings [word2vec]
- Softmax for classification
- ▶ (1) Uni-directional RNN
- (2) Bi-directional RNN
- (3) Multi-task bi-directional RNN
  - Predict type of next word (rel\_argument\_1, rel\_argument\_2, other)
- Result of RNN component: score of the most confident RNN



#### Performance in the TAC shared task 2015

CIS at TAC: Neural Networks and Coreference Resolution for Slot Filling Heike Adel 2015/11/16





- All runs include coreference resolution
- ▶ All runs: automatically tuned slot-wise output thresholds



- All runs include coreference resolution
- ► All runs: automatically tuned slot-wise output thresholds
- Submission of five runs:
  - Base run: classification with patterns + SVM + CNN



- All runs include coreference resolution
- ► All runs: automatically tuned slot-wise output thresholds
- Submission of five runs:
  - ▶ Base run: classification with patterns + SVM + CNN
  - Non-neural run: base run CNN



- All runs include coreference resolution
- ► All runs: automatically tuned slot-wise output thresholds
- Submission of five runs:
  - ▶ Base run: classification with patterns + SVM + CNN
  - Non-neural run: base run CNN
  - RNN run: base run + RNN



- All runs include coreference resolution
- ► All runs: automatically tuned slot-wise output thresholds
- Submission of five runs:
  - ▶ Base run: classification with patterns + SVM + CNN
  - Non-neural run: base run CNN
  - RNN run: base run + RNN
  - ▶ EL run: base run + entity linking for document extraction



- All runs include coreference resolution
- ► All runs: automatically tuned slot-wise output thresholds
- Submission of five runs:
  - ▶ Base run: classification with patterns + SVM + CNN
  - Non-neural run: base run CNN
  - RNN run: base run + RNN
  - ► EL run: base run + entity linking for document extraction
  - $\blacktriangleright$  High precision run: base run with output thresholds +=0.2

## CIS system results



- Best run: PAT + SVM + CNN + RNN
- Final results:

|                | mean macro | max macro | max micro |  |
|----------------|------------|-----------|-----------|--|
| high P run     | 12.87      | 14.01     | 13.77     |  |
| base run       | 20.15      | 21.89     | 19.70     |  |
| RNN run        | 20.79      | 22.45     | 20.90     |  |
| EL run         | 20.39      | 22.15     | 20.21     |  |
| non-neural run | 17.60      | 19.28     | 14.62     |  |

## Analysis 1: Impact of coreference resolution



All submitted runs included coreference resolution

CIS at TAC: Neural Networks and Coreference Resolution for Slot Filling Heike Adel

## Analysis 1: Impact of coreference resolution



- All submitted runs included coreference resolution
- Offline run without coreference resolution
- Evaluated using the official assessments and scoring scripts

## Analysis 1: Impact of coreference resolution



- All submitted runs included coreference resolution
- Offline run without coreference resolution
- Evaluated using the official assessments and scoring scripts
- Results (max micro):

|       |          | P     | R     | F1    |
|-------|----------|-------|-------|-------|
| hop 0 | base run | 31.83 | 23.97 | 27.35 |
| hop 0 | - coref  | 29.70 | 20.82 | 24.48 |
| hop 1 | base run | 11.63 | 7.21  | 8.90  |
| hop 1 | - coref  | 10.50 | 5.66  | 7.36  |
| all   | base run | 24.02 | 16.70 | 19.70 |
| all   | - coref  | 22.58 | 14.25 | 17.47 |

► ⇒ Large impact of coreference resolution on end-to-end performance

## Analysis 2: Impact of neural networks



Design of runs to immediately assess the impact of the neural networks

## Analysis 2: Impact of neural networks



- Design of runs to immediately assess the impact of the neural networks
- Results (max micro):

|       |                 | P     | R     | F1    |
|-------|-----------------|-------|-------|-------|
| hop 0 | PAT+SVM         | 18.99 | 22.32 | 20.52 |
| hop 0 | PAT+SVM+CNN     | 31.83 | 23.97 | 27.35 |
| hop 0 | PAT+SVM+CNN+RNN | 29.98 | 26.58 | 28.18 |
| hop 1 | PAT+SVM         | 5.92  | 4.53  | 5.13  |
| hop 1 | PAT+SVM+CNN     | 11.63 | 7.21  | 8.90  |
| hop 1 | PAT+SVM+CNN+RNN | 13.82 | 6.08  | 8.44  |
| all   | PAT+SVM         | 14.64 | 14.60 | 14.62 |
| all   | PAT+SVM+CNN     | 24.02 | 16.70 | 19.70 |
| all   | PAT+SVM+CNN+RNN | 25.53 | 17.69 | 20.90 |

 $\blacktriangleright \Rightarrow$  Neural networks improve end-to-end performance with 6.28 F1 points

## Conclusion



- Focus of this talk: coreference resolution, relation classification with neural networks
- Coreference resolution:
  - Coreference resolution for both relation arguments
  - Heuristical error post-processing

 $\Rightarrow$  Considerable impact on end-to-end performance (esp. on recall)

- Neural networks:
  - CNNs and RNNs
  - Interpolation of scores with non-neural model results
  - $\Rightarrow$  Very large impact on end-to-end performance



## Thanks for your attention!

Contact: heike.adel@cis.lmu.de http://www.cis.uni-muenchen.de/~heike

## References



► Terrier:

ladh Ounis, Gianni Amati, Vassilis Plachouras, Ben He, Craig Macdonald, Christina Lioma: Terrier: A high performance and scalable information retrieval platform. In: OSIR 2006.

► WAT:

Francesco Piccinno, Paolo Ferragina: From Tagme to WAT: a new entity annotator. In: workshop on Entity recognition & disambiguation 2014.

Stanford CoreNLP:

Christopher D. Manning, Mihai Surdeanu, John Bauer, Jenny Finkel, Steven J. Bethard, David McClosky: The Stanford CoreNLP natural language processing toolkit. In: ACL System Demonstrations 2014.

Min and Grishman 2012:

Bonan Min, Ralph Grishman: Challenges in the knowledge base population slot filling task. In: LREC 2012.

### References



▶ Pink et al. 2014:

Glen Pink, Joel Nothman, James R Curran: Analysing recall loss in named entity slot filling. In: EMNLP 2014.

▶ Roth 2013:

Benjamin Roth, Tassilo Barth, Michael Wiegand, Mittul Singh, Dietrich Klakow: Effective slot filling based on shallow distant supervision methods. In: TAC 2013.

► word2vec:

Tomas Mikolov, Kai Chen, Greg Corrado, Jeffrey Dean: Efficient estimation of word representations in vector space. In: Workshop at ICLR 2013.



- Heike Adel is a recipient of the Google Europe Fellowship in Natural Language Processing and this research is supported by this fellowship.
- ► This work was also supported by DFG (grant SCHU 2246/4-2).
- We would like to thank Pankaj Gupta for training the RNN models.