
TEA_ICT System for Event Nugget Detection at TAC KBP 2015

Siying Li, Zhiyuan Ji, Pan Du
CAS Key Laboratory of Network Data Science and Technology

Institute of Computing Technology

Chinese Academy of Science

lisiying@software.ict.ac.cn

Abstract

In this paper, we will describe the

TEA_ICT system that we established for

event nugget detection task in TAC KBP

2015. To complete this task, we developed

a model including pre-processing, post-

processing and two supervised steps. We

tried to make our system find every

instance of a mention and identify its

types/subtypes. Pre-processing provides

data for the following training steps. In the

supervised steps, we use CRF (Conditional

Random Field) model to extract the event

trigger word and SVM (Support Vector

Machine) to identify the event mention into

types/subtypes and three Realis values.

Finally, we aggregate the two individual

results as the final result.

1 Introduction

The Event Detection task at TAC KBP 2015 aims

to identify the explicit mentioning of Events in

text[1]. This year, we only participated in the Event

Nugget Detection task (EN Task1).

The Event Nugget Detection task requires that

participates must identify all relevant Event

Mention instances within each sentence and the

types/subtypes of the mention taken from the Rich

ERE Annotation Guidelines[2]. In total, there are 8

types and 38 subtypes. In addition, systems must

identify three REALIS values (ACTUAL,

GENERIC, OTHER), which are also described in

the Rich ERE Annotation Guidelines.

In order to meet all the requirement, we propose

a system which includes four parts to finish this

task: pre-processing for preparing event mentions

for training, trigger extraction using CRF-based

and rule-based methods, types/subtypes

identification and REALIS values identification

using SVM model, and post-processing.

The paper is organized as follows. Section 2

describes our approach to do this task including the

preparation process of training data, our idea and

our model. Section 3 shows the results of our

system. In Section 4, we conclude the paper and

our work in TAC KBP 2015. Related references

are the lasts part.

2 Our Approach

In this part, we will describe the whole process of

our approach in detail.

The architecture of our system can be described

as Figure 1.

2.1 Data Pre-Processing

The data pre-processing mentioned here is mainly

about preparing for training data.

We used the ACE 2005 Multilingual Training

Corpus (LDC2006T06) to train our model at first.

The annotation of this corpus includes event

mentions and entities. As our system caring more

about event mentions and triggers, we only extract

trigger words, mention types/subtypes and

REALIS values as our original training data.

Figure 1: Architecture of TEA_ICT System

When using the data extracted from

LDC2006T06, we found a few tagging mistakes.

Besides, we observed that the TAC KBP 2015

Event Nugget Training Data Annotation V2

(LDC2015E73) updated in August only focus on

event mentions and discarded all the entity

information. So we finally chose LDC2015E73 as

our training data. Every annotated document has its

corresponding source file making it easy to extract

the relevant mention information for the training

process.

After extracting trigger words from training

data, we use Stanford Log-linear Part-Of-Speech

Tagger (POS Tagger) to segment word in source

file and mark the POS Tagger of every segmented

word. Now, the tagged word sequences have been

adapted to train the CRF model.

As we have already got every trigger in training

data, we can easily extract the whole sentence

which contains a trigger word. The entire sentences

are supposed to construct feature spaces that are

used to train SVM model. In addition, we should

identify types/subtypes and REALIS values of

every instance of event mention. Thus two

classifiers are trained separately by the sentence

features.

For validation data, we can get two kinds of

data, they are source data and token-format data.

We use Stanford Log-linear Part-Of-Speech

Tagger (POS Tagger) to simply tag the token

sequences making it more adaptive to the

following process.

2.2 Trigger Word Extracting

Extracting trigger words is not simply matching

some special words. Primarily, it is a binary

classification problem. In training data, we labelled

every segmented word with “I” or “O”. Label “I”

represents that the word is a trigger word of a part

of trigger words, while “O” represents that the

word is not a trigger word. Then Trigger Word

Extracting process turns into a binary classification

problem. If we can predict every word in

validation data whether it belongs to “I” or “O”,

we can easily find the trigger word.

 But it is difficult for us to correctly put them

into two classes only considering the words

themselves. Thus we must consider the structure of

the whole sentence. Finally, we chose CRF model

to extract trigger words.

CRF is a supervised model usually used for

structured prediction in pattern recognition and

machine learning. An ordinary classifier predicts a

label for a single sample without regard to

“neighboring” samples, while a CRF can take

context into account. In our case, we use CRF

model to predict sequences of labels for input

validation sequences.

The first step is to train CRF model. We

directly used the open source toolkit CRF++-0.53

to implement the trigger extracting process. When

training CRF, the most important thing is to

construct the training data. The structure of CRF

training data are formally described in Table 1.

Every segmentation of a sentence is required to

be put on the left column of a text file. The middle

column is the tag generated by Stanford POS-

Tagger system. For example, NN represents for

noun, VBP for past tense of a verb. The right

column is the label we defined. As we have

mention in the beginning of this part, we put “O”

for the word that is not a trigger in training data

and “I” for a trigger.

Word Tag Label

He PRP O

shot VBP I

the DT O

soldier NN O

dead RB I

Table 1: Data format for training CRF model

We set a window size of 5, so that CRF can

learn a word sequence with the length of 5 in one

time. If we set a larger window size, the accuracy

of CRF may get higher, but the feature size will

explosively increase. In order to balance accuracy

and time cost, we finally decided 5 as our window

size.

During training CRF model, we cannot ignore

the overfitting problem. For instance, some words

(i.e. formal) only appears a little time, but more

can half are defined as trigger words by the

annotators. When testing, CRF labels almost all

words of this kind as trigger words. So in the

toolkit, we set a large regularization term to avoid

the overfitting problem.

After the above configure settings, we can train

our CRF then apply the model to the validation

data. The structure of validation data is almost like

training data. The structure of validation has the

same left and middle columns with that of training

data. It only has two columns for the reason that

the last column is for prediction.

However, the number of “I” labelled by CRF is

relatively low. Only using the original CRF leads

us facing the situation that we can get a high

precision but an extremely low recall. In order to

improve the recall, we use the CRF with

probability and add some rule-based methods.

After adding probability to CRF, we get a result

like Table 2.

Word Tag Label Probability

He PRP O 0.999714

shot VBP I 0.908648

the DT O 0.999998

soldier NN O 0.987736

dead RB O 0.911098

Table 2: Data format for training CRF model

We can see that the word “dead” labels “O” by

CRF, but the probability is low. In addition, we

sum up a list which contains the obvious trigger

word. If a word has been labelled “O” with a low

probability and can be sought out in the list (just

use the rule-based method), it will be labelled with

“I” immediately.

2.3 Classifier

Fundamentally speaking, the task of identifying

types/subtypes and REALIS values is a

classification problem. As for classification, the

most popular machine learning model is SVM.

SVM is a supervised learning classifier. Its

classification results often depend on the features

we choose for SVM. The whole process of

classification including feature selection and

classification will be described in the following

two subsections.

2.3.1 Types Identification

According to our training data, a sentence

containing trigger words is not equal to an event

mention. A sentence which contains 2 or more

triggers may mention different types/subtypes. For

example, in the sentence “He shot the soldier

dead.”, both [conflict. ATTACK] and [life. DIE]

are events. Thus when identifying types, a sentence

may belong to different classes. So we cannot

simply treat the original sentence as all the features

applied for SVM. To solve this problem, we select

the following dimensions as type classification:

 Every segmented words

 Higher weight of triggers than other words

In addition, we only increase one weight of

triggers in one sentence at one time. Thus the

trigger become more important than the others. If

triggers are extracted correctly, the accuracy of

SVM is more than 90%.

2.3.2 Types Identification

Another usage of classification is identifying

REALIS values. Event mentions will refer to

ACTUAL (events that actually occurred);

GENERIC (events that are not specific events with

a (known or unknown) time and/or place); or

OTHER (which includes failed events, future

events, and conditional statements, and all other

non-generic variations).

Besides the semantic meaning of a sentence, the

REALIS also cares about the tense of a sentence.

The tense of a sentence can help identify whether

an event has occurred. To identify REALIS values,

the selection of features is listed below:

 Every segmented words

 POS-Taggers of all words

Similar to types/subtypes identification, the

accuracy of only identifying REALIS values also

reaches 90%.

2.4 Post-Processing

After the above efforts, we can almost get a result

of several parts. And the result we got may have

some obvious mistakes. Post-processing is

designed for correcting some mistakes and

integrate the several result parts.

3 Result

 We submitted a total of four runs. TEA_ICT2 is

the most basic result of only applying CRF and

SVM. It contains some mistakes and the

classification model for types/subtypes appears to

be wrong that we get an extremely low precision

and recall. TEA_ICT1 improve our models and

feature selection methods. After re-training all the

models, we get a relatively high improvement. The

evaluation indicator of the 2 runs are listed in

Table 3.

Run ID Prec Rec F1

TEA_ICT1

Plain 59.08 52.11 55.38

Type 45.59 40.21 42.73

Realis 40.86 36.05 38.30

All 31.65 27.92 29.67

TEA_ICT2

Plain 59.89 38.14 46.60

Type 2.54 1.62 1.97

Realis 40.07 25.52 31.18

All 1.73 1.10 1.35

Table 3: Comparison of our runs

4 Conclusion

This paper describes our efforts and the complete

process when doing this Event Nugget Detection

task in TAC KBP 2015. We applied two

supervised model to accomplish the requirements

of the task of this year. Four steps were designed

by us and we finally got a relatively reasonable

result.

Until now, the official evaluation results have

been provided. We still have a lot lifting space and

following research to do in the future.

References

TAC KBP Event Detection and Coreference

 Tasks for English. Available:

http://cairo.lti.cs.cmu.edu/kbp/2015/event/Event_Me

ntion_Detection_and_Coreference-2015-v1.1.pdf

Rich ERE Annotation Guidelines Overview V4.1.

Available:

http://cairo.lti.cs.cmu.edu/kbp/2015/event/summary_

rich_ere_v4.1.pdf

Mitamura T, Yamakawa Y, Holm S, et al. Event Nugget

Annotation: Processes and Issues[C]//Proceedings of

the 3rd Workshop on EVENTS at the NAACL-HLT.

2015: 66-76.

Roth B, Strubell E, Silverstein K, et al. Minimally

Supervised Event Argument Extraction using

Universal Schema[J].

Sammons M, Song Y, Wang R, et al. Overview of UI-

CCG Systems for Event Argument Extraction, Entity

Discovery and Linking, and Slot Filler Validation[J].

Urbana, 2014, 51: 61801.

X. Cheng, B. Chen, R. Samdani, K. Chang, Z. Fei, M.

Sammons, J. Wieting, S. Roy, C. Wang, and D. Roth.

Illinois cognitive computation group ui-ccg tac 2013

entity linking and slot filler validation systems. In

TAC, 2013

