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Abstract 

In this paper, we will describe the 

TEA_ICT system that we established for 

event nugget detection task in TAC KBP 

2015. To complete this task, we developed 

a model including pre-processing, post- 

processing and two supervised steps. We 

tried to make our system find every 

instance of a mention and identify its 

types/subtypes. Pre-processing provides 

data for the following training steps. In the 

supervised steps, we use CRF (Conditional 

Random Field) model to extract the event 

trigger word and SVM (Support Vector 

Machine) to identify the event mention into 

types/subtypes and three Realis values. 

Finally, we aggregate the two individual 

results as the final result. 

1 Introduction 

The Event Detection task at TAC KBP 2015 aims 

to identify the explicit mentioning of Events in 

text[1]. This year, we only participated in the Event 

Nugget Detection task (EN Task1). 

The Event Nugget Detection task requires that 

participates must identify all relevant Event 

Mention instances within each sentence and the 

types/subtypes of the mention taken from the Rich 

ERE Annotation Guidelines[2]. In total, there are 8 

types and 38 subtypes. In addition, systems must 

identify three REALIS values (ACTUAL, 

GENERIC, OTHER), which are also described in 

the Rich ERE Annotation Guidelines. 

In order to meet all the requirement, we propose 

a system which includes four parts to finish this 

task: pre-processing for preparing event mentions 

for training, trigger extraction using CRF-based 

and rule-based methods, types/subtypes 

identification and REALIS values identification 

using SVM model, and post-processing. 

The paper is organized as follows. Section 2 

describes our approach to do this task including the 

preparation process of training data, our idea and 

our model. Section 3 shows the results of our 

system. In Section 4, we conclude the paper and 

our work in TAC KBP 2015. Related references 

are the lasts part. 

2 Our Approach  

In this part, we will describe the whole process of 

our approach in detail. 

The architecture of our system can be described 

as Figure 1. 

2.1 Data Pre-Processing 

The data pre-processing mentioned here is mainly 

about preparing for training data.  

We used the ACE 2005 Multilingual Training 

Corpus (LDC2006T06) to train our model at first. 

The annotation of this corpus includes event 

mentions and entities. As our system caring more 

about event mentions and triggers, we only extract 

trigger words, mention types/subtypes and 

REALIS values as our original training data. 

 



 
Figure 1: Architecture of TEA_ICT System 

 

When using the data extracted from 

LDC2006T06, we found a few tagging mistakes. 

Besides, we observed that the TAC KBP 2015 

Event Nugget Training Data Annotation V2 

(LDC2015E73) updated in August only focus on 

event mentions and discarded all the entity 

information. So we finally chose LDC2015E73 as 

our training data. Every annotated document has its 

corresponding source file making it easy to extract 

the relevant mention information for the training 

process. 

After extracting trigger words from training 

data, we use Stanford Log-linear Part-Of-Speech 

Tagger (POS Tagger) to segment word in source 

file and mark the POS Tagger of every segmented 

word. Now, the tagged word sequences have been 

adapted to train the CRF model. 

As we have already got every trigger in training 

data, we can easily extract the whole sentence 

which contains a trigger word. The entire sentences 

are supposed to construct feature spaces that are 

used to train SVM model. In addition, we should 

identify types/subtypes and REALIS values of 

every instance of event mention. Thus two 

classifiers are trained separately by the sentence 

features. 

For validation data, we can get two kinds of 

data, they are source data and token-format data. 

We use Stanford Log-linear Part-Of-Speech 

Tagger (POS Tagger) to simply tag the token 

sequences making it more adaptive to the 

following process. 

2.2 Trigger Word Extracting 

Extracting trigger words is not simply matching 

some special words. Primarily, it is a binary 

classification problem. In training data, we labelled 

every segmented word with “I” or “O”. Label “I” 

represents that the word is a trigger word of a part 

of trigger words, while “O” represents that the 

word is not a trigger word. Then Trigger Word 

Extracting process turns into a binary classification 

problem. If we can predict every word in 

validation data whether it belongs to “I” or “O”, 

we can easily find the trigger word. 

 But it is difficult for us to correctly put them 

into two classes only considering the words 

themselves. Thus we must consider the structure of 

the whole sentence. Finally, we chose CRF model 

to extract trigger words. 

CRF is a supervised model usually used for 

structured prediction in pattern recognition and 

machine learning. An ordinary classifier predicts a 

label for a single sample without regard to 

“neighboring” samples, while a CRF can take 

context into account. In our case, we use CRF 

model to predict sequences of labels for input 

validation sequences. 

The first step is to train CRF model. We 

directly used the open source toolkit CRF++-0.53 

to implement the trigger extracting process. When 

training CRF, the most important thing is to 

construct the training data. The structure of CRF 

training data are formally described in Table 1.  

Every segmentation of a sentence is required to 

be put on the left column of a text file. The middle 

column is the tag generated by Stanford POS-

Tagger system. For example, NN represents for 

noun, VBP for past tense of a verb. The right 

column is the label we defined. As we have 

mention in the beginning of this part, we put “O” 



for the word that is not a trigger in training data 

and “I” for a trigger. 

 

Word Tag Label 

He PRP O 

shot VBP I 

the DT O 

soldier NN O 

dead RB I 

 

Table 1: Data format for training CRF model 
 

We set a window size of 5, so that CRF can 

learn a word sequence with the length of 5 in one 

time. If we set a larger window size, the accuracy 

of CRF may get higher, but the feature size will 

explosively increase. In order to balance accuracy 

and time cost, we finally decided 5 as our window 

size. 

During training CRF model, we cannot ignore 

the overfitting problem. For instance, some words 

(i.e. formal) only appears a little time, but more 

can half are defined as trigger words by the 

annotators. When testing, CRF labels almost all 

words of this kind as trigger words. So in the 

toolkit, we set a large regularization term to avoid 

the overfitting problem.  

After the above configure settings, we can train 

our CRF then apply the model to the validation 

data. The structure of validation data is almost like 

training data. The structure of validation has the 

same left and middle columns with that of training 

data. It only has two columns for the reason that 

the last column is for prediction. 

However, the number of “I” labelled by CRF is 

relatively low. Only using the original CRF leads 

us facing the situation that we can get a high 

precision but an extremely low recall. In order to 

improve the recall, we use the CRF with 

probability and add some rule-based methods. 

After adding probability to CRF, we get a result 

like Table 2. 

 

Word Tag Label Probability 

He PRP O 0.999714 

shot VBP I 0.908648 

the DT O 0.999998 

soldier NN O 0.987736 

dead RB O 0.911098 

 

Table 2: Data format for training CRF model 

We can see that the word “dead” labels “O” by 

CRF, but the probability is low. In addition, we 

sum up a list which contains the obvious trigger 

word. If a word has been labelled “O” with a low 

probability and can be sought out in the list (just 

use the rule-based method), it will be labelled with 

“I” immediately. 

2.3 Classifier 

Fundamentally speaking, the task of identifying 

types/subtypes and REALIS values is a 

classification problem. As for classification, the 

most popular machine learning model is SVM. 

SVM is a supervised learning classifier. Its 

classification results often depend on the features 

we choose for SVM. The whole process of 

classification including feature selection and 

classification will be described in the following 

two subsections. 

2.3.1 Types Identification 

According to our training data, a sentence 

containing trigger words is not equal to an event 

mention. A sentence which contains 2 or more 

triggers may mention different types/subtypes. For 

example, in the sentence “He shot the soldier 

dead.”, both [conflict. ATTACK] and [life. DIE] 

are events. Thus when identifying types, a sentence 

may belong to different classes. So we cannot 

simply treat the original sentence as all the features 

applied for SVM. To solve this problem, we select 

the following dimensions as type classification: 

 Every segmented words 

 Higher weight of triggers than other words 

In addition, we only increase one weight of 

triggers in one sentence at one time. Thus the 

trigger become more important than the others. If 

triggers are extracted correctly, the accuracy of 

SVM is more than 90%. 

2.3.2 Types Identification 

Another usage of classification is identifying 

REALIS values. Event mentions will refer to 

ACTUAL (events that actually occurred); 

GENERIC (events that are not specific events with 

a (known or unknown) time and/or place); or 

OTHER (which includes failed events, future 

events, and conditional statements, and all other 

non-generic variations). 



Besides the semantic meaning of a sentence, the 

REALIS also cares about the tense of a sentence. 

The tense of a sentence can help identify whether 

an event has occurred. To identify REALIS values, 

the selection of features is listed below: 

 Every segmented words 

 POS-Taggers of all words 

Similar to types/subtypes identification, the 

accuracy of only identifying REALIS values also 

reaches 90%. 

2.4 Post-Processing  

After the above efforts, we can almost get a result 

of several parts. And the result we got may have 

some obvious mistakes. Post-processing is 

designed for correcting some mistakes and 

integrate the several result parts.  

3 Result  

 We submitted a total of four runs. TEA_ICT2 is 

the most basic result of only applying CRF and 

SVM. It contains some mistakes and the 

classification model for types/subtypes appears to 

be wrong that we get an extremely low precision 

and recall. TEA_ICT1 improve our models and 

feature selection methods. After re-training all the 

models, we get a relatively high improvement. The 

evaluation indicator of the 2 runs are listed in 

Table 3. 

 

Run ID  Prec Rec F1 

TEA_ICT1 

Plain 59.08 52.11 55.38 

Type 45.59 40.21 42.73 

Realis 40.86 36.05 38.30 

All 31.65 27.92 29.67 

TEA_ICT2 

Plain 59.89 38.14 46.60 

Type 2.54 1.62 1.97 

Realis 40.07 25.52 31.18 

All 1.73 1.10 1.35 

 

Table 3: Comparison of our runs 

4 Conclusion 

This paper describes our efforts and the complete 

process when doing this Event Nugget Detection 

task in TAC KBP 2015. We applied two 

supervised model to accomplish the requirements 

of the task of this year. Four steps were designed 

by us and we finally got a relatively reasonable 

result. 

Until now, the official evaluation results have 

been provided. We still have a lot lifting space and 

following research to do in the future. 
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