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Abstract

We overview two tracks of the TAC2013
Knowledge Base Population (KBP)
evaluation: English slot filling (SF) and
temporal slot filling (TSF). The goal
of these two KBP tracks is to promote
research in the extraction of relations
between named entities from free text
(SF), and identify the temporal intervals
when these relations were valid (TSF).
The main changes this year include
the requirement for a stricter textual
justification of the extracted relations
for SF, and a simplification of the TSF
task, where the relation to be temporally
grounded is given as input. These two
tracks attracted 43 registered teams, out of
which 20 teams submitted a run in at least
one of the tracks.

1 Introduction

The main goal of the Knowledge Base Population
track at the Text Analysis Conference (TAC)
is to promote research on systems that gather
information on entities from large document
collections, and use this extracted information to
populate a structured knowledge base (KB) (Ji
et al., 2011). This effort can be seen as a
natural continuation of previous conferences and
evaluations, such as the Message Understanding
Conference (MUC) (Grishman and Sundheim,
1996) and the Automatic Content Extraction
(ACE) evaluations1. Within this larger effort, the

1http://www.itl.nist.gov/iad/mig/
tests/ace/

slot filling (SF) subtask must extract the values
of specified attributes (or slots) for a given entity
from large collections of natural language texts.
Examples of slots include age, birthplace, and
spouse for a person or founder, top members,
and website for organizations. The temporal slot
filling (TSF) subtask grounds this extracted values
temporally by finding the start and end dates when
these slot fillers were valid.

This is the fifth year a SF evaluation takes place,
and the second for TSF, if the 2011 TSF pilot
is counted (Ji et al., 2011). This year, 43 teams
registered for at least one of these tasks. 18
teams submitted results for SF and five submitted
results for TSF. This approximately 50% retention
rate is in line with previous KBP evaluations, and
highlights the difficulty of the task.

Both the SF and TSF evaluations followed
definitions close to the ones from previous
years. However, several important changes were
implemented this year:

1. This year, systems had to provide provenance
information for the entity and the filler and
justification texts for the relation that are, at
the same time, concise and informative. For
example, justification is limited to at most
two sentences, unlike previous years when
entire documents were provided.

2. To lower the barrier of entry for TSF, this
year’s input for the TSF task included both
the entity and the slot filler to be analyzed,
similar to the diagnostic task in the 2011
pilot.

3. The document collections were extended



with data from discussion forums, in the hope
that this promotes research on information
extraction from less formal texts.

We detail these distinctions in Section 2, which
defines the two tasks together with their evaluation
metrics. We overview the participants in these
two tracks in Section 3, and analyze the systems
and results in both tracks in Section 4 and 5,
respectively. We conclude with a discussion of
remaining challenges in Section 6.

2 Task Definitions

The overall goal of KBP is to automatically
identify entities in natural language texts written
in multiple languages; disambiguate them by
linking them to entries in an existing KB; discover
attributes about these entities (together with
temporal validity spans); and, finally, expand the
KB with any novel attributes. We refer the reader
interested in such an overall KBP architecture to
the description in (Ji et al., 2011). In this section,
we focus mainly on the SF and TSF components.

2.1 Slot Filling Definition
The goal of the SF is to collect information on
certain attributes (or slots) of entities, which may
be either persons or organizations. Table 1 lists the
slots for this year’s SF evaluation.

2.1.1 Task Changes since 2012
This task is close to last year’s task, with a few
differences, discussed below.

Annotation guidelines
The slot annotation guidelines are close to last
year’s, with a few significant changes:

1. The definition of the per:title slot changed
significantly. This year, titles that report
positions at different organizations are
reported separately. For example, Mitt
Romney has held three different CEO
positions: CEO at Bain Capital (1984–2002),
CEO at Bain & Company (1991–92),
and CEO at the 2002 Winter Olympics
Organizing Committee (1999–2002). These
positions must be reported as distinct titles
by the systems.

2. The per:employee of and per:member of
slots were merged into a single slot,
per:employee or member of due to their
similarity.

3. This year, entities mentioned in document
meta data can be used as input for the
slot fillings tasks or fillers to be extracted
by systems. For example, systems should
consider as slot filler candidates the post
authors, which are recorded in the meta data
of discussion forum documents.

Please see the task definition document (Surdeanu,
2013), or the slot description and assessment
documents for more details (Ellis, 2013b; Ellis,
2013a).

Query format
Similar to previous years, each query in the
SF task consists of the name of the entity,
its type (person or organization), a document
(from the corpus) in which the name appears (to
disambiguate the query in case there are multiple
entities with the same name), its node ID (if the
entity appears in the knowledge base), and the
attributes which need not be filled. Additionally,
to facilitate the disambiguation of the entity name,
this year’s queries include the start and end offsets
of the name as it appears in the document. An
example query is:
<query id="SF_002">

<name>PhillyInquirer</name>
<docid>eng-NG-31-141808-9966244</docid>
<beg>757</beg>
<end>770</end>
<enttype>ORG</enttype>
<nodeid>E0312533</nodeid>
<ignore>

org:city_of_headquarters
org:country_of_headquarters

</ignore>
</query>

Provenance of entity and filler
New this year is the fact that systems must provide
provenance information for both entity and filler.
Provenance is to be reported as start/end character
offsets for the span of text which yielded the
entity or filler. To account for the fact that
systems may use coreference resolution and date
normalization to extract or match the slot filler and
entity, the provenance output must contain at least
one mention and may contain the offsets of up
to two relevant mentions, i.e., up to two pairs of
start/end offsets.

For example, for a filler date that is normalized
from the document date and the string “yesterday”
should provide the offsets for both “yesterday”
and the document date in its provenance. A



Person Slots Organization Slots
Name Type List? Name Type List?
per:alternate names Name Yes org:alternate names Name Yes
per:date of birth Value org:political religious affiliation Name Yes
per:age Value org:top members employees Name Yes
per:country of birth Name org:number of employees members Value
per:stateorprovince of birth Name org:members Name Yes
per:city of birth Name org:member of Name Yes
per:origin Name Yes org:subsidiaries Name Yes
per:date of death Value org:parents Name Yes
per:country of death Name org:founded by Name Yes
per:stateorprovince of death Name org:date founded Value
per:city of death Name org:date dissolved Value
per:cause of death String org:country of headquarters Name
per:countries of residence Name Yes org:stateorprovince of headquarters Name
per:statesorprovinces of residence Name Yes org:city of headquarters Name
per:cities of residence Name Yes org:shareholders Name Yes
per:schools attended Name Yes org:website String
per:title String Yes
per:employee or member of Name Yes
per:religion String Yes
per:spouse Name Yes
per:children Name Yes
per:parents Name Yes
per:siblings Name Yes
per:other family Name Yes
per:charges String Yes

Table 1: List of slots for TAC KBP 2013 slot filling. The slot in bold is new this year. The slot types can
be: Name, i.e., named entities such as person, organizations, or locations; Value, i.e., numeric entities
such as dates or other numbers; and String, which do not fall in any of the previous two categories. The
list column indicates if the slot accepts multiple values for a given entity.

more complicated example involves coreference
resolution for both slot filler and entity. For
example, consider the query per:spouse of
“Michelle Obama” and the text:

Michelle Obama started her career
as a corporate lawyer specializing in
marketing and intellectual property.
Michelle met Barack Obama when she
was employed as a corporate attorney
with the law firm Sidley Austin. She
married him in 1992.

If a system extracts the filler “him” from the last
sentence, and normalizes it to “Barack Obama”
using coreference resolution, it must report offsets
for both these strings in the filler provenance.

Justification of relation
Unlike previous SF evaluations, where document
ids were required as justification, this year’s task
requires the justification to be a minimal number
of clauses or sentences that provides justification
for the extraction. The justification must contain at
least one clause and at most two sentences. If two
sentences are reported, they may be discontiguous.

For example, in the above text, the last sentence
is a valid justification for a system that performs
extraction from individual sentences (but the
provenances for entity and filler must include
the necessary information to disambiguate them).
As a more extreme example, a system that does
not use coreference resolution but is capable of
performing cross-sentence extractions may report
the last two sentences as a valid justification.

One exception from this requirement is the
per:alternate names slot. This slot needs separate
treatment because systems may extract it without
any contextual information (other than occurrence
in the same document). While textual patterns
may sometimes provide useful context for this slot
(e.g., “Dr. Jekyll, also known as Mr. Hyde”),
it is possible to extract instances of this slot
without such information. For example, a system
may decide that “IBM” is an alternate name for
“International Business Machines” solely based
on the fact that the former is an acronym for the
latter and they appear in the same document. To
allow for these situations, we will accept empty
justifications for this slot.



Document collections
We have extended the document collections for
the English SF task with data from discussion
forums, in the hope that it will promote research
on information extraction from less formal texts.
This year’s source document collection contains:
(a) one million documents from Gigaword; (b)
one million web documents (similar to last year),
and (c) approximately 100,000 documents from
web discussion fora. To simplify training, this
collection is released as a single LDC corpus,
entitled “TAC 2013 KBP Source Corpus”, with
Catalog ID LDC2013E45.

2.1.2 Scoring Metric
The scoring process is similar with the previous
year, with a small extension to handle the
new provenance and justification texts. For
completeness, we summarize it below. The main
difficulty with scoring SF systems is that, just
as in information retrieval (IR) evaluations, it is
not feasible to prepare a comprehensive slot-filling
answer key in advance. Because of the difficulty
of finding information in such a large corpus,
any manually-prepared key is likely to be quite
incomplete. For this task, we approximate this
comprehensive strategy by pooling the responses
from all the systems and have human assessors
judge the responses. To increase the chance
of including answers which may be particularly
difficult for a computer to find, LDC also prepares
a manual key which was included in the pooled
responses.

The slot filler in each non-Nil response is
assessed as Correct, ineXact, Redundant, or
Wrong, as follows:

1. A response that contains more than two
sentences in the justification will be assessed
as Wrong.

2. Otherwise, if the text spans defined by the
provenance and justification offsets in (+/- a
few sentences on either side of each span) do
not contain sufficient information to justify
that the slot filler is correct, then the slot filler
will also be assessed as Wrong.

3. Otherwise, if the text spans justify the slot
filler but the slot filler either includes only
part of the correct answer or includes the
correct answer plus extraneous material, the

slot filler will be assessed as ineXact. No
credit is given for ineXact slot fillers.

4. Otherwise, if the text spans justify the slot
filler and the slot filler string in Column 5 is
exact, the slot filler will be judged as Correct
(if it is not in the reference KB) or Redundant
(if it is in the reference KB). Note that, unlike
previous years, this year’s task removes the
non-redundancy requirement with the KB for
filler. That is, slot fillers that are already filled
in the reference database must be reported as
well. We hoped that this simplifies system
development, as developers do not have to
implement a redundancy component.

Two types of redundant slot fillers are flagged
for list-valued slots. First, two or more system
responses for the same query entity and slot
may have equivalent slot fillers; in this case,
the system is given credit for only one response,
and is penalized for all additional equivalent slot
fillers. (This is implemented by assigning each
correct response to an equivalence class, and
giving credit for only one member of each class.)
Second, a system response will be assessed as
Redundant with the reference knowledge base if
it is equivalent to a slot filler in the reference
knowledge base; in KBP 2013, these Redundant
responses are counted as Correct, but NIST will
also report an additional score in which such
Redundant responses are neither rewarded nor
penalized (i.e., they do not contribute to the total
counts of Correct, System, and Reference below).

Given these judgments, we can count:

• Correct = total number of correct equivalence
classes in system responses;

• System = total number of non-NIL system
responses; and

• Reference = number of single-valued slots
with a correct non-NIL response + number of
equivalence classes for all list-valued slots.

The official evaluation scoring metrics are:

• Recall (R) = Correct / Reference

• Precision (P) = Correct / System

• F1 = 2PR
P+R



2.2 Temporal Slot Filling Definition
This task is based on the TSF pilot at KBP 2011 (Ji
et al., 2011). Its goal is to add temporal validity
information to selected slots in the regular SF
output. The task uses the following seven slots:

• per:spouse

• per:title

• per:employee or member of

• per:cities of residence

• per:statesorprovinces of residence

• per:countries of residence

• org:top employees/members

2.2.1 Changes since 2011
The task is close to the diagnostic subtask at the
2011 pilot, with two differences, discussed below.

Input
To allow participants to focus on the temporal
aspect of the task, the TSF queries will include
both the entity and the filler (unlike in the 2011
pilot when only the entity was given). The query
format is very close to the output of the regular
SF task. That is, both entity and filler are given,
together with their provenance and justification
for the corresponding relation. One example for
a TSF query (ignoring the offsets in Columns 6
through 8) is:
Column 1: TEMP70711
Column 2: per:spouse
Column 3: Barack Obama
Column 4: AFP_ENG_20081208.0592.LDC2009T13
Column 5: Michelle Obama
Column 6: XXX-YYY
Column 7: ZZZ-WWW
Column 8: SSS-TTT
Column 9: 1.0
Column 10: E0566375
Column 11: E0082980

where Column 3 contains the entity, Column 5
the filler, Columns 6 and 7 their provenances,
and Column 8 the justification for the relation
in Column 2. Please see the task definition
document (Surdeanu, 2013) for a full description
of the query format.

Provenance of slot fillers
Similar to the regular slot filling task, the TSF
output should include the offsets for at least
one mention, and up to two mentions used
for the extraction and normalization of temporal
information. For example, if a system extracts

the relative date “Wednesday” and normalizes it
to “2008-12-31” using the document date from the
document below:
<DOC>
<DOCID> AFP_ENG_20081231.0121.LDC2009T13 </DOCID>
<DOCTYPE SOURCE="newswire"> NEWS STORY </DOCTYPE>
<DATETIME> 2008-12-31 </DATETIME>
<BODY>
<HEADLINE>
Thousands protest in Brussels against
Israeli action in Gaza
</HEADLINE>
<TEXT>
<P>
Thousands took the streets in Brussels on Wednesday
calling for an end to Israeli bombing of the
Palestinian Gaza Strip ...
</DOC>

the system should report the offsets for both
“Wednesday” and “2008-12-31” (from the
<DATETIME> block) in the provenance.

2.2.2 Scoring Metric
This year’s TSF task uses the same representation
of temporal information as the 2011 pilot (Ji et
al., 2011). For each relation provided in the input,
TSF systems must produce a 4-tuple of dates: [T1
T2 T3 T4], indicating that the relation is true for
a period beginning at some time between T1 and
T2 and ending at some time between T3 and T4.
A hyphen in one of the positions implies a lack
of a constraint. Thus [– 20110101 20110101 –]
implies that the relation was true starting on or
before January 1, 2011 and ending on or after
January 1, 2011. As discussed in Ji et al. (2011),
there are situations (e.g., recurring events) that
cannot be covered by this representation, but
the most common situations for the relations
covered in this task are addressed by this 4-tuple
representation. For this reason, and in order to be
able to reuse annotations generated in the 2011
pilot, we adopted the same representation this
year. The training data this year included: (a)
the training data used during the 2011 pilot, and
(b) outputs of the systems that participated in the
2011 pilot, which were re-annotated by LDC for
correctness.

The scoring metric this year is a simplified
version of the 2011 scorer. Similar to the previous
evaluation, we define a metric Q(S) that compares
a system’s output S =< t1, t2, t3, t4 > against a
gold standard tuple Sg =< g1, g2, g3, g4 >, based
on the absolute distances between ti and gi:

Q(S) =
1

4

∑
i

1

1 + |ti − gi|

The absence of a constraint in t1 or t3 is treated
as a value of -∞; the absence of a constraint in t2



or t4 is treated as a value of +∞. The unit of each
tuple element is counted based on years.

The overall system score is simply an average
of the Q(S) metrics for each relation in the system
output:

Accuracy =

∑
Si∈S Q(Si)

N

where S is the set of N system output tuples:
{S1, S2, ..., SN}, with one tuple for each query in
the input. Note that the 2011 precision and recall
scores are no longer necessary, because this year
the queries include the correct fillers, whereas in
the 2011 pilot the systems were responsible for
extracting the fillers as well.

3 Participants Overview

Table 2 summarizes the participants that submitted
at least one run in at least one of these two tasks. A
larger number of teams (43) registered for at least
one the tasks, but only 20 teams submitted results.
Table 3 compares the number of participants and
submissions for the two tasks with previous years.
The last table shows a continuous increase in
participation (both teams and runs) for SF, with
a small dip in 2012. As discussed in the next
section, this increase in participation is correlated
with an increase in technology maturity, which is
highly encouraging. For TSF, we also a see small
increase in participation (five teams vs. four) and a
considerable increase in number of runs submitted
(from seven to 16).

4 English Slot Filling

4.1 Overall Results

Table 4 lists the results of the best run for each
team that participated in SF. It is important to
note that these scores are not directly comparable
with last year’s scores for two main reasons.
First, the official score this year considers fillers
that are redundant with the KB, which were
ignored in previous years. However, as the
diagnostic scores (which ignore these redundant
fillers) indicate, this difference does not drastically
affect performance. Generally, diagnostic scores
are approximately 1 percentage point lower than
the corresponding official scores. Our conjecture
is that fillers that exist in the KB are the “easier”
ones, e.g., with higher redundancy in the dataset,
which makes it slightly easier for systems to
extract them. Second and more importantly, this

year’s task definition requires that that the relation
justification be the exact text (defined as one or
two sentences) that supports the extracted filler.
This is stricter than previous years, when the
justification consisted simply of the id of the
document that supported the extracted relation.
Because of this, and of the fact that this year’s
evaluation dataset is more complex (see §4.3), one
would expect this year’s scores to be lower than
the scores of previous SF evaluations. This is
highlighted in the scores of the output manually
generated by the LDC annotators: as seen in the
table, this year they obtained an F1 score of 68.5,
whereas last year they obtained a much higher
score of 81.4 F1.

Considering these observations, it is clear that
the results this year show increased performance.
For example, last year’s median score was 9.9
F1, whereas this year it is 15.7 F1. Last year
only two systems obtained an F1 score over 30
points; this year the top six systems did. This
strongly suggests that information extraction (IE)
technology has improved, but it takes considerable
time to reach this maturity: six out of the seven
top systems have previously participated in at least
one SF evaluation, and the majority participated
in several. While this performance boost is very
positive, it is important to put it in perspective:
the top system this year is at approximately
54% of human performance (i.e., of the LDC
annotators), and the median score is at only 23%
of human performance. This is much lower than
other NLP tasks, such as part-of-speech tagging
or named entity recognition, where machines
approach human performance.

With respect to technology, several observations
can be made:

• Similar to previous years, the most successful
approaches combine distant supervision (DS)
with rules. This can be implemented in
at least two different ways: (a) running
these approaches as different systems and
combining their output (NYU, Stanford,
BIT), or (b) using rules to generate additional
training data for DS (lsv). To the best of our
knowledge, the latter approach is novel for
KBP.

• For the first time, we see more complex
DS models that have built-in noise
reduction (Surdeanu et al., 2012) participate



Team Id Organization(s) SF? TSF?
ARPANI Bhilai Institute of Technology

√

CMUML Carnegie Mellon University
√ √

PRIS2013 Beijing University of Posts and Telecommunications
√

TALP UPC TALP Research Center of Technical University of Catalonia
(UPC)

√

UWashington Department of Computer Science and Engineering, University
of Washington

√

utaustin University of Texas at Austin – AI Lab
√

SINDI Korea Institute of Science and Technology Information
√

CohenCMU Carnegie Mellon University
√

UMass IESL University of Massachusetts Amherst, Information Extraction
and Synthesis Lab

√

BIT Beijing Institute of Technology
√

SAFT KRes University of Southern California Information Sciences
Institute

√

UNED Universidad Nacional de Educación a Distancia
√ √

IIRG University College Dublin
√

NYU New York University
√

Stanford Stanford University
√

lsv Saarland University
√

Compreno ABBYY
√ √

RPI-BLENDER Rensselaer Polytechnic Institute
√ √

MS MLI Microsoft Research
√

Table 2: Overview of the SF and TSF participants at KBP 2013.

English Slot Filling Temporal Slot Filling
Teams Submissions Teams Submissions

2009 8 16 – –
2010 15 31 – –
2011 14 31 4 7
2012 11 27 – –
2013 18 53 5 16

Table 3: Number of participants and submissions in the past five years of KBP. For the 2011 TSF task
we included the statistics of the diagnostic subtask, which is closer to this year’s TSF.

in the evaluation, and perform well
(Stanford). Previously, reducing the
noise of data generated through DS was
handled as a separate process, preceding
model training (Min et al., 2012).

• For the first time, one group built
their SF system around open-domain
information extraction (OpenIE) technology
(UWashington). They first extracted tuples
in the format (Arg1, Rel, Arg2) from the
KBP corpus using Open IE 4.0 (Mausam
et al., 2012). Then they used a set of
manually written rules to map these tuples to
KBP-specific relations. This approach scored
higher than the median and had the highest
precision of all submissions, which is highly
encouraging for a first-time participant.

• Another successful approach focused on
the bootstrapping of patterns based on
dependency tree paths, using tuples of

entities and fillers from the KB as seeds
(PRIS2013).

• Other notable approaches used unsupervised
learning. For example, TALP UPC’s
approach relies on an unsupervised clustering
of patterns using the ensemble weak minority
clustering algorithm (Gonzalez and Turmo,
2012). UMass IESL’s universal schema
model combines observed and unlabeled data
by performing a joint optimization over
the train and test data together to factorize
a matrix consisting of observed relations
between entities (Riedel et al., 2012).
Another exciting direction is utaustin’s
approach: they augment relations that are
explicitly stated in the text by the system
of Ji and Grishman (2011b) with ones that
are inferred from the stated relations using
probabilistic rules that encode commonsense
world knowledge. These probabilistic
first-order logic rules were learned using



Diagnostic Scores Official Scores
Recall Precision F1 Recall Precision F1

lsv 32.93 38.50 35.50 33.17 42.53 37.28
ARPANI∗ 29.10 47.83 36.18 27.45 50.38 35.54
RPI-BLENDER 30.62 38.19 33.98 29.02 40.73 33.89
PRIS2013 27.82 35.33 31.13 27.59 38.87 32.27
BIT 22.06 57.86 31.94 21.73 61.35 32.09
Stanford 28.46 32.30 30.26 28.41 35.86 31.70
NYU 17.35 50.70 25.85 16.76 53.83 25.56
UWashington 10.31 59.72 17.59 10.29 63.45 17.70
CMUML 10.63 28.79 15.53 10.69 32.30 16.07
SAFT KRes 13.43 12.43 12.91 14.99 15.67 15.32
UMass IESL 18.47 9.43 12.48 18.46 10.88 13.69
utaustin 7.91 21.85 11.62 8.11 25.16 12.26
UNED 9.11 15.08 11.36 9.33 17.59 12.19
Compreno 13.19 8.69 10.48 12.74 9.74 11.04
TALP UPC 9.67 6.54 7.81 9.81 7.69 8.62
IIRG 3.20 7.38 4.46 2.86 7.72 4.17
SINDI 2.80 7.26 4.04 2.59 7.84 3.89
CohenCMU 3.68 1.69 2.32 3.68 1.98 2.57
LDC 58.35 83.81 68.80 57.08 85.60 68.49

Table 4: Overall results for SF, for the 100 entities in the evaluation dataset. The diagnostic score ignores
fillers that are redundant with the reference KB (similar to previous years). The official score considers
these redundant fillers during scoring. If multiple runs were submitted, we report the best run for each
group. Results are listed in descending order of the official F1 score. The system marked with asterisk
submitted their output after the deadline. The LDC score corresponds to the output created by the LDC
experts.

Bayesian Logic Programs (BLP) (Raghavan
et al., 2012). Unfortunately, all these systems
performed below the median, but we suspect
that most of these groups suffered a penalty
from being first time participants.

4.2 Results without Justification

Table 5 lists system results when we relax the
constraints on the justification. The left block of
the table includes results when the scorer has the
parameter ignoreoffsets set to true, which
means that the justification is considered correct
when the reported document id is correct (i.e., all
offsets are ignored). The right block in the table
shows results when the scorer has the parameter
anydoc set to true, in which case the entire
justification is ignored and fillers are considered
correct if they match a gold filler. Note that these
lenient scoring strategies have an important side
effect: they collapse per:title fillers with the same
value but applied to different organizations (e.g.,
“CEO of Apple” is different than “CEO of Next”)

because, without document ids and in-document
offsets, we can no longer differentiate between
them. Empirically, we observed that this
collapsing of per:title fillers impacts mostly the
anydoc configuration. For this reason, these
lenient scores are not immediately comparable
with the official scores in Table 4.

Despite the above limitation, several
observations can be made based on the results in
Table 5:

• One system (IIRG) had a significant bug in
offset generation, which led to a considerable
penalty in their official score. With the
lenient scorer, this system’s score increases
by 16.80 F1 points with the anydoc
configuration, and by 10.86 F1 points with
the ignoreoffsets configuration.

• Ignoring the above system, the results
suggest that the additional requirement
imposed this year to provide in-document
offsets for provenance and justification does



Official Score Official Score
with ignoreoffsets with anydoc

Recall Precision F1 Recall Precision F1 F1 Increase
lsv 33.56 42.97 37.69 35.84 45.67 40.17 +2.89
RPI-BLENDER 29.13 40.82 34.00 31.87 44.46 37.13 +3.24
ARPANI∗ 27.49 50.36 35.57 28.72 52.38 37.10 +1.56
Stanford 29.20 36.80 32.56 32.49 40.76 36.16 +4.46
PRIS2013 28.03 39.44 32.78 29.34 41.07 34.23 +1.86
BIT 21.90 61.73 32.33 22.55 63.27 33.25 +1.16
NYU 16.98 54.49 25.90 18.16 57.99 27.66 +2.10
IIRG 10.50 28.31 15.32 14.39 38.60 20.97 +16.80
UWashington 10.44 64.29 17.96 11.38 69.75 19.56 +1.86
CMUML 10.71 32.30 16.09 11.72 35.19 17.58 +1.51
SAFT KRes 15.55 16.24 15.89 17.20 17.88 17.53 +2.21
utaustin 8.46 26.22 12.79 10.76 33.19 16.25 +3.99
Compreno 13.48 10.26 11.64 17.82 13.54 15.39 +4.35
UNED 9.69 18.23 12.65 11.65 21.82 15.19 +3.00
UMass IESL 18.49 10.88 13.70 20.49 12.01 15.14 +1.45
TALP UPC 10.16 7.96 8.93 13.02 10.15 11.41 +2.79
SINDI 2.66 8.04 4.00 3.43 10.31 5.14 +1.25
CohenCMU 3.89 2.09 2.72 5.55 2.97 3.87 +1.30
LDC 57.36 85.90 68.79 59.01 87.95 70.63 +2.14

Table 5: Results for SF ignoring justification. In the ignoreoffsets configuration justifications
are considered correct if the correct document is reported (similar to past years’ evaluations). In the
anydoc configuration justifications are completely ignored, and fillers are marked as correct solely
based on string matching with gold fillers. If multiple runs were submitted, we report the best run for
each group. Results are listed in descending order of the F1 score with anydoc. The system marked
with asterisk submitted their output after the deadline. The LDC score corresponds to the output created
by the LDC experts.

not impact the overall score in a considerable
way. For example, the official score for
the top system this year (lsv) is 37.28 F1
points (see Table 4), and the corresponding
score with ignoreoffsets is 37.69.
Similar small differences (under 1 F1 point)
between these scores are observed for most
participating systems. This observation
indicates that, as long as systems manage
to retrieve a correct supporting document,
they generally extract justifications and
provenances that are considered correct by
LDC evaluators.

• On the other hand, identifying a valid
supporting document for the extracted
relation remains a challenge for some
systems. Note that the anydoc scores are
further removed from the official scores
because ignoring the document id causes

more collapsing for the per:title slots than
the ignoreoffsets option. For example,
because of this, the LDC score, which
indicates the performance of the human
expert, is boosted by slightly more than two
points. However, even when accounting for
this discrepancy, it is clear that some systems
were penalized for not reporting a correct
supporting document. This is considerable
for two types of systems: (a) systems that
extracted fillers from documents outside of
the KBP source corpus, such as Stanford’s
best run, whose score improves by more
than 4 F1 points under the anydoc scorer
configuration; and (b) systems that inferred
relations not explicitly stated in text, such
as utaustin, whose score improves by 4 F1
points.



Entity Count Value Count (Pct)
per:title 33 142 (10.8%)
org:top members employees 41 116 (8.8%)
org:alternate names 45 82 (6.2%)
per:employee or member of 28 72 (5.5%)
per:children 23 52 (3.9%)
per:cities of residence 30 51 (3.9%)
per:age 31 51 (3.9%)
per:date of death 36 48 (3.6%)
per:cause of death 33 47 (3.5%)
per:charges 13 45 (3.4%)
per:alternate names 24 45 (3.4%)
per:countries of residence 25 36 (2.7%)
per:city of death 32 35 (2.6%)
org:country of headquarters 34 34 (2.6%)
org:website 32 32 (2.4%)
per:origin 28 32 (2.4%)
per:spouse 23 28 (2.1%)
per:statesorprovinces of residence 23 28 (2.1%)
per:schools attended 16 27 (2.0%)
org:subsidiaries 13 25 (1.9%)
per:parents 18 25 (1.9%)
org:city of headquarters 23 24 (1.8%)
org:members 4 22 (1.6%)
org:founded by 11 21 (1.6%)
org:stateorprovince of headquarters 20 20 (1.5%)
per:stateorprovince of death 18 18 (1.3%)
org:shareholders 12 17 (1.3%)
per:date of birth 13 16 (1.2%)
per:other family 10 15 (1.1%)
org:parents 11 13 (0.9%)
org:date founded 13 13 (0.9%)
per:city of birth 12 12 (0.9%)
org:number of employees members 11 12 (0.9%)
per:siblings 11 12 (0.9%)
per:stateorprovince of birth 10 10 (0.7%)
per:country of death 10 10 (0.7%)
per:religion 7 9 (0.6%)
per:country of birth 5 5 (0.3%)
org:member of 4 4 (0.3%)
org:political religious affiliation 1 1 (0.0%)

Table 6: Distribution of correct slots in the 2013 SF gold dataset. The entity count column indicates
how many of the 100 entities in the evaluation dataset contain at least one non-NIL correct fill for this
slot. The value count column indicates how many equivalence classes were found for this slot across all
entities. The slots are listed in descending order of the value count.

4.3 Distribution of Slot Types

Table 6 shows the distribution of slots in this
year’s evaluation data. As the table indicates,
the distribution of slots in this dataset is not
as skewed as in the previous years. For
example, at KBP 2011 seven slots accounted
for slightly more than 60% of data. These slots
were: per:title, org:top members employees,
org:alternate names, per:employee of,
per:member of, per:alternate names, and
org:subsidiaries. Some of these tend to be
very local (e.g., per title, per:employee of,
org:top members employees), which means that
systems could perform well by focusing on few
slots with local extraction patterns. This year

this is no longer the case. For example, to reach
60% coverage of the evaluation data, a system
would have to model 13 slots, and these include
more complex relations such as per:charges. This
suggests that the evaluation dataset this year was
more difficult that in the past.

5 Temporal Slot Filling

Table 4 lists the results for TSF, overall and for
each individual slot. Note that, even though the
evaluation dataset contained 273 queries, only 201
were actually scored: 5 queries were dropped
because neither the systems’ nor LDC’s output
contained correct slot fillers; and 67 queries were
eliminated because the gold temporal annotations



S1 S2 S3 S4 S5 S6 S7 All
Baseline 24.70 17.40 15.18 17.83 14.75 21.08 23.20 19.10
MS MLI 31.94 36.06 32.85 40.12 33.04 31.85 27.35 33.15
RPI-BLENDER 31.19 13.07 14.93 26.71 29.04 17.24 34.68 23.42
UNED 26.20 6.88 8.16 15.24 14.47 14.41 19.34 14.79
CMUML 19.95 7.46 8.47 16.52 13.43 5.65 11.95 11.53
Compreno 0.0 2.42 8.56 0.0 13.50 7.91 0.0 5.14
LDC 69.87 60.22 58.26 72.27 81.10 54.07 91.18 68.84

Table 7: Results for TSF, for the 201 evaluation queries that were scored. If multiple runs were
submitted, we report the best run for each group. Results are listed in descending order of the
accuracy for all slots (the official score). We also include scores for the individual slots as follows:
S1: org:top members employees, S2: per:cities of residence, S3: per:countries of residence, S4:
per:employee or member of, S5: per:spouse, S6: per:statesorprovinces of residence, S7: per:title. The
Baseline is the DCT-WITHIN baseline of (Ji et al., 2011). The LDC score corresponds to the output
created by the LDC experts.

produced a gold standard tuple that had an invalid
temporal interval (a temporal interval is valid only
if T1 ≤ T2, T3 ≤ T4 and T1 ≤ T4). Also
note that the official scores currently ignore the
textual justification generated by the systems, i.e.,
we score TSF outputs solely based on the formula
introduced in Section 2.2.2. Implementing a
policy for evaluating temporal justifications is left
as future work.

The results in the table are compared against
the DCT-WITHIN baseline of (Ji et al., 2011).
This baseline makes the simple assumption that
the corresponding relation is valid at the document
date. That is, it creates a “within” tuple as
follows: < −∞, doc date, doc date, ∞ >.
The table shows that only two out of the five
systems outperform this baseline: MS MLI and
RPI-BLENDER. This is worse than the equivalent
evaluation in 2011, when three out of four
systems outperformed this baseline (Ji et al.,
2011). We also compare the system outputs
against an output generated by human experts
(LDC). This comparison indicates that the top
performer this year achieves approximately 48%
of human performance, and the median systems
is at 21% of human performance. These numbers
are slightly lower than the corresponding numbers
measured for SF (53% for top system, and 23%
for median), which suggests that TSF is a more
difficult task.

The results for individual slot types
indicate that the slots that address locations
of residence (per:cities of residence,
per:countries of residence,

per:statesorprovinces of residence)
perform generally worse than average,
whereas the slots that address
employment (org:top members employees,
per:employee or member of) tend to perform
better than average. This suggests that, at least in
this dataset, extracting temporal information for
residence relations is harder than for employment
relations. Our conjecture is that residence is
more mobile than employment (e.g., a person can
change residence but continue to work for the
same employer), which increases the ambiguity
of the corresponding relations.

With respect to technology, two trends are clear:

• Most groups used DS to assign temporal
labels to tuples of <entity, filler, time>
extracted from text. Several approaches
(RPI-BLENDER, UNED) used training
tuples from Freebase, whereas the top
performing system (MS MLI) used the
Wikipedia infoboxes for this purpose.
It is unclear if this made a difference
in overall performance. With respect
to temporal labels, most groups used at
least Start, End, and In labels, with
RPI-BLENDER adding an additional one
(Start-And-End). Notably, one of the top
systems (RPI-BLENDER) used an ensemble
of classifiers combining flat features (surface
text, dependency paths) with tree kernels (Ji
et al., 2013).

• The top system (MS MLI) used a language
model to clean up the noise introduced by



DS before the actual temporal classification
step. For example, this language model
learned that n-grams such as “FILLER and
ENTITY were married” are indicative of the
per:spouse relation. These n-grams are then
used as features in a boosted decision tree
classifier that decides if the extracted <entity,
filler, time> tuples belong to the relation
under consideration or not. Considering that
this noise removal step appears to be the most
significant difference between the top and
the second system in Table 7, these results
suggest that noise removal is crucial for TSF
as well.

6 Concluding Remarks

With respect to the SF task, this year’s evaluation
had some clear positive trends. First, this was the
most popular SF evaluation to date, with 18 teams
submitting results in 53 different runs. Second,
this year’s results show increased performance, on
average. The median score this year was 15.7
F1, which is approximately 60% higher than the
median score last year. This year, six teams
obtained F1 scores over 30 points, whereas last
year only two did. This is despite the fact that
the task this year was more complex than past
years’ evaluations (with stricter scoring and more
complex queries).

While this improvement is very positive, it is
important to note that SF systems are still far
from human performance on this task. The top
system this year barely achieves 50% of human
performance, and the median system is at only
23% of human performance. We are still far
from solving the SF problem. Furthermore,
retention of SF participants has not improved
over the years. This year, slightly more than
50% of registered participants have dropped out
of the evaluation. Similar drop-out rates have
been observed in previous years. This strongly
suggests that the SF task has a high barrier of
entry, which can be detrimental for the success of
the task. A possible way to lower participation
effort is to offer more preprocessed data that
allows participants to focus on IE models rather
than on the engineering necessary to support
them. For example, organizers could provide
sentences (generated through distant supervision)
that contain co-occurring entities and fillers (for
training) or entities (for testing queries), which

would allows participants to skip the information
retrieval part of a SF system. System development
effort can be further reduced by processing these
sentences with named entity recognizers and
syntactic parsers.

The considerable performance increase
measured for SF this year is not replicated in
the TSF results. This year, only two out of the
five participating systems outperformed a simple
baseline, whereas in 2011, when an equivalent
evaluation was organized, three out of four did.
While this is to a certain extent disappointing, it is
important to note that TSF is a complex task that
has started receiving attention from the research
community only recently. We suspect it will take
a few more years until TSF has the same research
mass behind it as SF. We are already seeing that
TSF can benefit considerably from more complex
models inspired by the word in SF, e.g., this
year’s top TSF system included a noise reduction
algorithm in their distant-supervision architecture.
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