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1 Introduction 

The NYU Knowledge Base Population (KBP) slot 
filling system for 2011 was built upon the system 
for 2010.  The primary addition was a set of 
classifiers trained using distant supervision.  A 
secondary addition involved a slot-specific passage 
retrieval system combined with name-type-based 
answer selection -- in effect, a simple QA system. 
In the three sections that follow, we review the 
2010 baseline system and describe the distant 
supervision and QA components.  Following that, 
we report on this year’s results, including the 
contribution of the individual system components. 

2 Baseline:  NYU KBP 2010 system 

We describe first the baseline system, whose basic 
structure was unchanged from 2010 (Grishman and 
Min 2010), although a number of small 
refinements were made based on an error analysis 
of last year’s results.  These included a larger list 
of titles and an improved rule for distinguishing 
members from employees. 
The NYU system, like most KBP systems, has 3 
basic components:  document retrieval, answer 
extraction, and merging. 
Document retrieval uses Lucene to retrieve a 
maximum of 300 documents from the corpus; the 
retrieval query consists of the query name and 
some minor name variants (omitting middle 
initials, corporate suffixes).  To avoid bogging 
down the system with the occasional very long 
document, documents exceeding 40,000 characters 
are ignored.  No use is made of the document 
given in the query to disambiguate ambiguous 
names. 

Answer extraction begins with text analysis – part-
of-speech tagging, chunking, name tagging, time 
expression tagging, and coreference – performed 
using the NYU Jet system.  The results of 
coreference are used to fill the KBP 
alternate_names slots. Other slots are filled 
through a combination of hand-coded patterns and 
patterns created semi-automatically using 
bootstrapping.  These patterns are organized into a 
set of response generators which are applied 
independently to the document; after all generators 
have been applied, we select the best answer (for 
single-valued slots) or eliminate redundant answers 
(for list-valued slots). 
The hand-coded patterns operate within a noun 
group or between two noun groups connected by a 
preposition.  These include the pattern sets in 
Table 1. 
A few notes: 

1. GPE = geo-political entity, a location with 
a government [an ACE semantic class] 

2. Titles are recognized using a list of 
approximately 600 titles gathered from 
Wikipedia infoboxes and edited by hand.  
Titles preceded by ‘assistant’, ‘deputy’, or 
‘vice’ are excluded for the 
top_members/employees slot. 

3. Employee_of is distinguished from 
member_of based on the type of 
organization:  non-governmental and 
sports organizations (based on the ACE 
classification) have members; other 
organizations have employees. As a 
special case, coaches and managers of 
sports organizations are treated as 
employees.  
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pattern set patterns slots 

title of org, org title, org’s title, title title, employee_of 

title in GPE, GPE title origin, location_of_residence 

local patterns for 
person queries 

person, integer, age 

title of org, org title, org’s title top_members/employees 

GPE’s org, GPE-based org, org of 
GPE, org in GPE 

location_of_headquarters 

local patterns for 
org queries 

org’s org subsidiaries / parent 

implicit organzation title [where there is a unique org 
mentioned in the current + prior 
sentence] 

employee_of [for person queries]; 
top_members/employees [for org queries] 

functional noun F of X, X’s F 
where F is a functional noun 

family relations;  org parents and subsidiaries 

 
Table 1: Pattern Sets 

 
4. Location_of slots are divided into 

countries, states, and cities based on 
simple table look-up, using tables of 
counties and U.S. states (anything not in 
this table is classified as a city) 

The bootstrapped patterns are created starting from 
a small set of seed patterns for each KBP slot, 
growing the set through semi-supervised learning 
using the KBP corpus, and manually reviewing the 
resulting patterns.  Separate sets of patterns are 
produced matching linear token sequences and 
matching dependency tree paths.   The dependency 
structures are built using the Stanford English 
parser.  The bootstrapping process is described in 
detail in last year’s report (Grishman and Min 
2010).  
Post-processors are applied following pattern 
matching:  to distinguish employees from 
members, and to distinguish countries, states, and 
cities. 
Finally the merging stage combines answers from 
different documents and passages, and from 
different answer extraction procedures. 

3 Distant supervision 

The primary addition to our KBP system was a set 
of maximum entropy classifiers for slot filling, 
trained through distant supervision (Mintz et al. 
2009).  The training procedure used the Freebase 
knowledge base and the KBP corpus. Selected 

relations in Freebase were mapped to 29 slots in 
the KBP task. The mapping table used was similar 
to the one in Chen et al. (2010). Roughly 4.1 
million relation instances were used for training 
(See Table 2 for more details). Given a pair of 
names occurring together in a sentence in 
the KBP corpus, we treat it as a positive example 
if is a Freebase relation instance and as a 
negative example if  is not a Freebase 
instance but is an instance for some j'≠j. 
These examples are used for both training 
maximum entropy classifiers and computing the 
precision of dependency patterns extracted from 
them. High-precision patterns based on the 
precision measure proposed in Section 3.2 for a 
few slots1 were reviewed by hand, producing a set 
of 792 patterns for filling slots using strict pattern 
matching. The resulting classifiers and the pattern 
matcher were used as additional sources of slot 
fills, generated in parallel with pattern matching 
from last year, and merged in the final stage of 
processing. This produced a significant 
improvement in overall performance (see Table 5), 
but not as much as we hoped.   
Below we first describe the features used for 
training classifiers and then discuss a few decisions 
that we made during the development of our 
distant learner: refinement of distantly generated 
                                                             
1 Due to time limitations, we only did this for the four slots: 
per:employee_of, per:member_of, org:founded_by, 
org:top_members/employees 



labels to reduce noise, undersampling of the 
majority class to achieve a more balanced class 
distribution and the use of coreference to 
incorporate more available information of the 
query entity for slot filling. 
 
Slot # Instances 
org:alternate_names 1049 
org:dissolved 2934 
org:founded 57988 
org:founded_by 8203 
org:country_of_headquarters 
org:stateorprovince_of_headquarters 
org:city_of_headquarters 

248315 

org:political/religious_affiliation 1735 
org:top_members/employees 67244 
per:cause_of_death 53149 
per:children 33042 
per:employee_of 97167 
per:member_of 256573 
per:origin 466211 
per:parents 33043 
per:country_of_birth 
per:stateorprovince_of_birth 
per:city_of_birth 

403519 

per:country_of_death 
per:stateorprovince_of_death 
per:city_of_death 

109182 

per:religion 80053 
per:countries_of_residence 
per:stateorprovinces_of_residence 
per:cities_of_residence 

170562 

per:schools_attended 162737 
per:siblings 8211 
per:spouse 16588 
per:title 1832723 
Total 4110228 
 

Table 2: Freebase Instances for KBP Slots 

3.1 Feature Sets 

We extract features from both the token sequence 
and the dependency tree representations of the 
sentence containing the two names. We also 
extract features that capture the string and entity 
type information of the names, the order of the two 
names in the sentence (same or reversed relative to 
their order as a Freebase name pair) and a binary 
feature indicating whether there is a title in 

between the two names. Table 3 shows a brief 
description of the features and samples extracted 
for the Freebase name pair <Ray Young, General 
Motors> in the sentence “Ray Young, the chief 
financial officer of General Motors, said GM could 
not bail out Delphi”. For more detailed 
descriptions of the features and the intuition of 
why these features are extracted, please refer to 
(Sun et al., 2011). 

3.2 Class Label Refinement 

“All men are created equal”, unfortunately, is not 
true in knowledge bases such as Freebase. For 
example, some people have employers and 
residences while others do not. When we perform 
distant learning, i.e., matching Freebase records 
against unstructured texts to generate training 
examples, we typically label an example as 
negative if it has no corresponding entry in 
Freebase. However, Freebase is highly incomplete 
and hence many false negative examples are 
generated. Examples that match entries in Freebase 
are not always positive in reality, but are assumed 
to be and labeled as positive examples by distant 
learning. For example, the sentence “Bill Gates has 
declared war on Microsoft's insecure software” 
would be labeled as a positive example for the 
relation org:founded_by although the context does 
not indicate that relation. Even worse is the 
pervasive phenomenon where pairs of names are 
often connected by non-relational contexts such as 
conjunctions and the punctuation comma. This 
results in many false positive examples.  
To alleviate the impact of false positive and 
negative examples on the quality of learned 
models, we refine the class labels of distantly 
generated examples. Specifically, we extract 
dependency patterns from these examples and 
estimate the precision of a pattern for a class based 
on the statistics of the distantly generated class 
labels. The precision of a pattern p for the class 

is defined as the number of occurrences of p in 

the class  divided by the number of occurrences 

of p in any of the classes :  

€ 

prec(p,ci ) =
count(p,ci )
count(p,c j )

j
∑

 

 



Feature Description Feature Value 
dpath Shortest path connecting the two names in 

the dependency parsing tree coupled with 
entity types of the two names 

PERSON appos officer 
prep_of ORGANIZATION 

e1dh The head word for name one said 
e2dh The head word for name two officer 
same_e12dh Whether e1dh is the same as e2dh false 
e1dw The dependent word for name one officer 

Dependency 
Tree 
Features 

e2dw The dependent word for name two nil 
tpattern The middle token sequence pattern  , the chief financial officer 

of 
ntw Number of words between the two names 6 
wbf First word in between , 
wbl Last word in between of 
wbo Other words in between {the, chief, financial, 

officer} 
bm1f First word before the first name nil 
bm1l Second word before the first name nil 
am2f First word after the second name , 

Token 
Sequence  
Features 

am2l Second word after the second name said 
e1 String of name one Ray_Young 
e2 String of name two General_Motors 
e12 Conjunction of e1 and e2 Ray_Young--

General_Motors 
et1 Entity type of name one PERSON 
et2 Entity type of name two ORGANIZATION 

Entity 
Features 

et12 Conjunction of et1 and et2 PERSON-- 
ORGANIZATION 

Semantic  
Feature 

mTitle Title in between true 

Order  
Feature 

order 1 if name one comes before name two; 2 
otherwise. 

1 

 
Table 3: Feature Sets 

 
The class label refinement algorithm utilizes two 
types of precision, prec1 and prec2, computed with 
the sum including and excluding the class OTHER 
(not a defined KBP slot), respectively. 
 
Let 
    top_class1(p) = the class c (including OTHER) 
        which maximizes prec1(p, c) 
    top_class2(p) = the class c (excluding OTHER) 
        which maximizes prec2(p, c) 
    top_prec1(p) = the max of prec1(p, c) 
    top_prec2(p) = the max of prec2(p, c) 
 

Then we refine the class of p using the following 
rule: 
 
  if (top_class1(p) == “other”) { 
      if (top_score2(p) < 0.5 | top_score2(p) == 1)  
          return “other” 
          else return top_class2(p)} 
  else if top_score1(p) >= 0.3 
      return top_class1(p) 
      else return “other” 
 
Cutoff values were selected by eyeballing the 
quality of patterns.    



To see why this refinement gives more accurate 
class labels, taking the pattern “appos chairman 
prep_of” as an example; most of the time it was 
labeled as OTHER because of the incompleteness 
of Freebase. After we compute prec1 and prec2, 
every example (including those were labeled as 
OTHER) that is associated with this pattern will be 
refined to the class per:employee_of.  
Figures 1, 2 and 3 show the results averaged on 10 
runs on the 2011 evaluation data using different 
undersampling ratios, which is defined as the ratio 
between negative and positive examples (see 
Section 3.3 for more details). Under each setting of 
the undersampling ratio, models trained with 
refined class labels (MR and SR) outperformed 
models trained without refined labels (MNR and 
SNR) by large margins. This indicates the 
superiority of the proposed class label refinement 
method in distant learning for slot filling. It is also 
noticeable that the performance curves of models 
trained with refined labels are much flatter than 
those of models trained without refined labels, 
reflecting that they are less sensitive to the 
undersampling ratio parameter and more robust to 
noise. 
 
Slot Freq. prec1 prec2 
per:member_of 59 0.038 0.175 
org:top_members 
/employees 

20 0.013 0.059 

per:employee_of 254 0.164 0.754 
org:founded_by 4 0.003 0.012 
OTHER 1208 0.782 NA 
 

Table 4: Pattern “appos chairman prep_of” 

3.3 Undersampling the Majorities 

Distant learning also produces an extremely 
unbalanced class distribution. Traditionally, a 
single n-way classifier is trained to distinguish 
among the n classes. We empirically found that 
this classifier is biased towards a few majority 
classes and tends to ignore the minority classes. 
For example, the single n-way classifier on average 
produced 180 fills for only 8 slots. As an 
alternative, we train one n-way classifier for each 
pair of named entity types. For example, we train a 
multi-class classifier for the entity type pair 
PERSON and ORGANIZATION and train another 
one for PERSON and PERSON. There is still a 

majority class for each such n-way classifier, 
namely the class that cannot be mapped to any 
KBP slot even after label refinement. We then 
downsize the majority class by randomly selecting 
a subset of its examples.  
Multiple n-way classifiers not only produced more 
fills for more slots (on average 240 fills for 15 
slots), but also provided better F-Measure than the 
single n-way classifier. This was mainly achieved 
by an improved recall as shown in Figure 3.      

Figure 1: F-Measure 

Figure 2: Precision 



Figure 3: Recall 
 

 
 

3.4 Contribution of Coreference 

For the sake of matching accuracy, the training of 
distant learning relies on strict match of names. 
When we actually fill slots for a given query, its 
co-referred names in a single document can be 
provided by a co-reference module. Our submitted 
runs used the co-referred names of the query in 

both the distantly trained classifiers and the simple 
dependency pattern matcher which together 
achieved P/R/F of 36.4/11.4/17.4 on the 2011 
evaluation data. The use of co-reference is clearly 
beneficial to our system; without using it the P/R/F 
dropped to 28.8/10.0/14.3. Note that the results in 
the three figures above were also obtained using 
the coreference information. 

4 Passage retrieval / QA 

One further component incorporated into this 
year’s system was based on passage retrieval and 
name typing.  For each slot, a set of index terms is 
generated using distant supervision (again, using 
Freebase) and these terms are used to retrieve and 
rank passages for a specific slot (Xu et al. 2011).  
An answer is then selected based on name type and 
distance from the query name. This is used as a 
fall-back strategy, if the other answer extraction 
components did not find any slot fill. Due to 
limitations of time, this procedure was only 
implemented for a few slots (employer and 
headquarters location) and the constraints were not 
tight enough to improve overall slot-filling 
performance. 
 

score using only module score excluding module  
module recall precision F1 recall precision F1 

distant supervision overall 11.4 36.4 17.4 20.2 35.4 25.7 

distant supervision classifier 10.0 37.9 15.4 21.1 34.5 26.2 

distant supervision pattern matcher  2.0 28.6 3.6 24.7 35.7 29.2 

alternate names 2.8 45.7 5.4 23.0 34.1 27.5 

local patterns 14.4 41.0 21.3 18.5 33.4 23.8 

implicit organization 0.6 5.5 1.1 25.0 39.2 30.5 

functional nouns 0.5 23.8 1.0 25.1 35.3 29.3 

bootstrapped linear patterns 3.5 54.1 6.6 24.8 34.6 28.9 

bootstrapped dependency patterns 1.8 36.2 3.4 25.0 35.2 29.2 

 
Table 5: Ablation Study of the System NYU2 



5 Results 

Because the passage/QA component was added at 
the last minute, we thought it prudent to submit 
one run with this component (NYU1) and one run 
without (NYU2).  It turned out (as just noted) that 
this component was underconstrained. It added 35 
slots fills, only two of which were correct; NYU2 
had better performance: 
 

 
Table 6: Performance of NYU Systems 

 
Using NYU2 as a base, we then measured the 
contribution of each module in isolation and the 
performance of the system when each module was 
removed in turn (ablation study).3  As one can see 
from Table 5, the hand-coded local patterns by 
themselves and the classifier trained by distant 
supervision by itself provided quite good 
performance.  There is a lot of overlap between the 
contributions of the different modules, but the 
ablation study indicates that all modules made a 
positive contribution to the final result except for 
the implicit organization module, which had 
satisfactory precision on the training data but very 
poor precision on the test data. 
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 Recall Precision F1 

NYU1 25.7 33.6 29.1 

NYU2 25.5 35.0 29.5 


