
New York University 2011 System for KBP Slot Filling

1 Introduction

The NYU Knowledge Base Population (KBP) slot
filling system for 2011 was built upon the system
for 2010. The primary addition was a set of
classifiers trained using distant supervision. A
secondary addition involved a slot-specific passage
retrieval system combined with name-type-based
answer selection -- in effect, a simple QA system.
In the three sections that follow, we review the
2010 baseline system and describe the distant
supervision and QA components. Following that,
we report on this year’s results, including the
contribution of the individual system components.

2 Baseline: NYU KBP 2010 system

We describe first the baseline system, whose basic
structure was unchanged from 2010 (Grishman and
Min 2010), although a number of small
refinements were made based on an error analysis
of last year’s results. These included a larger list
of titles and an improved rule for distinguishing
members from employees.
The NYU system, like most KBP systems, has 3
basic components: document retrieval, answer
extraction, and merging.
Document retrieval uses Lucene to retrieve a
maximum of 300 documents from the corpus; the
retrieval query consists of the query name and
some minor name variants (omitting middle
initials, corporate suffixes). To avoid bogging
down the system with the occasional very long
document, documents exceeding 40,000 characters
are ignored. No use is made of the document
given in the query to disambiguate ambiguous
names.

Answer extraction begins with text analysis – part-
of-speech tagging, chunking, name tagging, time
expression tagging, and coreference – performed
using the NYU Jet system. The results of
coreference are used to fill the KBP
alternate_names slots. Other slots are filled
through a combination of hand-coded patterns and
patterns created semi-automatically using
bootstrapping. These patterns are organized into a
set of response generators which are applied
independently to the document; after all generators
have been applied, we select the best answer (for
single-valued slots) or eliminate redundant answers
(for list-valued slots).
The hand-coded patterns operate within a noun
group or between two noun groups connected by a
preposition. These include the pattern sets in
Table 1.
A few notes:

1. GPE = geo-political entity, a location with
a government [an ACE semantic class]

2. Titles are recognized using a list of
approximately 600 titles gathered from
Wikipedia infoboxes and edited by hand.
Titles preceded by ‘assistant’, ‘deputy’, or
‘vice’ are excluded for the
top_members/employees slot.

3. Employee_of is distinguished from
member_of based on the type of
organization: non-governmental and
sports organizations (based on the ACE
classification) have members; other
organizations have employees. As a
special case, coaches and managers of
sports organizations are treated as
employees.

Ang Sun, Ralph Grishman, Wei Xu, Bonan Min
Computer Science Department

New York University
{asun, grishman, xuwei, min}@cs.nyu.edu

pattern set patterns slots

title of org, org title, org’s title, title title, employee_of

title in GPE, GPE title origin, location_of_residence

local patterns for
person queries

person, integer, age

title of org, org title, org’s title top_members/employees

GPE’s org, GPE-based org, org of
GPE, org in GPE

location_of_headquarters

local patterns for
org queries

org’s org subsidiaries / parent

implicit organzation title [where there is a unique org
mentioned in the current + prior
sentence]

employee_of [for person queries];
top_members/employees [for org queries]

functional noun F of X, X’s F
where F is a functional noun

family relations; org parents and subsidiaries

Table 1: Pattern Sets

4. Location_of slots are divided into

countries, states, and cities based on
simple table look-up, using tables of
counties and U.S. states (anything not in
this table is classified as a city)

The bootstrapped patterns are created starting from
a small set of seed patterns for each KBP slot,
growing the set through semi-supervised learning
using the KBP corpus, and manually reviewing the
resulting patterns. Separate sets of patterns are
produced matching linear token sequences and
matching dependency tree paths. The dependency
structures are built using the Stanford English
parser. The bootstrapping process is described in
detail in last year’s report (Grishman and Min
2010).
Post-processors are applied following pattern
matching: to distinguish employees from
members, and to distinguish countries, states, and
cities.
Finally the merging stage combines answers from
different documents and passages, and from
different answer extraction procedures.

3 Distant supervision

The primary addition to our KBP system was a set
of maximum entropy classifiers for slot filling,
trained through distant supervision (Mintz et al.
2009). The training procedure used the Freebase
knowledge base and the KBP corpus. Selected

relations in Freebase were mapped to 29 slots in
the KBP task. The mapping table used was similar
to the one in Chen et al. (2010). Roughly 4.1
million relation instances were used for training
(See Table 2 for more details). Given a pair of
names occurring together in a sentence in
the KBP corpus, we treat it as a positive example
if is a Freebase relation instance and as a
negative example if is not a Freebase
instance but is an instance for some j'≠j.
These examples are used for both training
maximum entropy classifiers and computing the
precision of dependency patterns extracted from
them. High-precision patterns based on the
precision measure proposed in Section 3.2 for a
few slots1 were reviewed by hand, producing a set
of 792 patterns for filling slots using strict pattern
matching. The resulting classifiers and the pattern
matcher were used as additional sources of slot
fills, generated in parallel with pattern matching
from last year, and merged in the final stage of
processing. This produced a significant
improvement in overall performance (see Table 5),
but not as much as we hoped.
Below we first describe the features used for
training classifiers and then discuss a few decisions
that we made during the development of our
distant learner: refinement of distantly generated

1 Due to time limitations, we only did this for the four slots:
per:employee_of, per:member_of, org:founded_by,
org:top_members/employees

labels to reduce noise, undersampling of the
majority class to achieve a more balanced class
distribution and the use of coreference to
incorporate more available information of the
query entity for slot filling.

Slot # Instances
org:alternate_names 1049
org:dissolved 2934
org:founded 57988
org:founded_by 8203
org:country_of_headquarters
org:stateorprovince_of_headquarters
org:city_of_headquarters

248315

org:political/religious_affiliation 1735
org:top_members/employees 67244
per:cause_of_death 53149
per:children 33042
per:employee_of 97167
per:member_of 256573
per:origin 466211
per:parents 33043
per:country_of_birth
per:stateorprovince_of_birth
per:city_of_birth

403519

per:country_of_death
per:stateorprovince_of_death
per:city_of_death

109182

per:religion 80053
per:countries_of_residence
per:stateorprovinces_of_residence
per:cities_of_residence

170562

per:schools_attended 162737
per:siblings 8211
per:spouse 16588
per:title 1832723
Total 4110228

Table 2: Freebase Instances for KBP Slots

3.1 Feature Sets

We extract features from both the token sequence
and the dependency tree representations of the
sentence containing the two names. We also
extract features that capture the string and entity
type information of the names, the order of the two
names in the sentence (same or reversed relative to
their order as a Freebase name pair) and a binary
feature indicating whether there is a title in

between the two names. Table 3 shows a brief
description of the features and samples extracted
for the Freebase name pair <Ray Young, General
Motors> in the sentence “Ray Young, the chief
financial officer of General Motors, said GM could
not bail out Delphi”. For more detailed
descriptions of the features and the intuition of
why these features are extracted, please refer to
(Sun et al., 2011).

3.2 Class Label Refinement

“All men are created equal”, unfortunately, is not
true in knowledge bases such as Freebase. For
example, some people have employers and
residences while others do not. When we perform
distant learning, i.e., matching Freebase records
against unstructured texts to generate training
examples, we typically label an example as
negative if it has no corresponding entry in
Freebase. However, Freebase is highly incomplete
and hence many false negative examples are
generated. Examples that match entries in Freebase
are not always positive in reality, but are assumed
to be and labeled as positive examples by distant
learning. For example, the sentence “Bill Gates has
declared war on Microsoft's insecure software”
would be labeled as a positive example for the
relation org:founded_by although the context does
not indicate that relation. Even worse is the
pervasive phenomenon where pairs of names are
often connected by non-relational contexts such as
conjunctions and the punctuation comma. This
results in many false positive examples.
To alleviate the impact of false positive and
negative examples on the quality of learned
models, we refine the class labels of distantly
generated examples. Specifically, we extract
dependency patterns from these examples and
estimate the precision of a pattern for a class based
on the statistics of the distantly generated class
labels. The precision of a pattern p for the class

is defined as the number of occurrences of p in

the class divided by the number of occurrences

of p in any of the classes :

€

prec(p,ci) =
count(p,ci)
count(p,c j)

j
∑

Feature Description Feature Value
dpath Shortest path connecting the two names in

the dependency parsing tree coupled with
entity types of the two names

PERSON appos officer
prep_of ORGANIZATION

e1dh The head word for name one said
e2dh The head word for name two officer
same_e12dh Whether e1dh is the same as e2dh false
e1dw The dependent word for name one officer

Dependency
Tree
Features

e2dw The dependent word for name two nil
tpattern The middle token sequence pattern , the chief financial officer

of
ntw Number of words between the two names 6
wbf First word in between ,
wbl Last word in between of
wbo Other words in between {the, chief, financial,

officer}
bm1f First word before the first name nil
bm1l Second word before the first name nil
am2f First word after the second name ,

Token
Sequence
Features

am2l Second word after the second name said
e1 String of name one Ray_Young
e2 String of name two General_Motors
e12 Conjunction of e1 and e2 Ray_Young--

General_Motors
et1 Entity type of name one PERSON
et2 Entity type of name two ORGANIZATION

Entity
Features

et12 Conjunction of et1 and et2 PERSON--
ORGANIZATION

Semantic
Feature

mTitle Title in between true

Order
Feature

order 1 if name one comes before name two; 2
otherwise.

1

Table 3: Feature Sets

The class label refinement algorithm utilizes two
types of precision, prec1 and prec2, computed with
the sum including and excluding the class OTHER
(not a defined KBP slot), respectively.

Let
 top_class1(p) = the class c (including OTHER)
 which maximizes prec1(p, c)
 top_class2(p) = the class c (excluding OTHER)
 which maximizes prec2(p, c)
 top_prec1(p) = the max of prec1(p, c)
 top_prec2(p) = the max of prec2(p, c)

Then we refine the class of p using the following
rule:

 if (top_class1(p) == “other”) {
 if (top_score2(p) < 0.5 | top_score2(p) == 1)
 return “other”
 else return top_class2(p)}
 else if top_score1(p) >= 0.3
 return top_class1(p)
 else return “other”

Cutoff values were selected by eyeballing the
quality of patterns.

To see why this refinement gives more accurate
class labels, taking the pattern “appos chairman
prep_of” as an example; most of the time it was
labeled as OTHER because of the incompleteness
of Freebase. After we compute prec1 and prec2,
every example (including those were labeled as
OTHER) that is associated with this pattern will be
refined to the class per:employee_of.
Figures 1, 2 and 3 show the results averaged on 10
runs on the 2011 evaluation data using different
undersampling ratios, which is defined as the ratio
between negative and positive examples (see
Section 3.3 for more details). Under each setting of
the undersampling ratio, models trained with
refined class labels (MR and SR) outperformed
models trained without refined labels (MNR and
SNR) by large margins. This indicates the
superiority of the proposed class label refinement
method in distant learning for slot filling. It is also
noticeable that the performance curves of models
trained with refined labels are much flatter than
those of models trained without refined labels,
reflecting that they are less sensitive to the
undersampling ratio parameter and more robust to
noise.

Slot Freq. prec1 prec2
per:member_of 59 0.038 0.175
org:top_members
/employees

20 0.013 0.059

per:employee_of 254 0.164 0.754
org:founded_by 4 0.003 0.012
OTHER 1208 0.782 NA

Table 4: Pattern “appos chairman prep_of”

3.3 Undersampling the Majorities

Distant learning also produces an extremely
unbalanced class distribution. Traditionally, a
single n-way classifier is trained to distinguish
among the n classes. We empirically found that
this classifier is biased towards a few majority
classes and tends to ignore the minority classes.
For example, the single n-way classifier on average
produced 180 fills for only 8 slots. As an
alternative, we train one n-way classifier for each
pair of named entity types. For example, we train a
multi-class classifier for the entity type pair
PERSON and ORGANIZATION and train another
one for PERSON and PERSON. There is still a

majority class for each such n-way classifier,
namely the class that cannot be mapped to any
KBP slot even after label refinement. We then
downsize the majority class by randomly selecting
a subset of its examples.
Multiple n-way classifiers not only produced more
fills for more slots (on average 240 fills for 15
slots), but also provided better F-Measure than the
single n-way classifier. This was mainly achieved
by an improved recall as shown in Figure 3.

Figure 1: F-Measure

Figure 2: Precision

Figure 3: Recall

3.4 Contribution of Coreference

For the sake of matching accuracy, the training of
distant learning relies on strict match of names.
When we actually fill slots for a given query, its
co-referred names in a single document can be
provided by a co-reference module. Our submitted
runs used the co-referred names of the query in

both the distantly trained classifiers and the simple
dependency pattern matcher which together
achieved P/R/F of 36.4/11.4/17.4 on the 2011
evaluation data. The use of co-reference is clearly
beneficial to our system; without using it the P/R/F
dropped to 28.8/10.0/14.3. Note that the results in
the three figures above were also obtained using
the coreference information.

4 Passage retrieval / QA

One further component incorporated into this
year’s system was based on passage retrieval and
name typing. For each slot, a set of index terms is
generated using distant supervision (again, using
Freebase) and these terms are used to retrieve and
rank passages for a specific slot (Xu et al. 2011).
An answer is then selected based on name type and
distance from the query name. This is used as a
fall-back strategy, if the other answer extraction
components did not find any slot fill. Due to
limitations of time, this procedure was only
implemented for a few slots (employer and
headquarters location) and the constraints were not
tight enough to improve overall slot-filling
performance.

score using only module score excluding module
module recall precision F1 recall precision F1

distant supervision overall 11.4 36.4 17.4 20.2 35.4 25.7

distant supervision classifier 10.0 37.9 15.4 21.1 34.5 26.2

distant supervision pattern matcher 2.0 28.6 3.6 24.7 35.7 29.2

alternate names 2.8 45.7 5.4 23.0 34.1 27.5

local patterns 14.4 41.0 21.3 18.5 33.4 23.8

implicit organization 0.6 5.5 1.1 25.0 39.2 30.5

functional nouns 0.5 23.8 1.0 25.1 35.3 29.3

bootstrapped linear patterns 3.5 54.1 6.6 24.8 34.6 28.9

bootstrapped dependency patterns 1.8 36.2 3.4 25.0 35.2 29.2

Table 5: Ablation Study of the System NYU2

5 Results

Because the passage/QA component was added at
the last minute, we thought it prudent to submit
one run with this component (NYU1) and one run
without (NYU2). It turned out (as just noted) that
this component was underconstrained. It added 35
slots fills, only two of which were correct; NYU2
had better performance:

Table 6: Performance of NYU Systems

Using NYU2 as a base, we then measured the
contribution of each module in isolation and the
performance of the system when each module was
removed in turn (ablation study).3 As one can see
from Table 5, the hand-coded local patterns by
themselves and the classifier trained by distant
supervision by itself provided quite good
performance. There is a lot of overlap between the
contributions of the different modules, but the
ablation study indicates that all modules made a
positive contribution to the final result except for
the implicit organization module, which had
satisfactory precision on the training data but very
poor precision on the test data.

Acknowledgments
Supported in part by the Intelligence Advanced
Research Projects Activity (IARPA) via Air Force
Research Laboratory (AFRL) contract number
FA8650-10-C-7058. The U.S. Government is
authorized to reproduce and distribute reprints for
Governmental purposes notwithstanding any
copyright annotation thereon. The views and
conclusions contained herein are those of the
authors and should not be interpreted as

3 Because the results of multiple modules are merged at the
end, removing one module may lead to the generation of a
new result (produced by a different module) – a result which
has not been assessed. Such responses are scored as incorrect
by the scoring program, though some may in fact be correct.
In consequence, the numbers in this table somewhat understate
the actual results.

necessarily representing the official policies or
endorsements, either expressed or implied, of
IARPA, AFRL, or the U.S. Government.

References
Zheng Chen, Suzanne Tamang, Adam Lee, Xiang Li,

Wen-Pin Lin, Javier Artiles, Matthew Snover,
Marissa Passantino and Heng Ji. 2010. CUNY-
BLENDER TAC-KBP2010 Entity Linking and Slot
Filling System Description. Proc. Text Analytics
Conference (TAC2010).

Ralph Grishman and Bonan Min. New York University
KBP 2010 Slot Filling System. Proceedings of Text
Analysis Conference 2010.

Mike Mintz, Steven Bills, Rion Snow and Dan Jurafsky.
2009. Distant supervision for relation extraction
without labeled data. Proceedings of ACL-IJCNLP
2009.

Ang Sun, Ralph Grishman and Satoshi Sekine. Semi-
supervised relation extraction with large-scale word
clustering. Proceedings of ACL 2011.

Wei Xu, Ralph Grishman and Le Zhao. 2011. Passage
retrieval for information extraction using distant
supervision. Proceedings of IJCNLP 2011.

 Recall Precision F1

NYU1 25.7 33.6 29.1

NYU2 25.5 35.0 29.5

