

The CIST Summarization System at TAC 2010
Hongyan Liu, Qing Zhao, Ying Xiong, Lei Li, Caixia Yuan

Center for Intelligence Science and Technology

Beijing University of Posts and Telecommunications

Beijing, 100876, China

Abstract

This is the first time we participate in TAC. In this
report, we present our extractive summarization
system on both initial and update summarization
tracks of TAC 2010. We introduce an integrated
method to generate all summaries. The TAC
evaluation of results show that our summarization
method is feasible but it has to be improved in future.
Keywords: multi-document summarization;
Hierarchical clustering; sentence extraction; sentence
compression; update summary

1. Introduction

With the fast development of the Internet and the
emergence of massive amounts of information, we
need the ability to find important semantic content
quickly. But with the accelerated pace of life and the
explosive increase in the number of documents,
people who want to learn about a particular event
have no time to read all the available documents on
that topic. We need an effective way to generate a
summary that lets people acquire important topic
information. Multi-document summarization aims to
generate a brief and coherent summary, which should
be objective and exactly reflect the contents of the
original documents and minimize redundancy[1].
Readers can obtain the important major topic content
that they need without reading the entire original
document set. At the same time, people want to know
the progress of the topic they are interested in, which
is what motivates the research behind update
summarization. In this report, we also present a
method to produce update summaries.

In this report, we propose an integrated
extractive multi-document summarization framework
based on sentence level semantic analysis. These

summaries will be evaluated for readability and
content and overall responsiveness. The remainder of
this report is organized as follows: Section 2
introduces the related work. Section 3 discusses the
framework of our method. Section 4 describes the
details of generating original summaries. Section 5
introduces sentence compression and final summary
generation. Section 6 presents the process of
generating update summaries. In section 7 we
analyze TAC evaluation results. Section 8 concludes
the report with directions for future research.

2. Related Work

Multi-document summarization has been widely
studied in recent years. In general, there are two types
of methods: extractive summarization and abstractive
one[2] [3]. The latter is more complicated since it
involves language generation, information fusion and
more natural language processing (NLP) technologies.
Most work today focuses on extractive
summarization, where a summary is created simply
by identifying and subsequently concatenating the
most important sentences in document set. Extractive
summarization usually ranks the sentences in the
documents according to their scores calculated by a
set of predefined features, such as term
frequency-inverse sentence frequency (TF-ISF)[4][5],
sentence or term position[5], and number of keywords.
Other methods include NMF-based topic specific
summarization[6], CRF-based summarization[7], and
hidden Markov model (HMM) based method[8]. In
addition, some graph-ranking based methods are also
proposed[9]. Most of these methods ignore the
dependency of semantics in the sentence level and
just focus on keyword co-occurrence. The hidden
relationships between sentences need to be further
discovered.

3. Framework

Figure 1 Multi-document Summarization Based on Clustering

Figure 1 shows the three key steps of our
summarization system, which are preprocessing,
sentence extraction and summarization. In the
following parts we will introduce the details.

4.Generating Original Multi-document Summary

4.1 Preprocessing

The original documents that TAC provided as test
data must be pretreated, including content extraction,
POS tagging, word stemming and stop words
removal.

Firstly, the original document set contains some
tags, such as “<DOC>”, “<DOCNO>”,
“</DOCNO>”, “<DOCTYPE>”, “</DOCTYPE>”,
“<HEADER>”, “</HEADER>”, “<BODY>”,
“<SLUG>”, “</SLUG>”. We delete them and only
extract the paragraphs between <p> and </p>, <text>
and </text> for summarization.

The final summary should be very short and
informative. We choose the level of sentence. We

segment the original English document into sequence
of sentences with BFSU English Sentence Segmenter
(http://www.corpus4u.org).

As is well known, nouns and verbs are dominant
words expressing the content. We give them higher
weights than the others. We perform POS tagging
with an English POS tagger of Tokyo University. It
can help us make a deeper semantic analysis of the
source documents.

As English words are different from Chinese,
people often use different word forms to represent the
time and state of event, word stemming is necessary.
We compute similarity of sentences after word
stemming, which is supposed to be more precise. It
helps us improve the clustering result. We perform
word stemming with an English tool downloaded
from “http://www.12fanyi.cn/post/83.html”.

The last step of preprocessing is stop words
removing. In English documents we may find many
words, such as “a”, “an”, “and”, “the”, “of”. They
can’t directly express the content, only play a
supporting role. We use a list of more than 300 stop
words. After the removal of stop words, we get
content words that contribute to deeper semantic

Multi-document

Document—>
Sentences

POS tagging

1. Preprocessing

Word stemming

Stop words removal

2. Sentence extraction

Hierarchical clustering
Sentence compression

Noisy information
filtering

Extract representative
sentences

Knowledge base
Summary

3. Summarization

100 words limit

Similarity matrix

analysis.

4.2 Sentence Extraction

After preprocessing, the most critical step of
producing multi-document summary is candidate
sentence extraction.

(1) Sentence Similarity Matrix

Let sentence s1’s feature vector be (W1 W2 ..., Wr), r
is the number of features, Wi is the weight of each
feature,

POSiTFISFiWi *= (4-1)
sfNtfiTFISFi /log*= (4-2)

tfi is the frequency of the feature in the sentence, sf is
the number of sentences in which the feature appears,
N is the total number of sentences. POSi is the part of
speech information. By doing so, we can make
similarity calculation more accurate.

Let sentence s2’s feature vector be (W1 W2 ...,
Wl). The similarity between s1 and s2 is calculated as
follows:

∑
∑=

i

x

w
w

ssSim),(21
 (4-3)

min21 , swssw ix ∈∩∈
Numerator is the sum weight of the words that both
occur in sentence s1 and s2. Denominator is the sum
weight of the words that in the shorter sentence smin
in {s1, s2}. The benefit is that if a sentence contains
all the words of another sentence, i.e. if one sentence
is totally a part of another, then their similarity is 1.
This is reasonable in this task, since in the next step
of clustering, it will make the two sentences
definitely belong to the same cluster.

(2) Hierarchical Clustering

Clustering based on sentence level can put sentences
with related meaning together. Then we select
representative sentences of each cluster to compose
the summary. In our system we choose the
hierarchical clustering algorithm.

The specific method is described below:
(1) Calculate the similarity of every two sentences,
construct an m*m similarity matrix, where m is the
number of sentences in the document set.
(2) For (when the update largest value in the matrix is
less than the given threshold)

(2-1) Group the two sentences corresponding to the
largest value.

(2-2) Update the similarity value between the

remaining sentences and the newly grouped sentence.
Suppose that we combine sentence sa and sb, the
similarity between sentence m and the newly merged
sentence is:

{ }),(),,(max),(& bmambam sssimsssimsssim = (4-4)
The benefit of hierarchical clustering [14] is that

we needn’t to decide the number of clusters. All we
have to do is to decide the threshold, above which we
consider the two sentences should be merged
together.

4.3 Sentence Scoring

Now we have got many different clusters. The
following task is to extract candidate sentences from
each cluster. We expect that we can choose the most
representative and non-redundant sentences. We
evaluate sentences mainly according to keywords
coverage and sentence length.

Firstly, we build a knowledge base for the
required aspects listed in the guided summarizations.
We extract keywords from TAC sample document
sets for all the five topics which contain tagged
information units according to the required aspects.
We obtain an original version of the knowledge base
for each topic with many required aspects and each
aspect corresponds to a keyword list. Then we
expand these keywords with thesaurus of Britannica
Online Encyclopedia
(http://www.britannica.com/bps/thesaurus?query=goo
d) using a simple meta search engine. To ensure the
quality of synonyms, in the final version of the
knowledge base, we improve it through further
manual screening. We expect that the knowledge base
will help to select sentences which tightly cover the
required aspects.

In order to emphasize those required aspects, we
set higher weight for sentences containing more
keywords in the knowledge base.

∑∑
= =

=
m

i

S

j
jasp

l

ws
1 1

 (4-5)

The sasp is the score of the sentence aspect
coverage, and wj is the score of each word in the
sentence, if the word is in the knowledge base, the
value is 1, else is 0, sl is the total number of the words
in the sentence, m is the total number of aspects of
the category.
Then we mainly think of the other two features to
decide the importance of the sentence:

1. the length of the sentence;
2. the number of keywords the sentence contains
In our experiment, Len(sen) is a Boolean

function, if the length of one sentence is between
5-20 words, Len(sen)=1, otherwise Len (sen)=0; we

select keywords based on score of the words by
formula (4-1) (4-2) and Hypothesis testing [14].

We select top 10 words as the keywords, and set
))((senwordskeywordsnums k ∩= (4-6)

sk is the number of the keywords that a sentence
contain, words(sen) are the words in sentence. We
sort the initially chosen sentences in accordance with
descending order of score computed by formula
(4-7),

aspk sssenLens **)(= (4-7)
The s is the final score of the sentence, sasp is
calculated by formula (4-5).
Then we implement an optimal sentence selection in
two stages.
Stage1: select sentences meeting certain conditions;
Stage2: delete the sentence carrying the least
information until the remaining sentences meet with
our goal.

The two stages are described more detailed
in[10]. The algorithm is the overall optimization
compared with the traditional methods that choose
the currently best sentence in the unknowing of
following-up sentences.

5. Final Summary

Since the final summary must meet some additional
requirements such as overall length and
grammaticality etc., we should remove the redundant
information from the sentences. Sentence
compression is often regarded as a promising method
towards ameliorating some of the problems
associated with extractive summarization. It involves
creating a short grammatical summary of a single
sentence, by removing elements that are considered
extraneous, while retaining the most important
information [11]. Interfacing extractive summarization
with a sentence compression module could improve
the conciseness of the generated summaries and
render them more informative [12].

We mainly use Stanford Parser
(http://nlp.stanford.edu:8080/parser/) to parse
sentences, then select and combine phrases
grammatically which tell the main concept of the
sentence. Since some noisy information may interfere
the parsing results, we remove them at the very
beginning; this will be introduced in section 5.1. A
detailed description will be given in section 5.2.
Section 5.3 introduces some additional operations to
modify the summary so as to satisfy all the
constraints.

5.1 Noisy Information Filtering

There are a lot of useless punctuation marks (*, ``, ' ',
etc.) and symbols (&QL, etc.) in the original
summary generated in section 4. They not only cause
the text length exceeding limit, but also, worse still,
they often lead to errors in sentence parsing.

Take the sentence in file “D1020D-A” for
example:
&UR; (Charles Downey is a Big Bear City,
Calif.-based free-lance writer who frequently writes
on parenting issues.) &LR; &UR;
--- &QC; &UR;
(To purchase this article, contact one of these New
York Times Syndicate sales representatives: (_ U.S.,
Canada and the Pacific: CONNIE WHITE in Kansas
City at 800-444-0267 or 816-822-8448; fax,
816-822-1444.

Firstly, it has fifty-three words, more than a half
of the total word limit. Characters like “&LR; &UR;
--- &QC;
&UR;” contribute nothing to the keynote of the
sentence. We need to delete all these noisy
information.

Secondly, errors may occur when extracting
keywords from the collapsed dependencies. For
example, parts of the collapsed typed dependencies
of this sentence are as followed:

nn(Charles-3, &UR;-1)
nsubj(City-9, Charles-3)
...
nsubj(writes-16, writer-13)
...
nsubj(--3,

&UR;-2)
nn(&UR;-5, &QC;-4)
nsubj(purchase-8, &UR;-5)
aux(purchase-8, To-7)
xcomp(--

3, purchase-8)
det(article-10, this-9)
dobj(purchase-8, article-10)
...
We use “nsubj” as the symbol to mark a

sentence’s subject-predicate, but from above we can
see that there is no keyword in line 4.

If we delete the noisy words, the new sentence
becomes “Charles Downey is a Big Bear City,
Calif.-based free-lance writer who frequently writes
on parenting issues. To purchase this article, contact
one of these New York Times Syndicate sales
representatives”. Then we can get the right collapsed
typed dependencies:

nn(Downey-2, Charles-1)
nsubj(City-7, Downey-2)
cop(City-7, is-3)

...
nsubj(writes-14, writer-11)
advmod(writes-14, frequently-13)
rcmod(City-7, writes-14)
rcmod(writer-11, writes-14)
nn(issues-17, parenting-16)
prep_on(writes-14, issues-17
aux(purchase-2, To-1)
det(article-4, this-3)
dobj(purchase-2, article-4)
...

5.2 Sentence Compression

We obtain typed dependencies information by parsing
every sentence with Stanford Parser which has done
well on the sentence parsing and gained much
attention.

For example, a candidate sentence is “The
government has issued a series of regulations and
measures to improve the country's coal mine safety
situation, the Xinhua said.”

After using the Stanford Parser, we got the
dependency-based representations as followed:

det(government-2, The-1)
nsubj(issued-4, government-2)
aux(issued-4, has-3)
ccomp(said-23, issued-4)
det(series-6, a-5)
dobj(issued-4, series-6)
prep_of(series-6, regulations-8)
prep_of(series-6, measures-10)
conj_and(regulations-8, measures-10)
aux(improve-12, to-11)
xcomp(issued-4, improve-12)
det(country-14, the-13)
poss(situation-19, country-14)
amod(situation-19, coal-16)
nn(situation-19, mine-17)
nn(situation-19, safety-18)
dobj(improve-12, situation-19)
det(Xinhua-22, the-21)
nsubj(said-23, Xinhua-22)

Firstly, we construct a model for each of the
dependencies:

()1 1 2 2 , modifier keyword serial numbers keyword serial numbers− −

Simple form is:
()1 1 2 2, modifier w n w n− −

Secondly, we segment each sentence in the summary
into clauses:

{ }1 2 n, , , S s s s= …
si : the ith clause of S.

We have done a lot of research on the example

materials and find that modifiers such as
“nsubj/nsubjpass” and “dobj” are important which
are shown in the front of the dependencies sequence.
Additionally the clauses si (i=1,2, …, n) which
contain w1 and w2 often can well express the main
meaning of the sentence S. We develop our own
strategy which extracts w1 and w2 from the line
begining with “nsubj/nsubjpass/dobj”. Here is the
detailed information.

After we extracted the keywords w1, w2 and the
serial numbers n1, n2, we combine the clauses s1and
s2 which contain both w1and w2. There are several
specific situations.

1) if w1, w2 are in the same clause, then we need
to extract s1 only;

2) if w1, w2 are not in the same clause and n1<n2,
then we need to extract both s1, s2 , and concatenate
s2 after s1 ;

3) if w1, w2 are not in the same clause and n2<n1,
then we need to extract both s1, s2 , and concatenate
s1 after s2 .

For the above example, we should extract the
words “issued-government, issued-series” and serial
numbers “4～2, 4～6”. Since the four words are in
the same clause, we just extract the first clause, “The
government has issued a series of regulations and
measures to improve the country's coal mine safety
situation”.

We didn’t do further operations for clause
compression, because the results are not satisfied.
Table 1 shows two examples.

Overall, the result of sentence compression
algorithm achieved our expectation, it can recognize
and remove some relative dates and “said” clauses
such as “on Tuesday” or “the President said”, which
often don’t appear in a summary.

But due to the diversity of language expression,
Stanford Parser may give an incorrect representation
of typed dependencies for a sentence. Our program is
also not perfect enough; sometimes we may get an
undesirable result. There is still a long way for us to
go through.

5.3 Final processing

After the above steps, some of the summaries have
reached the overall length limit, but others are not.
We need to do more modifications to achieve the goal
of 100 words, including removing some less
important sentences or unimportant modifiers.

Although all the sentences in the original
summary contain rich information, in order to meet
the 100 words constraint, we have to remove some
sentences. We think that shorter sentences have less
information than the longer ones. They should be

deleted if necessary. Here is the algorithm:

1) define an instance object of map class: Map

<String, Integer> weizhi_length, where “String”
represents the sentence itself while “Integer” stands
for its length.

2) put all these sentences into it according to the
length’s ascending arrangement.

3) while (1(100)s c threshold− − <=), remove the

sentence from the map, then c c s= − ;
c: the length of current summary;
s: the length of the sentence being operated;
threshold1: we assign 6 to it, this value is obtained by
a series of observations.

4) reorder the sentences in the map, if
(c>threshold2) then remove the unimportant
modifiers. Here we assign 105 to threshold2; this
value is also obtained by a series of observations.

5) In Table 2, we list some abbreviation
examples to replace the long phrases. Repeat these
steps until the summary satisfies the 100 words limit.

6) There are a few sentences starting with
personal pronouns (He/She/You/Him/Her/They/Them,
etc.) and demonstrative pronouns
(This/These/That/Those, etc.), this may do harm to
the readability of the summary. We move them to the
other part of the summary.

Since we extract sentences from
multi-documents without considering their semantic
sequence, the readability of the summary may be a
little poor. We will go on with it in future.

6. Update Summarization

We also participated in the update summarization
track of TAC 2010, which is to write a 100 words
limit summary of a set of newswire articles, under the
assumption that the user has already read the earlier
articles. The summaries will also be evaluated for
readability, content (based on Columbia University's
Pyramid Method)[13] and overall responsiveness. The
update summary should have different content from
the initial one, and more focuses on follow-up report.

We use the same method as the initial
summarization track. The only difference is that we
choose novel sentences that have not been contained
in the initial summaries.

We assume all sentences in initial summaries as
the candidate sentences of update summary, and we
will choose the new sentences that have least
similarity with these candidate sentences. We use the
formula (4-3) to calculate the similarity. If the
similarity is bigger than the threshold, we will choose

another one until the update summary has got ten
sentences. This method can avoid duplicate
information effectively.

7. Results and Discussion

In the guided summarization track of TAC 2010 we
submit two runs. The first one is mainly considering
the feature of keyword coverage, and the second one
is mainly considering the feature of aspect coverage.
The evaluation results show that our two runs are
similar. We compare our two summarization results
with the best one in 43 runs, which contain 41 runs
from 23 participants and two baseline runs. The
following figures 2,3 show the result.

Our result is not very optimistic. The following
factors may infect the outcome. The first one is our
clustering algorithm which plays an important role in
determining the summary. It tends to cluster the same
sentences into a group, but these sentences may not
contain the most important content. The second one
is the knowledge base, which is limited in coverage,
authority and size. The third one is our sentence
compression method which may prune some critical
information. The last one is we didn’t use the title and
time information which appear in the original
document set.

8. Conclusions and Future Research

This report introduces the details of a multi-document
summarization system for both initial and update
summaries. We construct a thesaurus to guide the
sentence extraction, use hierarchical clustering to
group sentences with similar content and propose
sentence compression with Stanford Parser to
condense the summary. The experiment shows the
effectiveness of the algorithm. Although our
multi-document summarization has met the basic
requirements of the TAC evaluation, it needs to be
improved. To generate better summaries, we can
improve our clustering algorithm and utilize the title
information and various named entities in the original
document set. We can also improve our sentence
compression method.

Table 1 Example of compressed sentences

Original sentence Compressed sentence
The room in which the identification was taking place was
small, and it was taking time for the relatives to file through,
she said.

The room in which the identification was taking
place was small, and it was taking time for the
relatives to file through.

Shortly after takeoff Sunday morning, the Helios pilot radioed
to ground control in Lanarca that he was having trouble with
the air conditioning, Greek officials said.

The Helios pilot radioed to ground control in
Lanarca that he was having trouble with the air
conditioning.

Table 2 Example of abbreviations
Original phrases Abbreviations

Royal Australian Air Force
International Civil Aviation Authority

Traditional Chinese Medicine Hospital
China National Petroleum Corporation

RAAF
ICAA

TCMH
CNPC

Average values for CIST for initial summaries

2.065 2.13
2.565 2.63

0.208 0.204

3 3.087

0

1

2

3

4

 run1 run2

Overall Responsiveness Overall Readability

4-model Pyramid Number of SCUs

Average values for CIST for update summaries

1.717 1.739

2.587 2.609

0.15 0.136

1.87 1.717

0

1

2

3

 run1 run2

Overall Responsiveness Overall Readability

4-model Pyramid Number of SCUs

Figure 2 average values for initial summaries Figure 3 average values for update summaries

References

[1] Gong, Y., & Liu, X. (2001). Generic text
summarization using relevance measure and latent
semantic analysis. In Proceedings of the 24th
annual international ACM SIGIR conference on
research and development in information retrival
(SIGIR’01) (pp. 19–25). New Orleans, USA.
[2] K. Knight and D. Marcu. Summarization
beyond sentence extraction: a probablistic approach
to sentence compression. Articial Intelligence,
pages 91{107, 2002.
[3] H. Jing and K. McKeown. Cut and paste based
text summarization. In Prodeedings of NAACL
2000.
[4] D. Radev, H. Jing, M. Stys, and D. Tam.
Centroid-based summarization of multiple
documents. Information Processing and
Management, pages 919-938, 2004.
[5] C.-Y. Lin and E. Hovy. From single to
multi-document summarization: A prototype system
and its evaluation. In Proceedings of ACL 2002.
[6] S. Park, J.-H. Lee, D.-H. Kim, and C.-M. Ahn.
Multi-document summarization based on cluster
using non-negtive matrix factorization. In
Proceedings of SOFSEM 2007.
[7] D. Shen, J.-T. Sun, H. Li, Q. Yang, and Z. Chen.

Document summarization using conditional random
elds. In Proceedings of IJCAI 2007.
[8] J. Conroy and D. O'Leary. Text summarization
via hidden markov models. In Proceedings of
SIGIR 2001.
[9] R. Mihalcea and P. Tarau. A language
independent algorithm for single and multiple
document summarization. In Proceedings of
IJCNLP 2005.
[10] S. Harabagiu and F. Lacatusu. Topic themes
for multi-document summarization. In Prodeedings
of SIGIR 2005.
[11] Knight, Kevin and Daniel Marcu. 2002.
Summarization beyond sentence extraction: a
probabilistic approach to sentence compression.
Artificial Intelligence 139(1):91–107.
[12] Lin, Chin-Yew. 2003. Improving
summarization performance by sentence
compression — a pilot study. In Proceedings of the
6th International Workshop on Information
Retrieval with Asian Languages. Sapporo, Japan,
pages 1–8.
[13] R.J. Passonneau, A. Nenkova, K. McKeown,
and S. Sigelman, Applying the Pyramid Method in
DUC 2005.
[14] Dan Zhou, Lei Li, “Research In Sub-topic
Based Multi-document Summarization”, 2008

The CIST Evaluation System at TAC 2010 AESOP
Qing Zhao, Hongyan Liu, Ying Xiong, Lei Li, Caixia Yuan

Center for Intelligence Science and Technology
Beijing University of Posts and Telecommunications

Beijing, 100876, China

Abstract

In this report, we compute two sets of numeric
summary-level scores separately with different
algorithms. In the “All Peers” case, we get the
numeric score for each peer summary, including the
model summaries. Experiments show that it can well
distinguish model summaries from automatic ones. In
the “No Models” case, we get the similarity score
between each automatic summary and model
summary by looking up the Roget’s Thesaurus.
Finally, we analyze the evaluation results of our two
evaluations and suggest some possible improvements.
Keywords: All Peers, No Models, sentence coverage,
document coverage, aspect coverage, similarity

1 Introduction

This is the first time we attend Text Analysis
Conference. The actual AESOP task is to produce two
sets of numeric summary-level scores:

•All Peers case: a numeric score for each peer
summary, including the model summaries. It is
intended to focus on whether an automatic metric can
differentiate between human vs. automatic
summarizers.

•No Models case: a numeric score for each
peer summary, excluding the model summaries. It is
intended to focus on how well an automatic metric
can evaluate automatic summaries.

We built a system for TAC 2010 AESOP Task
with two sets of numeric summary-level scores

separately calculated by different algorithms.
We get all the test data from the TAC 2010

Summarization Track web page and submit four runs
to NIST.

In “All Peers” case, our evaluation system uses
the set of source documents as reference instead of
the four model summaries TAC provided. The main
method we used to evaluate automatic summaries and
model summaries are almost the same, but since
model summaries’ expression may be diversified and
flexible, when we compute the sentence and
document coverage scores, we not only use words but
also considered their synonyms, which are expanded
with Roget’s thesaurus.

In “No Models” case, we use model summaries as
the reference to evaluate automatic summaries. For
each document set (including 43 files), four human
summaries were created as the ideal summaries. All
we should do is to compute the similarity between
each automatic and model summary.

2 The “All Peers” case

The “All Peers” evaluation aims to evaluate the
content, readability and overall responsiveness of all
summaries, including the automatic and model
summaries. In this case, our evaluation system uses
the source documents as reference instead of the four
model summaries that TAC provided. The evaluation
tends to distinguish automatic summaries from model
ones.
2.1 Framework

Figure 1 general evaluation framework for “All Peers” evaluation

Figure 1 shows the framework of the “All

Peers” evaluation. We use the source documents as
reference, but one problem is that these documents
that TAC provided have many tag information which
we don’t need in the evaluation. We do preprocessing
at first, including tag deletion, document
segmentation, word stemming, and stop words
removal.

To evaluate each summary, we want to find out
whether or not the words in it are contained in the
relevant ten original documents. In order to search
quickly, we construct two inverted index files based
on information retrieval, one is word-sentence index
file and the other is word-document index file.

We evaluate all summaries according to the
following features: sentence and document coverage
of the source documents, number of the sentences
and number of the content words in summary,
completeness of the summary within 100 words,
noisy information in the summary and aspect
coverage for each topic.

2.2 Automatic Summaries’ Evaluation

For all the content words in the summaries, we look
up the word-sentence and word-document inverted
index files respectively, then compute the coverage of
the words in one sentence.

We assume that one summary is comprised of
sentences {s1, s2, … sm} and one sentence si is
comprised of words{w1, w2, ... wn}. For wj in the
sequence{w1, w2, ... wn}, we count the sentences set
swj which the word wj has covered and we will get a
set of {sw1, sw2, … swn} in the end, nsi=sw1 U sw2 ...
U swn, and numi=|nsi|, numi is the total number of
sentences that all words in one sentence has covered.
maxs is the max number of the set {num1, num2, …
numm}.

We calculate the sentence coverage score by
formula (2-1).

siis nums max/cov = (2-1)

Similarly, we also compute the score of
document coverage. For wj in {w1, w2, ... wn}, we
count the documents set dj of the word wj has covered
and we will get {d1, d2, … dn}, di=d1 U d2 ... U dn,

Summary sentences

Compute summary score

Word stemming

Stop words removal

Aspect coverage

Noisy information

Number of sentence

Number of content words

Completeness of the summary

Document coverage

Sentence coverage

and numdi=|di|. The score of documents coverage is
calculated by formula (2-2).

10/cov diid nums = (2-2)

sdcovi is the score of documents coverage, numdi
is the total number of the d that all words in one
sentence have covered, and 10 is for that one source
document set has ten documents.

The third feature we considered is aspect
coverage. We calculate the coverage of aspects
according to the knowledge base, which is
constructed by extracting keywords from TAC
sample document sets for all the five topics which
contain tagged information units for the required
aspects. We obtain an original version of the
knowledge base for each topic with many required
aspects and each aspect corresponds to a keyword list.
Then we expand these keywords with thesaurus of
Britannica Online Encyclopedia
(http://www.britannica.com/bps/thesaurus?query=goo
d) using a simple meta search engine. To ensure the
quality of synonyms, in the final version of the
knowledge base, we improve it through further
manual screening. If the word wj in the knowledge
base, the aspect value aj is 1, otherwise aj is 0. The
formula is (2-3).

asp

n

j
j

aspi num

a
s

∑
== 1 (2-3)

sasp is the score of one sentence covering
aspects of the category, numasp is the number of the
aspects that a category should contain.

Then we calculate the sentence score by the
formula (2-4).

aspiidisi ssssen ** covcov= (2-4)

In “All Peers” case, we also evaluate the
readability and overall responsiveness of the
summary. We consider the number of the sentences
and the content words in one summary. We think that

in one 100 words summary there should be
appropriate number of sentences, and the length of
the sentence influence the comprehension of the
readers directly. It would be better containing 4-8
sentences, and too many or too few sentences all will
influence the overall responsiveness of the
summaries. The score is defined as ss.

Table 1 the score of ss
number of sentences: m value of ss

m==1 0
m>1&&m<4 0.9
m>=4&&m<=8 0.95
m>8 0.9

At the same time we expect more content
words which can express the topic information in a
good summary. We design several score levels
according to the number of words. We have done an
experiment on model summaries and found out that
most model summaries have 45-80 content words,
and then we evaluate all summaries considering this
feature. The number of the words in one summary
fall into this range will be given a relatively higher
score denoted as sw.

Table 2 the score of the sw
number of the content words: n value of

sw
n<45 0.85
n>45&&n<80 0.9
n>80 0.85

A survey of all summaries show that some of
them have noisy information such as “<p>”、
“<BODY>”、“<DOC>”、“<TRAILER>”and so on,
they have nothing to do with the topic contents. We
compute the number of tags a summary contains for
the score sn.

Table 3 the score of sn

number of tags: tags value of sn
Tags = 0 1
tags>0 && tags<=5 0.85

Tags>5 && tags<=10 0.8
Tags>10 && tags<=15 0.75
Tags>15 && tags<=20 0.7
Tags>20 0.65

The summary completeness is also a feature
we have considered. The most important
characteristic is some summaries contain incomplete
sentences, which will influence the overall quality.
And the score of the completeness of one summary is
defined as sc.

Table 4 the score of sc
Completeness of the summary score

true 1
false 0.8

Finally, we calculate the score of one summary
ssum by formula (2-5).

cnws

mi

i
isum sssssen

m
s ****1

1
∑
=

=

= (2-5)

2.3 Model Summary’s Evaluation

Model summaries have the diversity and flexibility in
language expression. When we compute the sentence
and document coverage scores, we not only use
words in model summary, but also considered their
synonyms according to Roget’s thesaurus.

Experiments show that using the synonyms is
effective in model summary evaluation.
Here is the flowchart about Model summary’s
evaluation.

Figure 2 No Models Evaluation based on Synonyms
Dictionary lookup

The Roget’s thesaurus is consisted of two files: the
“1068-index.txt” and the “1068-body.tx”. The
relationship between the tow files is demostrted in
table 5.

Table 5 the relationship between index file and body file

10681-index.txt 10681-body.txt

word1 (phrase1)
 synonyms11 index11
 synonyms12 index12

…
wordi (phrasei)
 synonymsi1 indexi1
 synonymsi2 indexi2
 …
…

1. wordj

2.
. . .
index11. a list of words that have the same meaning with

word1 (phrase1)
. . .
indexi1. a list of words that have the same meaning with

wordi (phrasei)
. . .

Tokenization

Sentence Similarity
Calculation

Stop words
Removal

Sentence
Segmentation

Synonyms
Dictionary

Text Similarity
Calculation

Matrix Screening

3 The “No Models” case

We’ve got 4324 documents zipped in one folder from
TAC website as the evaluation materials, including
model summaries and automatic ones. Since the "No
Models" case is intended to focus on how well an
automatic metric can evaluate automatic summaries,
we first separate the automatic summaries from
model ones.

Each document set includes 43 automatic
summary files and four human summaries which
were created as the “ideal” summaries. All we should
do is to compute the similarity between each
automatic and model summary.

3.1 Framework

We develop a series of steps to evaluate automatic
summaries. Firstly, some preprocessing should be
done, including tokenization and stop words removal.
Then we mainly pay attention to sentence similarity
and text similarity calculation. Figure 2 which is
showed above is a flowchart of the evaluation.

3.2 Proposed Methods

The main idea of automatic evaluation of summaries
based on synonyms dictionary is: looking up the
dictionary to find out whether the words in automatic
summary and the model summary are synonymous.
Synonyms have higher similarity value. We calculate
the similarity between sentences based on words;
then we get the text similarity by screening the
sentence similarity matrix.

3.2.1 Sentence similarity calculation

Here is the formula (3-1) for the sentence similarity
proposed in paper[1].

(,) 2 * (,) /[() ()]i j i j i jsim s s samewc s s len s len s= +

(3-1)

(,)i jsamewc s s : the number of words with the same

meaning in sentence is and js , which is counted

by looking up the synonyms dictionary, more details
will be give in section 3.2.2;
len(si): the length of sentence si;
si: the ith sentence in the automatic summary D1;
sj: the jth sentence in the model summary D2.

Following the same idea, we proposed our own
formula. We think that comparing to synonyms, the
same words in automatic summary and the model
summary contribute more to the similarity. Our
metric is calculated in different conditions as shown
in formula (3-2):
if 1 2w w= , 1samew = ;

else if 1w and 2w are synonyms, 0.9samew = ;

()ilength s : the length of sentence is without stop

words;

(,) 2* (,) /[() ()]i j i j i jsim s s samew s s length s length s= +

(3-2)
Assume that there are m sentences in D1, n sentences
in D2, then we will get a m*n matrix M(D1, D2):

11 21 11 2

1 2

1 21 1 2

(,) (,)
(,)

(,) (,)

n

m m n

sim s s sim s s
M D D

sim s s sim s s

 =

K

M O M

L

(3-3)
Si1: the ith sentence in document D1 ;
Si2: the ith sentence in document D2 .

3.2.2 Synonyms Dictionary lookup
Roget’s Thesaurus is our synonyms’ dictionary. There
are two files, “10681-index.txt” and “10681-body.txt”.
Their relationship is shown in Table5.5.

Since we only need single word synonyms,
we’d better remove phrases from the index file so as
to get a better time and space efficiency.

The algorithm for judging whether word x
from automatic summary and word y from model
summary are synonyms is as followed:
(1) set array_index[]={w1 n11…n1k, … , wi ni1,…
nim, …};

wi : the ith word in the index file;
 nim: the index of word wi’s mth meaning;

set array_body[]={list1, … , listj, … };
 listj: a list of words in “10681_body” which

have the same meaning with word wj in
“10681_index” ;

(2) if x=wi, then extract indexes ni1,… nim, then go to
(3), else return false;

(3) for each index, take ni1 for example, if y is in array
body[ni1], return true, then break; else continue
searching

3.2.3 Text similarity calculation

In section 3.2.1, we get the similarity matrix M(D1,
D2), here we should sift the elements in M to find a
queue of sentence similarities, and then get the
average value as the similarity between the automatic
summary and the model summary.
Detailed steps of the method are as followed:
(1) traverse the matrix, find the maximum value

simSmax and put it into queue S; then set all the
elements which are in the same row and column
with simSmax to 0, at last we get a new matrix
M(D1, D2), go to step (2);

(2) if the matrix is empty or the elements are all 0, go
to step (3), else go to step (1);

(3) we get the final queue S={simSmax1, simSmax2, …,
simSmaxk}.

(4) the similarity between D1 and D2 is calculated
by formula (3-4):

1 2 max
1

1(,)
i

k

i
sim D D simS

k =

= ∑ (3-4)

4 Submissions and Results

We submitted four runs to NIST, and each run
evaluates “All Peers” and “No Models” separately.

Run 1: In “All Peers” case, we didn’t consider
the aspect coverage. We considered all the content
words in each peer summary while expanding
synonyms of the content words in model summaries.
In “No Models” case, we look up the synonyms

dictionary without considering the aspect coverage.
Run 2: In “All Peers” case, we didn’t consider

the aspect coverage. We considered the number of all
nouns and verbs without expanding synonyms in
model summaries. In “No Models” case, we didn’t
look up the synonyms dictionary but considered the
aspect coverage.

Run 3: In “All Peers” case, we add the aspect
coverage and considered all the content words in
each peer summary while expanding synonyms for
model summaries. In “No Models” case, we look up
the synonyms dictionary and considered the feature
of aspect coverage.

Run 4: In “All Peers” case, we considered the
aspect coverage feature and the number of all nouns
and verbs, but we didn’t expand synonyms for words
in model summaries. In “No Models” case, we didn’t
look up the synonyms dictionary while considering
the feature of aspect coverage.

Finally our submissions are tested on the TAC
2010 dataset. The AESOP evaluation results of
summary A and B are shown in Figure 3 and 4.

In both figures, “Best” means the best result
among all 27 submissions. “Our best” means our best
result among the 4 submitted runs. The left part of
each figure shows the correlations with Pyramid for
each run, and the other is correlations with
Responsiveness.

5 Conclusions and Future Work

We can see that our “All Peers” method performs
better than “No Models” method in AESOP
evaluation. It gets a higher score on most “All Peers”
correlation items. For example, in Figure 3, every
correlation’s score in “All Peers” case is higher than
that in “No Models” one.

In both figures, the overall trend of data in “All
Peers” case is closer to the “Best” one than that in
“No Models” case.

Scores are higher in Figure 3 in both “All
Peers” and “No Models” case than that in Figure 4,

which means summary A is better than summary B.
Although our systems’ overall levels are not

ideal, our Spearman score is much better than other
teams.

There is a long way for us to improve the
evaluation systems, especially in the following
aspects:

1). improve the similarity calculation algorithm;
2). consider the linguistic quality of the

summaries to be evaluated;
3). make the synonyms searching algorithm more

effective.

Hope that we could get a progress in summary
evaluation next year.

(a)

AESOP evaluation results of summarization A

0

0.2

0.4

0.6

0.8

1

1.2

Pe
ar
so
n

Sp
ea
rm
an

Ke
nd
al
l

Pe
ar
so
n

Sp
ea
rm
an

Ke
nd
al
l

Pe
ar
so
n

Sp
ea
rm
an

Ke
nd
al
l

Pe
ar
so
n

Sp
ea
rm
an

Ke
nd
al
l

correlations

s
c
o
r
e
s

Run 1

Run 2

Run 3

Run 4

Best

Our best

AllPeers_A NoModels_A

(b)

Figure 3 “All Peers” and “No Models” results of
summary A

(a)

AESOP evaluation results of summarization B

0

0.2

0.4

0.6

0.8

1

1.2

Pe
ar
so
n

Sp
ea
rm
an

Ke
nd
al
l

Pe
ar
so
n

Sp
ea
rm
an

Ke
nd
al
l

Pe
ar
so
n

Sp
ea
rm
an

Ke
nd
al
l

Pe
ar
so
n

Sp
ea
rm
an

Ke
nd
al
l

correlations

s
c
o
r
e
s

Run 1

Run 2

Run 3

Run 4

Best

Our best

AllPeers_B NoModels_B

(b)

Figure 4 “All Peers” and “No Models” results of
summary B

References

[1] HUANG Li-qiong, HE Zhong-shi, ZHANG
Jie-hui, Automatic summarization evaluation
method based on similarity of text, Application
Research of Computers， 2007,24(8)

[2] Rebecca J. Passonneau, Ani Nenkova, Kathleen
McKeown, Sergey Sigelman, Applying the
Pyramid Method in DUC 2005

Columbia University Computer Science
Department New York

[3] Liu Yin, Li Bicheng The Overview and
Prospect of Automatic Summarization
Evaluation Department of Information Science,
Information Engineering Institute, Information
Engeering University, Zhengzhou 450002

[4] Li-Qing Qiu, Bin Pang Analysis of automated

evaluation for multi-document summarization
using content-based similarity State Key Lab.
of Software Development Environment,
Beihang University, 100083

[5] Eduard H, Lin C Y, Zhou L, Junichi F.
Automated Summarization Evaluation with
Basic Elements. In Proceeding of the Fifth
Conference on LREC, Genoa, Italy.2006

[6] Donaway R, Drummey K, Mather L.A
Comparison of Rankings Produced by
Summarization Evaluation Measures. In
Proceeding of ANLP/NAACL Workshop on
Automatic Summarization, pages 69-78, 2000

[7] Saggion H, Radev D, Teufel S, et al.
Meta-evaluation of Summaries in a Cross-lingual
Environment Using Content-based Metrics In
Proceeding of the 19th ICCL ,pages 849855,2002

[8] Lin C Y.ROUGE: A Package for Automatic
Evaluation of Summaries In Proceeding of
DUC, 2004.

[9] Lin C Y, Hovy E. Automated Evaluation of
Summaries Using N-gram Co-Occurrence
Statistics In Proceeding of HLTC, pages 71-78,
2003

