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Abstract 

 
This is the first time we participate in TAC. In this 
report, we present our extractive summarization 
system on both initial and update summarization 
tracks of TAC 2010. We introduce an integrated 
method to generate all summaries. The TAC 
evaluation of results show that our summarization 
method is feasible but it has to be improved in future.  
Keywords: multi-document summarization; 
Hierarchical clustering; sentence extraction; sentence 
compression; update summary 

1. Introduction 

With the fast development of the Internet and the 
emergence of massive amounts of information, we 
need the ability to find important semantic content 
quickly. But with the accelerated pace of life and the 
explosive increase in the number of documents, 
people who want to learn about a particular event 
have no time to read all the available documents on 
that topic. We need an effective way to generate a 
summary that lets people acquire important topic 
information. Multi-document summarization aims to 
generate a brief and coherent summary, which should 
be objective and exactly reflect the contents of the 
original documents and minimize redundancy[1]. 
Readers can obtain the important major topic content 
that they need without reading the entire original 
document set. At the same time, people want to know 
the progress of the topic they are interested in, which 
is what motivates the research behind update 
summarization. In this report, we also present a 
method to produce update summaries. 

In this report, we propose an integrated 
extractive multi-document summarization framework 
based on sentence level semantic analysis. These 

summaries will be evaluated for readability and 
content and overall responsiveness. The remainder of 
this report is organized as follows: Section 2 
introduces the related work. Section 3 discusses the 
framework of our method. Section 4 describes the 
details of generating original summaries. Section 5 
introduces sentence compression and final summary 
generation. Section 6 presents the process of 
generating update summaries. In section 7 we 
analyze TAC evaluation results. Section 8 concludes 
the report with directions for future research.  

2. Related Work 

Multi-document summarization has been widely 
studied in recent years. In general, there are two types 
of methods: extractive summarization and abstractive 
one[2] [3]. The latter is more complicated since it 
involves language generation, information fusion and 
more natural language processing (NLP) technologies. 
Most work today focuses on extractive 
summarization, where a summary is created simply 
by identifying and subsequently concatenating the 
most important sentences in document set. Extractive 
summarization usually ranks the sentences in the 
documents according to their scores calculated by a 
set of predefined features, such as term 
frequency-inverse sentence frequency (TF-ISF)[4][5], 
sentence or term position[5], and number of keywords. 
Other methods include NMF-based topic specific 
summarization[6], CRF-based summarization[7], and 
hidden Markov model (HMM) based method[8]. In 
addition, some graph-ranking based methods are also 
proposed[9]. Most of these methods ignore the 
dependency of semantics in the sentence level and 
just focus on keyword co-occurrence. The hidden 
relationships between sentences need to be further 
discovered.  



 

 

3. Framework 

 
Figure 1  Multi-document Summarization Based on Clustering 

 
 
Figure 1 shows the three key steps of our 
summarization system, which are preprocessing, 
sentence extraction and summarization. In the 
following parts we will introduce the details.  

4.Generating Original Multi-document Summary 

4.1 Preprocessing  

The original documents that TAC provided as test 
data must be pretreated, including content extraction, 
POS tagging, word stemming and stop words 
removal.  

Firstly, the original document set contains some 
tags, such as “<DOC>”, “<DOCNO>”, 
“</DOCNO>”, “<DOCTYPE>”, “</DOCTYPE>”, 
“<HEADER>”, “</HEADER>”, “<BODY>”, 
“<SLUG>”, “</SLUG>”. We delete them and only 
extract the paragraphs between <p> and </p>, <text> 
and </text> for summarization. 

The final summary should be very short and 
informative. We choose the level of sentence. We 

segment the original English document into sequence 
of sentences with BFSU English Sentence Segmenter    
(http://www.corpus4u.org).  

As is well known, nouns and verbs are dominant 
words expressing the content. We give them higher 
weights than the others. We perform POS tagging 
with an English POS tagger of Tokyo University. It 
can help us make a deeper semantic analysis of the 
source documents.  

As English words are different from Chinese, 
people often use different word forms to represent the 
time and state of event, word stemming is necessary. 
We compute similarity of sentences after word 
stemming, which is supposed to be more precise. It 
helps us improve the clustering result. We perform 
word stemming with an English tool downloaded 
from “http://www.12fanyi.cn/post/83.html”.  

The last step of preprocessing is stop words 
removing. In English documents we may find many 
words, such as “a”, “an”, “and”, “the”, “of”. They 
can’t directly express the content, only play a 
supporting role. We use a  list of more than 300 stop 
words. After the removal of stop words, we get 
content words that contribute to deeper semantic 

Multi-document 

Document—> 
Sentences 

POS tagging 

1. Preprocessing 

Word stemming 

Stop words removal 

2. Sentence extraction 

Hierarchical clustering 
Sentence compression 

Noisy information 
filtering 

Extract representative 
sentences 

Knowledge base 
Summary 

3. Summarization 

100 words limit 

Similarity matrix 



 

 

analysis.  

4.2 Sentence Extraction  

After preprocessing, the most critical step of 
producing multi-document summary is candidate 
sentence extraction.  

(1) Sentence Similarity Matrix 

Let sentence s1’s feature vector be (W1 W2 ..., Wr), r 
is the number of features, Wi is the weight of each 
feature,   

POSiTFISFiWi *=             (4-1) 
sfNtfiTFISFi /log*=      (4-2) 

tfi is the frequency of the feature in the sentence, sf is 
the number of sentences in which the feature appears, 
N is the total number of sentences. POSi is the part of 
speech information. By doing so, we can  make 
similarity calculation more accurate.    

Let sentence s2’s feature vector be (W1 W2 ..., 
Wl). The similarity between s1 and s2 is calculated as 
follows:  
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Numerator is the sum weight of the words that both 
occur in sentence s1 and s2. Denominator is the sum 
weight of the words that in the shorter sentence smin 
in {s1, s2}. The benefit is that if a sentence contains 
all the words of another sentence, i.e. if one sentence 
is totally a part of another, then their similarity is 1. 
This is reasonable in this task, since in the next step 
of clustering, it will make the two sentences 
definitely belong to the same cluster.  

(2) Hierarchical Clustering 

Clustering based on sentence level can put sentences 
with related meaning together. Then we select 
representative sentences of each cluster to compose 
the summary. In our system we choose the 
hierarchical clustering algorithm.  

The specific method is described below:  
(1) Calculate the similarity of every two sentences, 
construct an m*m similarity matrix, where m is the 
number of sentences in the document set. 
(2) For (when the update largest value in the matrix is 
less than the given threshold)  

(2-1) Group the two sentences corresponding to the 
largest value. 

(2-2) Update the similarity value between the 

remaining sentences and the newly grouped sentence. 
Suppose that we combine sentence sa and sb, the 
similarity between sentence m and the newly merged 
sentence is:  

{ }),(),,(max),( & bmambam sssimsssimsssim =   (4-4)    
The benefit of hierarchical clustering [14] is that 

we needn’t to decide the number of clusters. All we 
have to do is to decide the threshold, above which we 
consider the two sentences should be merged 
together.  

4.3 Sentence Scoring 

Now we have got many different clusters. The 
following task is to extract candidate sentences from 
each cluster. We expect that we can choose the most 
representative and non-redundant sentences. We 
evaluate sentences mainly according to keywords 
coverage and sentence length. 

Firstly, we build a knowledge base for the 
required aspects listed in the guided summarizations. 
We extract keywords from TAC sample document 
sets for all the five topics which contain tagged 
information units according to the required aspects. 
We obtain an original version of the knowledge base 
for each topic with many required aspects and each 
aspect corresponds to a keyword list. Then we 
expand these keywords with thesaurus of Britannica 
Online Encyclopedia 
(http://www.britannica.com/bps/thesaurus?query=goo
d) using a simple meta search engine. To ensure the 
quality of synonyms, in the final version of the 
knowledge base, we improve it through further 
manual screening. We expect that the knowledge base 
will help to select sentences which tightly cover the 
required aspects. 

In order to emphasize those required aspects, we 
set higher weight for sentences containing more 
keywords in the knowledge base. 
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The sasp is the score of the sentence aspect 
coverage, and wj is the score of each word in the 
sentence, if the word is in the knowledge base, the 
value is 1, else is 0, sl is the total number of the words 
in the sentence, m is the total number of aspects of 
the category.  
Then we mainly think of the other two features to 
decide the importance of the sentence:  

1. the length of the sentence;  
2. the number of keywords the sentence contains 
In our experiment, Len(sen) is a Boolean 

function, if the length of one sentence is between 
5-20 words, Len(sen)=1, otherwise Len (sen)=0; we 



 

 

select keywords based on score of the words by 
formula (4-1) (4-2) and Hypothesis testing [14].  

We select top 10 words as the keywords, and set 
))(( senwordskeywordsnums k ∩=        (4-6) 

sk is the number of the keywords that a sentence 
contain, words(sen) are the words in sentence. We 
sort the initially chosen sentences in accordance with 
descending order of score computed by formula 
(4-7),  

aspk sssenLens **)(=               (4-7) 
The s is the final score of the sentence, sasp is 
calculated by formula (4-5). 
Then we implement an optimal sentence selection in 
two stages.  
Stage1: select sentences meeting certain conditions;  
Stage2: delete the sentence carrying the least 
information until the remaining sentences meet with 
our goal.  

The two stages are described more detailed 
in[10]. The algorithm is the overall optimization 
compared with the traditional methods that choose 
the currently best sentence in the unknowing of 
following-up sentences. 

5. Final Summary  

Since the final summary must meet some additional 
requirements such as overall length and 
grammaticality etc., we should remove the redundant 
information from the sentences. Sentence 
compression is often regarded as a promising method 
towards ameliorating some of the problems 
associated with extractive summarization. It involves 
creating a short grammatical summary of a single 
sentence, by removing elements that are considered 
extraneous, while retaining the most important 
information [11]. Interfacing extractive summarization 
with a sentence compression module could improve 
the conciseness of the generated summaries and 
render them more informative [12].  

We mainly use Stanford Parser 
(http://nlp.stanford.edu:8080/parser/) to parse 
sentences, then select and combine phrases 
grammatically which tell the main concept of the 
sentence. Since some noisy information may interfere 
the parsing results, we remove them at the very 
beginning; this will be introduced in section 5.1. A 
detailed description will be given in section 5.2. 
Section 5.3 introduces some additional operations to 
modify the summary so as to satisfy all the 
constraints.  

5.1 Noisy Information Filtering 

There are a lot of useless punctuation marks (*, ``, ' ', 
etc.) and symbols (&QL, etc.) in the original 
summary generated in section 4. They not only cause 
the text length exceeding limit, but also, worse still, 
they often lead to errors in sentence parsing.  

Take the sentence in file “D1020D-A” for 
example: 
&UR; (Charles Downey is a Big Bear City, 
Calif.-based free-lance writer who frequently writes 
on parenting issues.) &LR; &UR; 
------------------------------------------------- &QC; &UR; 
(To purchase this article, contact one of these New 
York Times Syndicate sales representatives: (_ U.S., 
Canada and the Pacific: CONNIE WHITE in Kansas 
City at 800-444-0267 or 816-822-8448; fax, 
816-822-1444. 

Firstly, it has fifty-three words, more than a half 
of the total word limit. Characters like “&LR; &UR; 
------------------------------------------------- &QC; 
&UR;” contribute nothing to the keynote of the 
sentence. We need to delete all these noisy 
information. 

Secondly, errors may occur when extracting 
keywords from the collapsed dependencies. For 
example, parts of the collapsed typed dependencies 
of this sentence are as followed: 

nn(Charles-3, &UR;-1) 
nsubj(City-9, Charles-3) 
...  
nsubj(writes-16, writer-13) 
...  
nsubj(--------------------------------------------------3, 

&UR;-2) 
nn(&UR;-5, &QC;-4) 
nsubj(purchase-8, &UR;-5) 
aux(purchase-8, To-7) 
xcomp(--------------------------------------------------

3, purchase-8) 
det(article-10, this-9) 
dobj(purchase-8, article-10) 
...  
We use “nsubj” as the symbol to mark a 

sentence’s subject-predicate, but from above we can 
see that there is no keyword in line 4. 

If we delete the noisy words, the new sentence 
becomes “Charles Downey is a Big Bear City, 
Calif.-based free-lance writer who frequently writes 
on parenting issues. To purchase this article, contact 
one of these New York Times Syndicate sales 
representatives”. Then we can get the right collapsed 
typed dependencies: 

nn(Downey-2, Charles-1) 
nsubj(City-7, Downey-2) 
cop(City-7, is-3) 



 

 

... 
nsubj(writes-14, writer-11) 
advmod(writes-14, frequently-13) 
rcmod(City-7, writes-14) 
rcmod(writer-11, writes-14) 
nn(issues-17, parenting-16) 
prep_on(writes-14, issues-17 
aux(purchase-2, To-1) 
det(article-4, this-3) 
dobj(purchase-2, article-4) 
... 
 

5.2 Sentence Compression 

We obtain typed dependencies information by parsing 
every sentence with Stanford Parser which has done 
well on the sentence parsing and gained much 
attention.  

For example, a candidate sentence is “The 
government has issued a series of regulations and 
measures to improve the country's coal mine safety 
situation, the Xinhua said.” 

After using the Stanford Parser, we got the 
dependency-based representations as followed: 

det(government-2, The-1) 
nsubj(issued-4, government-2) 
aux(issued-4, has-3) 
ccomp(said-23, issued-4) 
det(series-6, a-5) 
dobj(issued-4, series-6) 
prep_of(series-6, regulations-8) 
prep_of(series-6, measures-10) 
conj_and(regulations-8, measures-10) 
aux(improve-12, to-11) 
xcomp(issued-4, improve-12) 
det(country-14, the-13) 
poss(situation-19, country-14) 
amod(situation-19, coal-16) 
nn(situation-19, mine-17) 
nn(situation-19, safety-18) 
dobj(improve-12, situation-19) 
det(Xinhua-22, the-21) 
nsubj(said-23, Xinhua-22) 

Firstly, we construct a model for each of the 
dependencies:  

( )1 1 2 2 ,   modifier keyword serial numbers keyword serial numbers− −

Simple form is: 
( )1 1 2 2,  modifier w n w n− −  

Secondly, we segment each sentence in the summary 
into clauses: 

{ }1 2 n, ,   ,  S s s s= …  
si : the ith clause of S. 

We have done a lot of research on the example 

materials and find that modifiers such as 
“nsubj/nsubjpass” and “dobj” are important which 
are shown in the front of the dependencies sequence. 
Additionally the clauses si (i=1,2, …, n) which 
contain w1 and w2 often can well express the main 
meaning of the sentence S. We develop our own 
strategy which extracts w1 and w2 from the line 
begining with “nsubj/nsubjpass/dobj”. Here is the 
detailed information. 

After we extracted the keywords w1, w2 and the 
serial numbers n1, n2, we combine the clauses s1and 
s2 which contain both w1and w2. There are several 
specific situations. 

1) if w1, w2 are in the same clause, then we need 
to extract s1 only; 

2) if w1, w2 are not in the same clause and n1<n2, 
then we need to extract both s1, s2 , and concatenate 
s2 after s1 ;  

3) if w1, w2 are not in the same clause and n2<n1, 
then we need to extract both s1, s2 , and concatenate 
s1 after s2 . 

For the above example, we should extract the 
words “issued-government, issued-series” and serial 
numbers “4～2, 4～6”. Since the four words are in 
the same clause, we just extract the first clause, “The 
government has issued a series of regulations and 
measures to improve the country's coal mine safety 
situation”. 

We didn’t do further operations for clause 
compression, because the results are not satisfied. 
Table 1 shows two examples. 

Overall, the result of sentence compression 
algorithm achieved our expectation, it can recognize 
and remove some relative dates and “said” clauses 
such as “on Tuesday” or “the President said”, which 
often don’t appear in a summary.  

But due to the diversity of language expression, 
Stanford Parser may give an incorrect representation 
of typed dependencies for a sentence. Our program is 
also not perfect enough; sometimes we may get an 
undesirable result. There is still a long way for us to 
go through. 

5.3 Final processing 

After the above steps, some of the summaries have 
reached the overall length limit, but others are not. 
We need to do more modifications to achieve the goal 
of 100 words, including removing some less 
important sentences or unimportant modifiers.  

Although all the sentences in the original 
summary contain rich information, in order to meet 
the 100 words constraint, we have to remove some 
sentences. We think that shorter sentences have less 
information than the longer ones. They should be 



 

 

deleted if necessary. Here is the algorithm: 
 
1) define an instance object of map class: Map 

<String, Integer> weizhi_length, where “String” 
represents the sentence itself while “Integer” stands 
for its length. 

2) put all these sentences into it according to the 
length’s ascending arrangement. 

3) while ( 1( 100)s c threshold− − <= ), remove the 

sentence from the map, then c c s= − ; 
c: the length of current summary; 
s: the length of the sentence being operated; 
threshold1: we assign 6 to it, this value is obtained by 
a series of observations.                                    

4) reorder the sentences in the map, if 
(c>threshold2) then remove the unimportant 
modifiers. Here we assign 105 to threshold2; this 
value is also obtained by a series of observations. 

5) In Table 2, we list some abbreviation 
examples to replace the long phrases. Repeat these 
steps until the summary satisfies the 100 words limit. 

6) There are a few sentences starting with 
personal pronouns (He/She/You/Him/Her/They/Them, 
etc.) and demonstrative pronouns 
(This/These/That/Those, etc.), this may do harm to 
the readability of the summary. We move them to the 
other part of the summary. 

Since we extract sentences from 
multi-documents without considering their semantic 
sequence, the readability of the summary may be a 
little poor. We will go on with it in future. 

6. Update Summarization  

We also participated in the update summarization 
track of TAC 2010, which is to write a 100 words 
limit summary of a set of newswire articles, under the 
assumption that the user has already read the earlier 
articles. The summaries will also be evaluated for 
readability, content (based on Columbia University's 
Pyramid Method)[13] and overall responsiveness. The 
update summary should have different content from 
the initial one, and more focuses on follow-up report.  

We use the same method as the initial 
summarization track. The only difference is that we 
choose novel sentences that have not been contained 
in the initial summaries.  

We assume all sentences in initial summaries as 
the candidate sentences of update summary, and we 
will choose the new sentences that have least 
similarity with these candidate sentences. We use the 
formula (4-3) to calculate the similarity. If the 
similarity is bigger than the threshold, we will choose 

another one until the update summary has got ten 
sentences. This method can avoid duplicate 
information effectively.  

7. Results and Discussion 

In the guided summarization track of TAC 2010 we 
submit two runs. The first one is mainly considering 
the feature of keyword coverage, and the second one 
is mainly considering the feature of aspect coverage. 
The evaluation results show that our two runs are 
similar. We compare our two summarization results 
with the best one in 43 runs, which contain 41 runs 
from 23 participants and two baseline runs. The 
following figures 2,3 show the result.  

Our result is not very optimistic. The following 
factors may infect the outcome. The first one is our 
clustering algorithm which plays an important role in 
determining the summary. It tends to cluster the same 
sentences into a group, but these sentences may not 
contain the most important content. The second one 
is the knowledge base, which is limited in coverage, 
authority and size. The third one is our sentence 
compression method which may prune some critical 
information. The last one is we didn’t use the title and 
time information which appear in the original 
document set.  

8. Conclusions and Future Research 

This report introduces the details of a multi-document 
summarization system for both initial and update 
summaries. We construct a thesaurus to guide the 
sentence extraction, use hierarchical clustering to 
group sentences with similar content and propose 
sentence compression with Stanford Parser to 
condense the summary. The experiment shows the 
effectiveness of the algorithm. Although our 
multi-document summarization has met the basic 
requirements of the TAC evaluation, it needs to be 
improved. To generate better summaries, we can 
improve our clustering algorithm and utilize the title 
information and various named entities in the original 
document set. We can also improve our sentence 
compression method.  
 
 
 
 
 
 
 

Table 1 Example of compressed sentences 



 

 

Original sentence Compressed sentence 
The room in which the identification was taking place was 
small, and it was taking time for the relatives to file through, 
she said. 

The room in which the identification was taking 
place was small, and it was taking time for the 
relatives to file through. 

Shortly after takeoff Sunday morning, the Helios pilot radioed 
to ground control in Lanarca that he was having trouble with 
the air conditioning, Greek officials said. 

The Helios pilot radioed to ground control in 
Lanarca that he was having trouble with the air 
conditioning. 

 
Table 2 Example of abbreviations 
Original phrases Abbreviations 

Royal Australian Air Force 
International Civil Aviation Authority 

Traditional Chinese Medicine Hospital 
China National Petroleum Corporation 

RAAF 
ICAA 

TCMH 
CNPC 

 

Average values for CIST for initial summaries

2.065 2.13
2.565 2.63

0.208 0.204

3 3.087

0

1

2

3

4

                      run1                        run2

Overall Responsiveness Overall Readability

4-model Pyramid Number of SCUs
    

Average values for CIST for update summaries

1.717 1.739

2.587 2.609

0.15 0.136

1.87 1.717

0

1

2

3

                     run1                        run2

Overall Responsiveness Overall Readability

4-model Pyramid Number of SCUs
 

Figure 2 average values for initial summaries        Figure 3 average values for update summaries 
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Abstract 

In this report, we compute two sets of numeric 
summary-level scores separately with different 
algorithms. In the “All Peers” case, we get the 
numeric score for each peer summary, including the 
model summaries. Experiments show that it can well 
distinguish model summaries from automatic ones. In 
the “No Models” case, we get the similarity score 
between each automatic summary and model 
summary by looking up the Roget’s Thesaurus. 
Finally, we analyze the evaluation results of our two 
evaluations and suggest some possible improvements. 
Keywords: All Peers, No Models, sentence coverage, 
document coverage, aspect coverage, similarity 
 

1  Introduction  

This is the first time we attend Text Analysis 
Conference. The actual AESOP task is to produce two 
sets of numeric summary-level scores:  

•All Peers case: a numeric score for each peer 
summary, including the model summaries. It is 
intended to focus on whether an automatic metric can 
differentiate between human vs. automatic 
summarizers. 

•No Models case: a numeric score for each 
peer summary, excluding the model summaries. It is 
intended to focus on how well an automatic metric 
can evaluate automatic summaries. 

We built a system for TAC 2010 AESOP Task 
with two sets of numeric summary-level scores 

separately calculated by different algorithms.  
We get all the test data from the TAC 2010 

Summarization Track web page and submit four runs 
to NIST.  

In “All Peers” case, our evaluation system uses 
the set of source documents as reference instead of 
the four model summaries TAC provided. The main 
method we used to evaluate automatic summaries and 
model summaries are almost the same, but since 
model summaries’ expression may be diversified and 
flexible, when we compute the sentence and 
document coverage scores, we not only use words but 
also considered their synonyms, which are expanded 
with Roget’s thesaurus. 

In “No Models” case, we use model summaries as 
the reference to evaluate automatic summaries. For 
each document set (including 43 files), four human 
summaries were created as the ideal summaries. All 
we should do is to compute the similarity between 
each automatic and model summary. 

2  The “All Peers” case 

The “All Peers” evaluation aims to evaluate the 
content, readability and overall responsiveness of all 
summaries, including the automatic and model 
summaries. In this case, our evaluation system uses 
the source documents as reference instead of the four 
model summaries that TAC provided. The evaluation 
tends to distinguish automatic summaries from model 
ones. 
2.1  Framework 

 



 

 

  
Figure 1 general evaluation framework for “All Peers” evaluation 

 
Figure 1 shows the framework of the “All 

Peers” evaluation. We use the source documents as 
reference, but one problem is that these documents 
that TAC provided have many tag information which 
we don’t need in the evaluation. We do preprocessing 
at first, including tag deletion, document 
segmentation, word stemming, and stop words 
removal.  

To evaluate each summary, we want to find out 
whether or not the words in it are contained in the 
relevant ten original documents. In order to search 
quickly, we construct two inverted index files based 
on information retrieval, one is word-sentence index 
file and the other is word-document index file.  

We evaluate all summaries according to the 
following features: sentence and document coverage 
of the source documents, number of the sentences 
and number of the content words in summary, 
completeness of the summary within 100 words, 
noisy information in the summary and aspect 
coverage for each topic.  

2.2  Automatic Summaries’ Evaluation 

For all the content words in the summaries, we look 
up the word-sentence and word-document inverted 
index files respectively, then compute the coverage of 
the words in one sentence.  

We assume that one summary is comprised of 
sentences {s1, s2, … sm} and one sentence si is 
comprised of words{w1, w2, ... wn}. For wj in the 
sequence{w1, w2, ... wn}, we count the sentences set 
swj which the word wj has covered and we will get a 
set of {sw1, sw2, … swn} in the end, nsi=sw1 U sw2 ... 
U swn, and numi=|nsi|, numi is the total number of 
sentences that all words in one sentence has covered. 
maxs is the max number of the set {num1, num2, … 
numm}. 

We calculate the sentence coverage score by 
formula (2-1). 

siis nums max/cov =          (2-1) 

Similarly, we also compute the score of 
document coverage. For wj in {w1, w2, ... wn}, we 
count the documents set dj of the word wj has covered 
and we will get {d1, d2, … dn}, di=d1 U d2  ... U dn, 
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and numdi=|di|. The score of documents coverage is 
calculated by formula (2-2). 

10/cov diid nums =          (2-2) 

sdcovi is the score of documents coverage, numdi 
is the total number of the d that all words in one 
sentence have covered, and 10 is for that one source 
document set has ten documents. 

The third feature we considered is aspect 
coverage. We calculate the coverage of aspects 
according to the knowledge base, which is 
constructed by extracting keywords from TAC 
sample document sets for all the five topics which 
contain tagged information units for the required 
aspects. We obtain an original version of the 
knowledge base for each topic with many required 
aspects and each aspect corresponds to a keyword list. 
Then we expand these keywords with thesaurus of 
Britannica Online Encyclopedia 
(http://www.britannica.com/bps/thesaurus?query=goo
d) using a simple meta search engine. To ensure the 
quality of synonyms, in the final version of the 
knowledge base, we improve it through further 
manual screening. If the word wj in the knowledge 
base, the aspect value aj is 1, otherwise aj is 0. The 
formula is (2-3). 

asp

n

j
j

aspi num

a
s

∑
== 1               (2-3) 

sasp is the score of one sentence covering 
aspects of the category, numasp is the number of the 
aspects that a category should contain.  

Then we calculate the sentence score by the 
formula (2-4). 

aspiidisi ssssen ** covcov=     (2-4) 

In “All Peers” case, we also evaluate the 
readability and overall responsiveness of the 
summary. We consider the number of the sentences 
and the content words in one summary. We think that 

in one 100 words summary there should be 
appropriate number of sentences, and the length of 
the sentence influence the comprehension of the 
readers directly. It would be better containing 4-8 
sentences, and too many or too few sentences all will 
influence the overall responsiveness of the 
summaries. The score is defined as ss. 

Table 1 the score of ss 
number of sentences: m value of ss 

m==1 0 
m>1&&m<4 0.9 
m>=4&&m<=8 0.95 
m>8 0.9 

At the same time we expect more content 
words which can express the topic information in a 
good summary. We design several score levels 
according to the number of words. We have done an 
experiment on model summaries and found out that 
most model summaries have 45-80 content words, 
and then we evaluate all summaries considering this 
feature. The number of the words in one summary 
fall into this range will be given a relatively higher 
score denoted as sw.  

Table 2 the score of the sw 
number of the content words: n value of 

sw 
n<45 0.85 
n>45&&n<80 0.9 
n>80 0.85 

A survey of all summaries show that some of 
them have noisy information such as “<p>”、
“<BODY>”、“<DOC>”、“<TRAILER>”and so on, 
they have nothing to do with the topic contents. We 
compute the number of tags a summary contains for 
the score sn. 

 
Table 3 the score of sn 

number of tags: tags value of sn 
Tags = 0 1 
tags>0 && tags<=5 0.85 



 

 

Tags>5 && tags<=10 0.8 
Tags>10 && tags<=15 0.75 
Tags>15 && tags<=20 0.7 
Tags>20 0.65 

The summary completeness is also a feature 
we have considered. The most important 
characteristic is some summaries contain incomplete 
sentences, which will influence the overall quality. 
And the score of the completeness of one summary is 
defined as sc.  

Table 4 the score of sc 
Completeness of the summary  score

true 1 
false 0.8 

Finally, we calculate the score of one summary 
ssum  by formula (2-5).  

cnws

mi

i
isum sssssen

m
s ****1

1
∑
=

=

=     (2-5) 

2.3  Model Summary’s Evaluation 

Model summaries have the diversity and flexibility in 
language expression. When we compute the sentence 
and document coverage scores, we not only use 
words in model summary, but also considered their 
synonyms according to Roget’s thesaurus. 

Experiments show that using the synonyms is 
effective in model summary evaluation.  
Here is the flowchart about Model summary’s 
evaluation. 

 

Figure 2 No Models Evaluation based on Synonyms 
Dictionary lookup 
 
The Roget’s thesaurus is consisted of two files: the 
“1068-index.txt” and the “1068-body.tx”. The 
relationship between the tow files is demostrted in 
table 5.

 
Table 5   the relationship between index file and body file 

10681-index.txt 10681-body.txt 

word1 (phrase1)  
    synonyms11   index11 
    synonyms12   index12 

… 
wordi  (phrasei)  
    synonymsi1   indexi1 
    synonymsi2   indexi2 
    … 
… 

1.       wordj 

2.   
. . . 
index11.    a list of words that have the same meaning with 

word1 (phrase1)  
. . . 
indexi1.     a list of words that have the same meaning with 

wordi  (phrasei)  
. . . 
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3  The “No Models” case 

We’ve got 4324 documents zipped in one folder from 
TAC website as the evaluation materials, including 
model summaries and automatic ones. Since the "No 
Models" case is intended to focus on how well an 
automatic metric can evaluate automatic summaries, 
we first separate the automatic summaries from 
model ones.  

Each document set includes 43 automatic 
summary files and four human summaries which 
were created as the “ideal” summaries. All we should 
do is to compute the similarity between each 
automatic and model summary. 

3.1  Framework 

We develop a series of steps to evaluate automatic 
summaries. Firstly, some preprocessing should be 
done, including tokenization and stop words removal. 
Then we mainly pay attention to sentence similarity 
and text similarity calculation. Figure 2 which is 
showed above is a flowchart of the evaluation.  

3.2  Proposed Methods 

The main idea of automatic evaluation of summaries 
based on synonyms dictionary is: looking up the 
dictionary to find out whether the words in automatic 
summary and the model summary are synonymous. 
Synonyms have higher similarity value. We calculate 
the similarity between sentences based on words; 
then we get the text similarity by screening the 
sentence similarity matrix. 

3.2.1  Sentence similarity calculation 

Here is the formula (3-1) for the sentence similarity 
proposed in paper[1]. 

( , ) 2 * ( , ) /[ ( ) ( )]i j i j i jsim s s samewc s s len s len s= +                                   

(3-1) 

( , )i jsamewc s s : the number of words with the same 

meaning in sentence is  and js , which is counted 

by looking up the synonyms dictionary, more details 
will be give in section 3.2.2; 
len(si): the length of sentence si; 
si: the ith sentence in the automatic summary D1; 
sj: the jth sentence in the model summary D2. 

Following the same idea, we proposed our own 
formula. We think that comparing to synonyms, the 
same words in automatic summary and the model 
summary contribute more to the similarity. Our 
metric is calculated in different conditions as shown 
in formula (3-2): 
if 1 2w w= , 1samew = ; 

else if 1w and 2w are synonyms, 0.9samew = ; 

( )ilength s : the length of sentence is  without stop 

words; 

( , ) 2* ( , ) /[ ( ) ( )]i j i j i jsim s s samew s s length s length s= +    

(3-2) 
Assume that there are m sentences in D1, n sentences 
in D2, then we will get a m*n matrix M(D1, D2): 

11 21 11 2

1 2

1 21 1 2

( , ) ( , )
( , )

( , ) ( , )

n

m m n

sim s s sim s s
M D D

sim s s sim s s

 
 =  
 
 

K

M O M

L

  

(3-3) 
Si1: the ith sentence in document D1 ;  
Si2: the ith sentence in document D2 . 
 
3.2.2  Synonyms Dictionary lookup 
Roget’s Thesaurus is our synonyms’ dictionary. There 
are two files, “10681-index.txt” and “10681-body.txt”. 
Their relationship is shown in Table5.5. 

Since we only need single word synonyms, 
we’d better remove phrases from the index file so as 
to get a better time and space efficiency. 

The algorithm for judging whether word x 
from automatic summary and word y from model 
summary are synonyms is as followed: 
(1) set array_index[ ]={w1 n11…n1k, … , wi ni1,… 
nim, …}; 



 

 

wi : the ith word in the index file; 
      nim: the index of word wi’s mth meaning; 

set array_body[ ]={list1, … , listj, … }; 
      listj: a list of words in “10681_body” which 

have the same meaning with word wj in 
“10681_index” ; 

(2) if x=wi, then extract indexes ni1,… nim, then go to 
(3), else return false; 

(3) for each index, take ni1 for example, if y is in array 
body[ni1], return true, then break; else continue 
searching 

3.2.3  Text similarity calculation 

In section 3.2.1, we get the similarity matrix M(D1, 
D2), here we should sift the elements in M to find a 
queue of sentence similarities, and then get the 
average value as the similarity between the automatic 
summary and the model summary. 
Detailed steps of the method are as followed: 
(1) traverse the matrix, find the maximum value 

simSmax and put it into queue S; then set all the 
elements which are in the same row and column 
with simSmax to 0, at last we get a new matrix 
M(D1, D2), go to step (2); 

(2) if the matrix is empty or the elements are all 0, go 
to step (3), else go to step (1); 

(3) we get the final queue S={simSmax1, simSmax2, …, 
simSmaxk}. 

(4) the similarity between D1 and D2  is calculated 
by formula (3-4):  

1 2 max
1

1( , )
i

k

i
sim D D simS

k =

= ∑       (3-4) 

4  Submissions and Results 

We submitted four runs to NIST, and each run 
evaluates “All Peers” and “No Models” separately. 

Run 1: In “All Peers” case, we didn’t consider 
the aspect coverage. We considered all the content 
words in each peer summary while expanding 
synonyms of the content words in model summaries. 
In “No Models” case, we look up the synonyms 

dictionary without considering the aspect coverage.  
Run 2: In “All Peers” case, we didn’t consider 

the aspect coverage. We considered the number of all 
nouns and verbs without expanding synonyms in 
model summaries. In “No Models” case, we didn’t 
look up the synonyms dictionary but considered the 
aspect coverage. 

Run 3: In “All Peers” case, we add the aspect 
coverage and considered all the content words in 
each peer summary while expanding synonyms for 
model summaries. In “No Models” case, we look up 
the synonyms dictionary and considered the feature 
of aspect coverage. 

Run 4: In “All Peers” case, we considered the 
aspect coverage feature and the number of all nouns 
and verbs, but we didn’t expand synonyms for words 
in model summaries. In “No Models” case, we didn’t 
look up the synonyms dictionary while considering 
the feature of aspect coverage. 

Finally our submissions are tested on the TAC 
2010 dataset. The AESOP evaluation results of 
summary A and B are shown in Figure 3 and 4. 

In both figures, “Best” means the best result 
among all 27 submissions. “Our best” means our best 
result among the 4 submitted runs. The left part of 
each figure shows the correlations with Pyramid for 
each run, and the other is correlations with 
Responsiveness. 

5  Conclusions and Future Work 

We can see that our “All Peers” method performs 
better than “No Models” method in AESOP 
evaluation. It gets a higher score on most “All Peers” 
correlation items. For example, in Figure 3, every 
correlation’s score in “All Peers” case is higher than 
that in “No Models” one. 

In both figures, the overall trend of data in “All 
Peers” case is closer to the “Best” one than that in 
“No Models” case. 

Scores are higher in Figure 3 in both “All 
Peers” and “No Models” case than that in Figure 4, 



 

 

which means summary A is better than summary B. 
Although our systems’ overall levels are not 

ideal, our Spearman score is much better than other 
teams.  

There is a long way for us to improve the 
evaluation systems, especially in the following 
aspects: 

1). improve the similarity calculation algorithm; 
2). consider the linguistic quality of the 

summaries to be evaluated; 
3). make the synonyms searching algorithm more 

effective. 
 
Hope that we could get a progress in summary 
evaluation next year. 

 

 

 
(a) 

AESOP evaluation results of summarization A
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(b) 

Figure 3 “All Peers” and “No Models” results of 
summary A  

 

 

 
(a) 

AESOP evaluation results of summarization B
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(b) 

Figure 4 “All Peers” and “No Models” results of 
summary B 
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