BIUTEE* and the NIST

(BIUTEE under Search)

TAC 2009 / RTE Track

Bar-Ilan University’s Textual Entailment Engine
Outline

• **BIUTEE**
 • System architecture
 • Knowledge Resources

• Retrieval step

• *Discourse impact on inference*
 • Analysis of inference-oriented discourse phenomena
 • Our implementation to address some identified phenomena

• Submissions & Results

• Conclusions & Future Work
BiuTee: System Architecture (as in RTE4)

- **Preprocessing (docs)**
 - parsing, co-reference, NER, number normalization

- **Knowledge-based Inference**
 - Rule application

- **Approximate Matching**
 - Feature extraction

Rule Bases
- WordNet
- Wikipedia
- Generic-Linguistic
- …
BiuTee: Inference Rules are Tree Transformations

- Uniform representation for a vast range of semantic knowledge
- Single unified inference mechanism
 - Apply tree transformations
 - Rules can be chained (vs. alignments!)
 - Generate consequents
- Rule applications on T generate many consequent trees
 - Efficiently stored in a *Compact Forest* F (EMNLP-09)
BIU TEE: Approximate Matching

- Measure similarity between processed H and F
 - Compensate for knowledge gaps

Features:

- Coverage of H by F
 - Lexical coverage (words, verbs, numbers, named entities)
 - Local syntactic coverage (edges)
 - Global structural matching
 - Aim to match maximal sub-trees of H in F
- Predicate coverage in F
- Polarity mismatch (*forgot to buy* vs. *bought*)
- Argument match and coverage for corresponding predicates in F & H
Candidate Retrieval

• Dev set contains ~20K T:H pairs
• Only 810 (4%) are entailing
 • Assuming similar ratio on test set

• A naïve approach:
 • Reduce the task to T:H pairs
 • Apply main-task techniques on each pair

 • Inefficient
 • Won’t be feasible in larger scale search settings (e.g. QA)

⇒ A prior step of candidate retrieval is necessary
Retrieving Candidates in RTE5

- Entailment-based query expansion
 - Using a set of entailment-rules resources – for recall increase

- Retrieval criterion:
 - Coverage percentage of H by the sentence
 - Future work: incorporate better IR scoring functions

- Resource-set & coverage percentage tuned to optimize inference performance
 - Rather than retrieval performance

- Similar flavor as “IR for QA”
Discourse Impact on Inference - Analysis

• Goal:
 • Identify & categorize discourse phenomena that impact inference
 • Prioritize according to phenomena distribution

• Analyzed a sample of the positive examples
 • Marking only relations that are relevant for inferring H

• Results guided our consequent implementation
Incorporating Anaphor Information

• Frequently, H includes the antecedent of an anaphor in T
⇒ Identifying the coreference relation needed to infer H

• Available tools miss many of these relationships

• Entailment knowledge resources may help:
 \[\text{Kamchatka} \rightarrow \text{eastern Russia}\]
 • .. sometimes such information is missing or uncertain (example soon)
⇒ Useful to incorporate semantic knowledge for co-reference resolution

\[H: \text{The AS-28 accident happened in eastern Russia}\]

\[T^*: \text{The bathyscaphe submersible had only 24 hours of oxygen in reserve when it became stuck … in the bay of}\ \text{Kamchatka in far eastern Russia}\]

\[T: \text{The vessel rose to the surface at 4:26 p.m. local time … more than 600 feet below the surface off the}\ \text{Kamchatka Peninsula.}\]
Compensating for Poor Performance of Co-reference Tools

Initial step - our implementation:

• Consider two NPs as co-referring if:
 1. Their heads are identical
 2. No semantic incompatibility is found between their modifiers
 (Note: relevant for entailment inference too)

• Implemented incompatibility types:
 • Antonymy: first flight vs. last flight
 • Mismatching numbers: 560 dollars vs. 1,200,000 dollars

• Further incompatibility types can be considered:
 • Co-hyponyms
 • Semantically disjoint modifiers
 • first vs. second; 747’s pilot vs. 747’s flight attendant
Co-references Involving Verbal Predicates

• Out of the scope of most available co-reference tools
 • V-V or V-N

• Incorporating knowledge:
 • Considering the relatedness between *retreat* and *melt* can help identify the coreference relation
 • Not necessarily an entailment relationship

• Not addressed yet in our implementation

\[H: \text{The ice is melting in the Arctic} \]

\[T^*: \text{The melting ice may also affect polar bears, and whales, who live off the sea life beneath the ice.} \]

\[T: \text{"Everyone wants to know: Is the ice retreating because of global warming?} \]
Implicit Information Required to Infer H

• Many entailing sentences refer implicitly to information required for inferring H
 • May be viewed as bridging anaphora [Thanks, CELCT]

• A prominent case - “Global” information:
 • Mentioned at the beginning of the document (title / first few sentences)
 • Assumed known from that point on

• Initial implementation:
 1. Identify key terms in each document - TFIDF
 2. Add top-k terms as nodes directly attached to the root of T

 ⇒ A global term found in the hypothesis is lexically matched in each sentence
 • Even if not explicitly mentioned

\[H: \text{Mine accidents cause deaths in China} \]

\[T^*: \text{TWO MORE MINE ACCIDENTS IN CHINA BRING WEEK'S DEATH TOLL TO 60} \]

\[T: \text{So far this week, four mine disasters have claimed the lives of at least 60 workers and left 26 others missing} \]
Cross-documents Coreference Resolution

• Quite often, cross-document co-reference resolution is needed for inferring H
 • Not available in typical co-refernce tools

• Usually involved alternative names of the same object
 • Xena : ub313
 • Submarine : AS-28
 • (Once identified) can be solved by a substitution of terms

• Not addressed yet in our implementation
Locality of Entailment

• **Assumption**: Entailing sentences tend to come in bulks
 • For discourse coherence, discussion of a specific issue is continuous
 • Especially in long documents

⇒ If a sentence entails H,
 adjacent sentences are more likely to entail it as well

• **Addressed by a meta-classifier**
 1. Base classifiers make initial entailment decisions
 2. Meta-features computed to “smooth” classification positions and reflect bulks of entailments
 • Used by the meta-classifier in a 2nd classification pass
BIUTEE: Search System Architecture

Rule Bases
- WordNet
- Wikipedia
- Generic-Linguistic
- Abbreviations
- Geographic
- XWN
- Snow

Preprocessing (docs)
parsing, co-reference, NER, number normalization, coref enhancements

Knowledge-based Inference
Rule application; implicit info

Document-level Approximate Matching
Feature extraction; meta-classification
Submissions

BIU1: Lexical Coverage
- Determine entailment purely based on term coverage of H by T
 - using the retrieval system’s output directly
- Experimentally picked Wiki resource with a 50% coverage threshold
 - Overall, resources for lexical entailment rules did not contribute much

BIU2: BIUTEE at sentence-level
- Single classifier, with all knowledge resources
- Features extracted for each sentence separately
- Test-set sentences pre-filtered by the retrieval system
 - no resources for expanding retrieval
- Include “globally prominent” words in each sentence

BIU3: BIUTEE at document-level - Our complete system
- **BIU2 +**
 - Document-level features
 - Meta-classifier, SVM & Naïve-bayes
Results

- Micro-averaged results:

<table>
<thead>
<tr>
<th>Run</th>
<th>Suggested Sentences</th>
<th>P(%)</th>
<th>R(%)</th>
<th>F1(%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Search-BIU1</td>
<td>1199</td>
<td>37.03</td>
<td>55.50</td>
<td>44.42</td>
</tr>
<tr>
<td>Search-BIU2</td>
<td>946</td>
<td>40.49</td>
<td>47.88</td>
<td>43.87</td>
</tr>
<tr>
<td>Search-BIU3</td>
<td>1003</td>
<td>40.98</td>
<td>51.38</td>
<td>45.59</td>
</tr>
</tbody>
</table>
Conclusions

• First step towards addressing the search task
 • Identified key issues, initial solutions

• **Major contribution**: analyzing discourse impact on inference, identifying needed research in:
 • Discourse technology to support inference needs
 • Inference technology to incorporate discourse information

• Complete system just slightly surpassed lexical baseline
 • Simple lexical methods are initially (yet again) difficult to beat
 • Still, document-level processing is helpful

• Open questions
 • Can we improve lexical match by entailment expansions?
 • Can we surpass lexical methods in summarization search?
Future Work

• Analysis, analysis, analysis
 • Resources, features, components

• Lexical methods
 • Incorporate IR/QA know-how
 • Improve expansion algorithms

• Reconsider our approximate matching component
 • May improve syntactic/semantic inference contributions

• Discourse:
 • Co-reference: better performance, incorporate verbal expressions, identify implicit references
 • Inference: utilize the above info
Thank you!

Questions?