Update Summarization Based on Novel Topic Distribution

Sutler @ Text Analysis Conference 2008

Josef Steinberger & Karel Ježek
(jstein@kiv.zcu.cz & jezik_ka@kiv.zcu.cz)
Outline

- Our previous summarization research
- Summarization approach overview
- The classical latent semantic analysis model and iterative residual rescaling
- Update summarizer
- TAC results
- Conclusion
Our previous summarization research

- Since 2004 we work on a (sentence-extractive) summarization method based on latent semantic analysis
 - Starting point – paper written by Gong and Liu in 2002
 - We improved the method by changing the selection criterion
 - 2006 – method extended to process a cluster of documents
 - 2008 – update summarizer, changes in the core of the summarizer
- Using anaphoric information
 - Since 2005 – with Massimo Poesio and M.A. Kabadjov
 - Tasks: Improving sentence extraction, correcting anaphoric links in the summary, sentence ordering
- Sentence compression
 - Removing unimportant clauses
 - A set of knowledge-poor features
 - A classifier decides if the crucial information was not removed
TAC Update Task

- Update task
- 48 topics, each topic has two sets of 10 documents
- The task is firstly to summarize the set of older documents (multi-document summaries) and then to summarize the set of new documents under the assumption that the reader has already read the set of older documents (update summaries)
- Each participant could submit up to 3 runs, the first two priority runs were annotated
- Main evaluation metric - Pyramids
Summarization approach overview

1. Obtain “older topics” – reader's prior knowledge in the set of older documents
2. Obtain “new topics” – concepts in the set of new documents
3. Specify redundancy of the new topics = how much their information is covered by older topics
4. Specify the significance of the new topics = how important they are in the set of new documents
5. Specify novelty of the new topics = how significant and new they are
6. Create a summary of the sentences that best cover the novel topics
Latent semantic analysis (LSA)

- Technique for extracting hidden dimensions of the semantic representation of terms, sentences, or documents, on the basis of their contextual use (Landauer, 1997)
- Can cluster terms and sentences into topics
- Topics ordered according to their significance
- Dimensionality reduction – insignificant dimensions are removed
- Used in various NLP applications
 - Information retrieval – Berry et al., 1995
 - Text segmentation – Choi et al., 2001
- Gong and Liu (2002) – the first LSA-based summarization approach
The classical LSA model

- Creation of terms by sentences matrix A
 - Term weighting:
 - Local x Global weight – best results with the Boolean local weight and the entropy-based global weight
 - Apply SVD (Singular Value Decomposition) on matrix A
 - Result – matrix A is decomposed into three matrices where information about the most important topics (linear combinations of original terms) can be found
Singular value decomposition

\[A = U S V^T \]
IRR – generalization of SVD

- Iterative Residual Rescaling
- Ando & Lee (2001)
- When the topic-sentence distribution is non-uniform in the analyzed text, the dominant topics take more than one dimension in the latent space, although the dimensions are orthogonal
- Minor topics are ignored and topic distribution is negatively biased by residual vectors from the dominant topic
- Iterative residual rescaling fights against this problem
Update summarization based on LSA (1)

- Reader’s prior knowledge is assumed (represented by a set of older documents)
- Set of new documents is intended for own summarization
- We create a set of “old” topics and a set of “new” topics = separate LSA of both sets
- In matrices U (U_{old} and U_{new}) we can see term/topic distributions
- For each new topic t we measure its redundancy (red_t) = cosine similarity with the most similar old topic

$$red_t = \max_{i=1}^{k_1} \frac{\sum_{j=1}^{m} U_{new}[j,t] \cdot U_{old}[j,i]}{\sqrt{\sum_{j=1}^{m} U_{new}[j,t]^2} \cdot \sqrt{\sum_{j=1}^{m} U_{old}[j,i]^2}}$$
Significance of the topic is determined by its singular value \((\text{sing})\)

Topic novelty \((\text{nov})\) is done by:
\[
\text{nov} = (1 - \text{red}) \times \text{sing}
\]

Topics with a high novelty value are considered interesting and thus get greater weights

From topic novelities we create diagonal matrix \(\text{NOV}\)

Final matrix \(F\) can be then computed as \(\text{NOV} \times V_{\text{new}}^T\)

In \(F\) both topic novelty and importance are taken into account
Sentence selection starts with the sentence that has the longest vector in $F(f_{best})$

The information contained in the sentence is then subtracted from F:

$$F = F - (f_{best} \cdot f_{best} / |f_{best}|^2) \cdot F$$

The values that correspond to similar sentences are decreased, thus preventing inner summary redundancy.

After the subtraction the process of selecting the sentence that has the longest vector in matrix F and subtracting its information from F is iteratively repeated until the required summary length is reached.
TAC results

Overall TAC results of our summarizer.

<table>
<thead>
<tr>
<th>Evaluation metric</th>
<th>Rank of run 25 (Total No. of runs)</th>
<th>Rank of run 51 (Total No. of runs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average modified (pyramid) score</td>
<td>10 (58)</td>
<td>16 (58)</td>
</tr>
<tr>
<td>Average num. of SCUs</td>
<td>12 (58)</td>
<td>17 (58)</td>
</tr>
<tr>
<td>Average num. of repetitions</td>
<td>55 (58)</td>
<td>22 (58)</td>
</tr>
<tr>
<td>Macroavg. modified score with 3 models</td>
<td>10 (58)</td>
<td>16 (58)</td>
</tr>
<tr>
<td>Average linguistic quality</td>
<td>10 (58)</td>
<td>8 (58)</td>
</tr>
<tr>
<td>Average overall responsiveness</td>
<td>9 (58)</td>
<td>14 (58)</td>
</tr>
<tr>
<td>ROUGE-2</td>
<td>17 (71)</td>
<td>22 (71)</td>
</tr>
<tr>
<td>ROUGE-SU4</td>
<td>17 (71)</td>
<td>18 (71)</td>
</tr>
<tr>
<td>BE</td>
<td>13 (71)</td>
<td>15 (71)</td>
</tr>
</tbody>
</table>
TAC results – update summaries

<table>
<thead>
<tr>
<th>Evaluation metric</th>
<th>Rank of run 25 (Total No. of runs)</th>
<th>Rank of run 51 (Total No. of runs)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Average modified (pyramid) score</td>
<td>7 (58)</td>
<td>12 (58)</td>
</tr>
<tr>
<td>Average num. of SCUs</td>
<td>9 (58)</td>
<td>12 (58)</td>
</tr>
<tr>
<td>Average linguistic quality</td>
<td>5 (58)</td>
<td>12 (58)</td>
</tr>
<tr>
<td>Average overall responsiveness</td>
<td>15 (58)</td>
<td>16 (58)</td>
</tr>
<tr>
<td>ROUGE-2</td>
<td>18 (71)</td>
<td>25 (71)</td>
</tr>
<tr>
<td>ROUGE-SU4</td>
<td>17 (71)</td>
<td>21 (71)</td>
</tr>
<tr>
<td>BE</td>
<td>13 (71)</td>
<td>25 (71)</td>
</tr>
</tbody>
</table>
We created an update summarization method which is independent on the language of the source.

Next directions:
- Use anaphora resolution >> co-reference resolution in the case of multi-documents
 - Improving sentence selection
 - Reference correction
 - Sentence ordering
- Working on sentence compression

Poster miniboaster
- Guided example how our summarization approach works
- You can see some numbers how topics look like in our sense