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Abstract 

We submitted runs from two different systems 
for the update summary task at TAC 2008. One 
system used Roget’s Thesaurus to determine 
semantic relatedness for the purpose of summary 
construction. The other system employs a variety 
of heuristics, including an innovative use of the 
topic headline in the assessment of semantic 
similarity among sentences. Our submission to 
the opinion task used only the provided text 
snippets. Work continues here on a deeper 
semantic representation. We will also update the 
SCU-marked corpus with data from the 2008 
conference. 

1 Introduction 

The participation of the University of Ottawa’s NLP 
research group in the NIST-sponsored summarization 
challenges helps us organize and structure our activities 
in the area of text summarization, and lets us evaluate 
our systems’ performance in the broader scope of the 
summarization community. Even more than in previous 
years (Copeck et al. 2006, 2007), NIST’s evaluation 
effort in the latest cycle has suited to our research 
agenda very well. 

NIST limited resources for manual evaluation had 
previously permitted a DUC participant to submit only 
one set of summaries per task. This need not have 
affected groups who worked together to develop a 
single system. To a team like ours – composed 
primarily of graduate students each of whom pursued a 
unique line of research – it meant merging the results of 
separate and heterogeneous systems into a single 
submission to go in under our name. This is what we 

have repeatedly done, averaging the sentence ratings 
computed by each constituent system to arrive at an 
overall sentence ranking that in some manner 
represented all researchers’ contributions equally. This 
was not optimal; the evaluation of performance was 
necessarily imprecise. 

TAC 2008 opened the door to multiple task 
submissions. At the University of Ottawa, two graduate 
students undertook this year to rate sentences in the test 
corpus on their suitability for an update summary. 
Sections 2 and 3 present their systems. For the first 
time, separate results were submitted without 
modification. The evaluation that TAC assessors 
performed is thus highly pertinent to each of the 
systems. We hope that NIST will continue to accept 
multiple runs from participants in a given task. 

Our team also submitted a run for the 2008 pilot 
task. Section 4 presents the design of opinion summary 
selection, not influenced by any ongoing research 
agenda. We also regularly update the corpus marked 
with Summary Content Unit [SCU] (Copeck et al. 
2007) with each year’s new data. The corpus is 
available to TAC participants on request to NIST. Note 
that as DUC/TAC annual tasks evolve, so too does the 
content of the SCU-marked corpus. That is because the 
basis on which documents are annotated with SCUs has 
changed over the years. Topics that reflect simple 
query-focused summaries can now be considered a 
closed class, with that task replaced by the current 
requirement to produce update summaries. 



 

2 Summarizing with Roget’s Thesaurus 
and SCU-marked corpora 

This system employs Roget’s Thesaurus as a tool for 
text summarization. The motivation for using Roget’s 
for this purpose comes from Kennedy and Szpakowicz 
(2008) where the 1911 and 1987 versions of Roget’s 
were shown to perform equally well on tasks such as 
measuring semantic relatedness between words and 
synonym identification. Roget’s was also shown to be a 
good tool for enhancing vector based representation of 
sentences and measuring sentence similarity – this 
technique will be described later on. Initially the goal of 
this line of research was to generate a system that could 
either replace or be used to enhance the graph-matching 
system of Nastase and Szpakowicz (2006), which we 
used in previous years. 

We rely on our SCU-marked corpus, in which 
sentences known to be relevant to a particular query are 
labelled with the appropriate SCU identifiers. This 
information makes the corpus an excellent tool for 
evaluating summarization systems that perform 
sentence extraction; it can also be used for developing 
systems that identify redundancy. We explore here both 
these uses. 

Our final system – see section 2.6 – uses the 1911 
Roget’s Thesaurus to enhance a tf.idf-based ranking of 
sentence relevance. A multi-layered perceptron network 
is trained to identify redundancy in text. These methods 
are enhanced with a few small heuristics. 

2.1 The SCU-marked corpus 

We used the SCU-marked corpus for testing the 
systems. The corpus has been generated from the data 
of previous DUC competitions. Each sentence in a 
summary submitted to DUC is labelled with the SCUs 
it contains. A sentence can contain 0, 1 or more than 1 
SCU. These SCUs have weights from 1 to 8 for the 
2005 data and 1 to 4 for the 2006 data. Since a sentence 
can have multiple SCUs, it is possible for its total SCU 
score to be very high. These sentences are then mapped 
back into the original document set. 

Sentences found in a summary that contained 0 
SCUs are negative examples. Sentences found in a 

summary that contained 1 or more SCUs are positive 
examples. Sentences that never appeared in a summary 
are unlabeled (Note: unlabeled is not the same as 
neutral.) The 2005 data contain 1187 positive and 1490 
negative examples. The 2006 data contain 988 positive 
and 1368 negative examples. There are many unlabeled 
examples, but for the most part they are ignored during 
evaluation. 

2.2 Roget’s Thesaurus 

Roget’s is a hierarchical thesaurus. There are altogether 
nine levels in the hierarchy, from top to bottom: 

• Class 
• Section 
• Subsection 
• Head Group 
• Head 
• Part of Speech 
• Paragraph 
• Semicolon Group 
• Words 

The words are always at the leaves of this structure. 
They include nouns, verbs, adjectives, adverbs and 
several other less common parts of speech such as 
interjections. Clearly, this structure differs significantly 
from WordNet’s. 

The Open Roget’s Project (rogets.site.uottawa.ca) 
has recently released a free version of Roget’s 
Thesaurus. We use both this system and an analogous 
system based on the proprietary 1987 data; the latter is 
not in the public domain. 

2.3 Sentence Ranking 

Our sentences ranking is based on their predicted 
relevance to the query: how likely it is that a sentence 
contains a SCU from the SCU-marked corpus. We test 
several methods of predicting the relevance of a 
sentence. Most of them rank sentences by their 
similarity to the query. The query may contain several 
questions and instructions (expected contents of 
answers), but our methods attempt to match the query 
as a whole, not individual questions and instructions. 



 

2.3.1 Graph Matching 
Graph matching was the backbone of our last year’s 
summarizer (Nastase and Szpakowicz 2006). Graph 
matching works by extracting two kinds of features 
from the queries and sentences. The first kind of feature 
is relationships. The corpus is parsed using MiniPar 
(Lin 1998) and dependency pairs are found. Two words 
are related if both appear in the same dependency pair. 

The second feature is made up of all noun and verb 
unigrams from the query and sentences. We expanded 
these unigrams by selecting synonyms of the nouns and 
verbs from their dominant sense in WordNet 2.0. 

Each sentence gets a score based on word and 
relationship overlap. The number of overlapping words 
is SW. The number of overlapping relationships is SR. 
The score for the sentence is SW + weight*SR. The 
weight we use is 15. 

For testing purposes we re-implemented that system 
(its developer has since left our group). This might not 
be its perfect replication. In fact, in Nastase and 
Szpakowicz (2006) another methods that mixes graph 
matching and path matching was slightly better. 

2.3.2 TF.IDF 
Queries are weighted with term frequency only. In this 
system we treat each sentence as its own document. 
Inverse document frequency is the logarithm of the 
number of sentences (S) divided by the number of 
sentences containing term St. 
Term frequency tf is simply a count of how many times 
a term appears in that sentence. Each term is weighted 
with tf*idf. We remove 980 stop words, as well as 

punctuation, from both the queries and the sentences. 
Cosine similarity determines the distance between the 
query and each sentence. This is similar to what was 
done in Radev et al. (2004). 

2.3.3 Enhanced TF.IDF 
This section describes a framework for enhancing tf.idf 
using lexical resources – WordNet and Roget’s 
Thesaurus. A similar sentence representation has been 
tested in Kennedy and Szpakowicz (2008). The query 
and sentences are represented by terms as well as 

concepts from WordNet or Roget’s. Each word w is 
given a score of 1. Each sense of w found in the 
thesaurus (Roget’s or WordNet) is given a score of 1/X, 
where X is the number of w’s senses. 1/X is added to 
each of that word sense’s ancestors in the resource. In 
WordNet, this means that each hypernym of the word 
sense has its score increased by 1/X. In Roget’s this 
means that 1/X is added to the semicolon group, 
paragraph, ..., class. This creates a vector of terms as 
well as concepts (from Roget’s or WordNet) that are 
weighted with term frequency. Inverse document 
frequency is calculated for all words, as well as 
concepts, and the vectors are weighted with tf.idf. This 
tf.idf enhancement has been tested three times,  
using concepts that come only from Roget's 1987, only 
from Roget's 1911 and only from WordNet. 

2.3.4 Baselines 
For comparison purposes, we experimented with two 
baseline methods. One is to not bother with ranking the 
sentences on any criteria. This is essentially ranking in 
collection order; sentences are selected in the order they 
appear in the document set. 

The second baseline is to rank based on sentence 
length. This should be a higher baseline since longer 
sentences are more likely to contain SCUs. 

2.3.5 Evaluation 
We use average precision to evaluate the systems. 
Average precision is calculated by first sorting all the 
sentences. Next, iterate through the list from highest to 
lowest: calculate the precision at each positive instance 
and average those precisions. 
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Precision(r) is the precision up to sentence r and 

rel(r) is a binary function, 1 if sentence r is relevant 
(has a SCU), and 0 otherwise (has no SCU). We 
calculate average precision for every set of queries and 
documents, and then take the average over each of them 
for a given year. This is a macro average of the average 
precision. We report results for the 2005/2006 data in 
Table 1 and for the 2007 Update Summary task in 
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Table 2. Table 2 contains document sets A, B and C as 
well as their average. 
 

System Precision: 
2005 

Precision: 
2006 

Graph matching .504 .472 
tf.idf .517 .518 

Roget’s 1911 .576 .525 
Roget’s 1987 .565 .523 

WordNet .560 .526 
Random .431 .463 

Sentence Length .569 .525 

Table 1: Macro average precision of each system for 
the 2005 and 2006 data 

 
System A B C Avg 

Graph matching .534 .448 .471 0.484 
tf.idf .652 .550 .544 0.582 

Roget’s 1911 .644 .560 .582 0.595 
Roget’s 1987 .639 .567 .555 0.587 

WordNet .639 .531 .583 0.584 
Random .588 .460 .451 0.500 

Sentence Length .675 .490 .581 0.582 

Table 2: Macro average average precision for the 
2007 Update Data 

From this data it appears that tf.idf enhanced with 
the 1911 Roget’s Thesaurus gives the best results on the 
2005 and 2007 data sets, and is a close second behind 
WordNet on the 2006 data set. 

Selecting sentences based on sentence length 
performs extremely well on every data set giving it a 
very high score. Intuitively the more words you have in 
a sentence, the higher the chance that it contains a SCU. 
Sentence length performs deceivingly well. That is 
because often the longest sentences can have 60 or 
more words. Thus, in a 100-word summary it may be 
impossible to create a summary with more than 1 or 2 
sentences. Graph matching also tends to favour longer 
sentences. As a result, these two methods will create 
summaries with a few long sentences, while other 
methods will create summaries with many shorter 
sentences. 

2.4 Sentence Novelty 

Sentence novelty is to do with the ability to detect 
whether two sentences contain the same information. 
This will be used for two purposes. The first is to 
identify and eliminate sentences that describe topics 
that appeared in previous summaries (update 
summaries). The second is to eliminate redundancy 
between sentences in the same summary. These 
experiments use the SCU-marked corpus and run 
algorithms from Weka (Witten & Eibe 2005). All 
sentences are represented using tf.idf-weighted terms 
and the 1911 Roget’s Thesaurus concepts. 

2.4.1 Data Set 
We assume that two sentences with the same SCU 
identifier contain some overlapping information. We 
also assume that all other SCU-labelled sentences in the 
same document set without that SCU identifier have no 
overlapping information. (This may not be always true, 
since two sentences with different SCU identifiers 
could have some overlapping information if that 
information were not assigned a SCU identifier.) The 
data set is made up of all pairs of SCU-labelled 
sentences from the 2005, 2006 and 2007 update 
summary data sets. The positive to negative example 
ratio is approximately 1:10. 

2.4.2 Features 
A vector of terms and a vector of concepts from Roget’s 
and WordNet represent each sentence. Let the sentence 
vectors be denoted S1 and S2. 

A total of seven features are extracted from these 
vectors. The first is just the cosine distance between the 
two sentence vectors. The other six features have to do 
with measuring content overlap. 

If an element v appears in a vector, it has a non-zero 
weight. v may appear in both vectors, with weights 
weight(v,S1) and weight(v,S2). The total weight of a 
sentence is 

 

 
Feature 2 is the proportion of S1 that overlaps with 

S2 and feature 3 is the proportion of S2 that overlaps 
with S1. The following formula is for vector S1. 
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Features 4 and 5 are the proportion of the weights 

made up by the difference in weight for all nodes that 
appear in both vectors. 

 

Differences =

weight(v,S1) − weight(v,S2)( )
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Features 6 and 7 are the proportion of the total 

weight that comes from nodes that appear only in one 
vector, but not the other. 

 

Exclusive =

weight(v,S1)
v∈S1
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We ran tests with all seven features on a variety of 

ML algorithms from Weka. The 2005 and 2006 data 
were used for training and the 2007 data for testing. 

 

Algorithm class prec recall F 
score

ROC 
Area

Pos .448 .361 .400 Naive Bayes Neg .872 .907 .889 .72 

Pos .381 .472 .442 Bayes Net Neg .884 .84 .861 .733 

Pos .913 .022 .043 LibSVM Neg .831 1 .907 .511 

Pos .688 .145 .239 Logistic Neg .847 .986 .911 .737 

Pos .735 .101 .177 Multilayer 
Perceptron Neg .841 .992 .911 .738 

Pos .657 .092 .161 J48 Neg .839 .99 .909 .681 

Table 3: Precision, recall and area under the ROC 
curve for redundancy detection 

The highest F-score for the positive class was for 
Bayes Nets with the 2005 and 2006 data as training 
data. The highest ROC Area was for Multilayered 

Perceptron. For the negative class the F-score was 
almost always near 0.9. We decided to use Multilayered 
Perceptron as our algorithm, since in addition to having 
the highest ROC value it also had a much higher 
precision for the positive class than other methods. By 
doing this we are reducing the risk of misclassifying a 
sentence as redundant at the cost of occasionally having 
some redundant information. Thus, we lower the risk of 
throwing out a good sentence, yet still have some 
redundancy checking. 

2.5 Heuristics 

Three heuristics were applied to this system before 
submission. The first is to eliminate sentences with 5 
words or fewer. Although we produce no numbers to 
back this up, we have observed that very short 
sentences rarely contain any useful information and 
often are in fact grammatically inadequate sentence 
fragments. 

The second heuristic is to eliminate sentences that 
contain quotations. Once again we do not perform any 
tests to back the underlying claim up, but we have 
observed that such sentences rarely fit well into a 
summary. This is because the identification of the 
speaker of the quote may not be included in the 
sentence and so is lost in the summary. 

The third heuristic is to only consider the top 50 
ranked sentences in a document set. This is done both 
to save time and improve accuracy. 

2.6 Final System 

Our final system employs a greedy algorithm to 
select the most relevant sentences. The algorithm 
selects the next sentence that fits into the summary. If a 
sentence is too long, or if it is judged to be redundant 
by our multilayered perceptron, then it is skipped over. 
This can happen with either a sentence that already 
exists in the summary, or one that exists in the previous 
document set (for the update summary). 

The actual ranking of the sentences is based on their 
score of similarity to the query, normalized by the 
length of the sentence. This tends to favour many short 
sentences over a few long sentences. From several user 



 

tests we found that normalizing based on length favours 
responsiveness over readability. 

When generating the updated summary, comparing 
each sentence in the second document set against every 
sentence in the first document set can take a 
prohibitively long time. That is why we select the top 
50 ranked sentences from that document set to represent 
it. All sentences are compared against just those 50 
sentences. This works under the assumption that any 
sentences in any document set that are ranked below 50 
are irrelevant to the summary and so there should 
ideally be no need to test them for redundancy. 

The order of the sentences is determined using a 
lexical chain algorithm. We choose the ordering that 
maximizes the sum of the scores for each lexical chain 
found. This is implemented using the algorithm in 
Jarmasz and Szpakowicz (2003). It is not completely 
clear that doing this will drastically improve the 
readability of the summary, but it should not produce 
results any worse than random ordering. It should also 
be noted that every single ordering of sentences cannot 
be tested in reasonable time, so we only produce our 
best guess at the optimal ordering. 

After the summary has been produced, an anaphora 
resolution module replaces pronouns with their 
referents. 

2.7 Results 

The results from evaluation put our system in the 
bottom half of the pack on most measurements. One 
area where this system does really well is the average 
number of repetitions. A score of 0.635 was found for 
this system, below the average of 0.791. On all other 
measures this system was only slightly behind the 
average. 

3 Summarizing Using Headlines and 
Multiple Heuristics 

The update task at TAC 2008 calls for summarizing a 
collection of documents with the assumption that the 
reader is already familiar with the background 
information in a separate collection on the same topic. 
The task is more challenging than those of the previous 
years. Effectively, it requires that the facts included in 

the summary not only be salient, but that they also not 
overlap with the user’s previous knowledge of the 
topic. 

The data for the update task consist of 48 topics, 
with two collections of documents available for each 
topic. The first collection contains ten newswire articles 
with which the reader is already familiar (further 
background collection). The second collection of 
documents contains another ten documents that update 
the previous one (further updating collection). Each 
article is accompanied by a headline. The summary of 
the background collection has only to reflect the 
important facts found in those documents. The 
summary of the updating collection needs to be such 
that it does not repeat what the user would know after 
reading the complete background collection. 

Our system creates purely extractive summaries 
without any editing. In order to select salient and novel 
sentences we rely on several shallow heuristics. We use 
the headlines that accompany each article and 
approximate the salience of each sentence by 
computing lexical overlap with the corresponding 
headline. Another indicator of salience is the tf.idf 
metric. To give preference to sentences that express 
new facts, we modify the tf.idf measure so as to reward 
the terms that have not appeared in the background 
collection. Two scores that reflect these properties are 
combined, and we select sentences with the highest 
ranks to create a 100-word summary. In addition, we 
penalize sentences that are too similar to the sentences 
already found in either the background or the updating 
summaries. 

3.1 System Description 

The data available for training and/or parameter tuning 
consists of ten topics used in the DUC 2007 update 
task. We use this small corpus to select the best 
heuristics and to adjust the available parameters. The 
best-performing combination is then applied to the test 
data. 

Preprocessing. Before proceeding to sentence 
selection, all documents are pre-processed in the 
following manner. First, the documents are tokenized 
using the BALIE tool (Nadeau) and stop-words are 
removed. Next, the texts are stemmed using the Lovins 



 

stemmer (Lovins 1968), which is made available as a 
part of Weka through its API (Witten and Frank 2005). 

Creating background summaries. In order to 
select sentences that are good candidates for inclusion 
into the summary, we rank all sentences using a 
combination of two scores: tf.idf score and lexical 
similarity with the corresponding headline. 

The tf.idf score of a term rewards terms frequent in 
a collection at hand but rare in the whole corpus. tfij is 
the frequency of a term wi in the topic dj, dfi is the 
number of topics in the collection where wi occurs at 
least once and N is the number of token types in the 
compete corpus. In our setting, tf.idf score of a term 
gives an idea of how central the term is in the collection 
at hand. 

The tf.idf score of a sentence is the sum of scores of 
all its terms normalized by the sentence length. 

The second score that approximates the importance 
of a sentence is lexical overlap with the headline of the 

corresponding article. Effectively, the headline already 
is a summary of the article, so it is only logical that it 
describes the most important facts in it. 

The similarity with the headline is measured using 
the cosine metric (Manning and Schütze 1999, p. 300): 
where vectors   

r 
s and 

  

r 
h  correspond to the candidate 

sentence and the headline one. 
Removal of redundancies. In addition, we use 

cosine similarity to avoid repetition in the summaries. 
For each candidate sentence, we measure how similar it 
is to those already found in the summary. If the 
similarity value exceeds 0.5, the sentence is skipped. 

Creating updating summaries. The overall 
algorithm for creating updating summaries is quite 
similar to that for creating background ones. 

The first exception is the calculation of tf.idf score. 
In order to reward terms not found in the background 
collection, we multiply their tf.idf score by a factor of 

two. This process rewards the new terms in proportion 
to their original score (terms with low tf.idf remain at 
the bottom of the list). 

When checking for redundancies, we look for 
sentences that are too similar to those found in either 
the updating or the background summary of the 
collection at hand. We use the same metric and the 
same threshold to achieve this end. 

3.2 Results 

The summaries are evaluated using several metrics. 
There is no obvious way of combining them into a 
single ranking. Looking across the available metrics, 
however, gives one a good idea of the system’s 
performance. Ours is ranked 37th and 35th when 
measuring overall responsiveness for background and 
updating summaries respectively (corresponding to 
values of 2.23 and 1.92). The modified pyramid scores 
are 3.37 for background and 2.46 for updating 
summaries, corresponding to rank 42 in both cases. Our 
system’s ROUGE-2 and ROUGE-SU4 scores are rather 
poor. 

These results are not very good and appear to 
suggest that using naïve heuristics by themselves is not 
sufficient to create summaries of good quality. 

4 Summarizing Opinion 

In addition to summarizing successive subsets of 
documents on a given topic for update information, 
TAC 2008 asked participants to produce summaries of 
opinion. Raw materials for this task included not only 
the usual collection of documents on a topic and one or 
more questions about it to direct the summarization 
effort, but a new intermediate resource. It was a list of 
text fragments – snippets produced by QA systems or 
human annotators – which address a specific topic 
information need, together with the identifier of the 
document from which each snippet was extracted. 

We considered the effort invested in producing this 
pre-selection of potentially relevant text fragments, and 
the fact that this is a pilot task to which we had not had 
the opportunity to devote much attention. We decided 
to base our system on processing the snippet list and 
ignore the base document collections from which its 
entries were derived. The pilot task thus became for us 
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one of attempting to produce a summary of the snippets 
on a topic which best answered the question about it – a 
markedly easier task. 

4.1 The Process 

The first step in accomplishing this was to clean up the 
snippets, which were taken from fairly “dirty” blog 
documents. Inspection of the first test topic identified a 
number of divergences from proper English syntax1— 
punctuation spaced away from the token to which it 
was attached, repeated characters, incorrectly rendered 
punctuation, and so on. We corrected 17 syntactic 
irregularities on one pass, and three lexical ones on a 
second. Capitalization was an issue in the first topic 
snippet set, and tokens appearing all in upper or lower 
case were converted to mixed case when instances were 
found elsewhere in the blog to guide this operation. A 
by-product of the cleaning operation was to eliminate 
duplicates from the hash set of snippets when these 
appeared in the original data or as a result of correcting 
variants to the canonical well-formed form. 

The second stage of processing selected the snippets 
to compose the summary. We used four heuristics to 
eliminate candidates from contention. 1) Snippets over 
500 characters in length were removed (too long to be 
focused on the topic), as were 2) those which were 
approximately identical (where match was determined 
approximately using the Perl amatch library), 3) those 
which are subsumed by another snippet, and finally, 4) 
those which appeared to incorporate more than one 
sentence. 

This pruning operation reduced the set of candidate 
snippets to a total length of about 4,000 characters on 
average across all 22 topics, well under the 14,000 
characters allowed (7,000 characters were accepted per 
squishy question and each topic had two squishy 
questions). Lacking any better basis on which to order 
these snippets, the submitted summary was written out 
ordered shortest to longest, on the speculation that 

                                                      
1 We classified our system as “manual” on the 
submission form because we based its design on 
inspection of the first topic in the test data set. 
Processing by the system, once implemented, was 
wholly automatic. 

shorter snippets would contain a higher proportion of 
pertinent information. 

4.2 The Outcome 

NIST evaluated the opinion pilot in a manner 
comparable to that applied to the main task. Six 
measures were employed. Five were assessed manually: 
content, responsiveness and fluency/readability (this 
subsumed grammaticality, non-redundancy and 
structure/ coherence). A submission’s pyramid F-score 
was computed automatically. Each participant’s 
average score for most2 of these measures are reported 
in the file OpSumm08.avg_scores. According to its 
scores for the three non-repeated measures (F-score, 
overall responsiveness and overall fluency/readability), 
our submission was ranked first in a tie with that of 
participant 9. Averaging all scores in the file including 
the three submeasures of fluency/readability ranked us 
8th. On the single score of responsiveness which we 
ourselves deem key, we scored 4th. 

This rather surprising performance likely highlights 
the importance of the snippet selection procedure in 
producing opinion summaries. It certainly is not due to 
the simple correction operations and filtering heuristics 
of which our system is composed – though cleaning up 
the snippets probably did improve their readability. 

5 Future Work 

Goals for the next year are to continue to find occasions 
when we can conduct experiments in which our team 
itself judges summary responsiveness and fluency. That 
should allow a system’s developer to improve its 
sentence selection process either through trial and error 
or by iterative refinement. 

We will continue to update the corpus of SCU-
marked topics with new material as it becomes 
available, and to use it to guide future development of 
summarization systems at the University of Ottawa as 
appropriate. 

                                                      
2 Content per se is absent, while measures are included 
both of overall fluency/readability, and three of its 
constituents: grammaticality, non-redundancy and 
structure-and-coherence. 



 

Finally, we hope to move towards employing 
selection algorithms which are based on deeper 
semantic knowledge of a text as a team member’s 
research in this area comes to fruition. 
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