
Parsing tree matching based question answering

Ping Chen Wei Ding
Dept. of Computer and Math Sciences Dept. of Computer Science

 University of Houston-Downtown University of Massachusetts –Boston
 chenp@uhd.edu ding@cs.umb.edu

Timothy Simmons Carlos Lacayo

 Dept. of Computer and Math Sciences
University of Houston-Downtown

Abstract
This paper describes the Question and
Answering system participating
Question Answering track in Text
Analysis Conference organized by
National Institute of Standard and
Technology 2008. Our Question and
Answering system attempts to use a
human style of logic to search their
respective document sources and return
possible answers to a question.

1. Introduction
The Question and Answering Track
System was developed to meet the
requirements of the Text Analysis
Conference (TAC) 2008 Question
Answering (QA) Track [5]. The system
attempts to provide rigid and squishy list

answers to questions provided by the
TAC QA Track by searching the
BLOG06 corpus provided by the
University of Glasgow [1]. The
BLOG06 corpus is a collection of BLOG
sites that consists] of text entries by
BLOG authors and corresponding replies
by subscriber or visitors. Due to time
and budget constraints, we only used the
50 documents for each question
provided by NIST.

2. Question Answering System
Architecture

Figure 1 shows the architecture of our
Question Answering system. The system
includes two parts: indexing component
and question answering component.

2.1. Indexing component
The goal of indexing component is to
build a word-based index based on the
source documents. When we search for
information related to a word, the
sentences containing this word will be
located and extracted directly, which is
more efficient than a string matching for
every keyword in every question. This
component includes the following steps:

1. Cleaning
The cleaning step is responsible for
stripping tags from HTML files and

converting HTML codes back to
their text equivalents. For example,
the program would convert ‘"’
in a text string back to its double
quote text equivalent of ‘”’ or
‘&’ to ‘&’.

2. Sentence segmentation

We developed a simple sentence
segmentation program, which
separates sentences based on
punctuation (e.g., ?, !, .).

Figure 1 Question Answering System Architecture

3. Parsing

After cleaning and sentence
segmentation, sentences are parsed
with a dependency parser, Minipar.
Dependency parsers have been
widely used in information
extraction. An evaluation with the
SUSANNE corpus shows that
Minipar achieves 89% precision with
respect to dependency relationships
[5].

4. Nodes building
After parsing, dependency relations
from different sentences are
integrated. The integration process is
straightforward. One dependency
relation includes two words/nodes,
one head word/node and one

dependent word/node. Nodes from
different dependency relations are
merged into one as long as they
represent the same word. An
example is shown in
Figure 2, which merges the
following two sentences:

“Computer programmer writes
software.”

“Software is a useful tool.”

After merging, we save each node,
its dependent nodes, and the sentence
id into a file. Hence, each node file
contains all occurrences of a word
and the locations of sentences that
contain it. Node files will be used in
the question answering component to
retrieve relevant sentences and
generate answers.

cleaning

Sentence segmentation

Parsing

Node building

Top 50 BLOG06 docs

Indexing component

Parsing

Sentence extraction

Parsing tree matching and ranking

Question set

Question answering component

Question classification

nodes

Named Entity Recognition

Figure 2 Integration of two parsed sentences

2.2. Question Answering
Component

The main program Matcher.exe is
responsible for processing the questions,
searching for matching sentences,
parsing the matched sentences,
calculating the scores for each of the
sentences, and outputting the answers to
a results file. The goal of question
answering component is to generate
answers based on questions and source
documents. It consists of the following
steps:

1. Question classification
We built a rule-based question
classification system, and initial
testing using QA track 2003-2007
data achieves 80%- 90% accuracy.
Here are the question, categories,
which is similar as proposed in [4]:

animal, city, code, color, count,
country, creative, date, description,
distance, entity, event, food, group,
individual, instrument, language,

location, money, order, organization,
percent, period, product, reason,
religion, size, speed, sports, state,
symbol, technique, temp, term, title,
vehicle, weight

After testing with QA track 2008
data, we found that these categories
cannot describe the 2008 data well,
which hurt the performance of our
system.

2. Relevant sentence extraction
Every question is parsed with
Minipar. Nouns, verbs, adjectives,
and adverbs are extracted and
compared with the nodes built with
indexing component. If any nodes
match, the corresponding sentences
are loaded and become the candidate
sentences.

This step has evolved through much
iteration to fit the purpose of the QA
Track 2008. Initially the BOOST
libraries [5] were used to perform
regular expression searching on the
entire BLOG06 collection to

selectively choose documents that
only contained key words or the
target. To accomplish this, the
dictionary was used to improve
document retrieval by allowing for
“stem words” to be included in the
search. For example, a search on the
word “sleep” should also return
documents with “slept”, “sleeping”,
or “sleeps”. Due to the composition
of the BLOG06 corpus, this
approach proved to be inefficient due
to the collection size and the minimal
amount of text per file. To further
refine searching a tagging method
was used to identify only nouns in
the target. The tagger from the
Tsujii Laboratory would read a file
containing the current question and
produce a tagged sentence [6]. QA
system would then read the output
file and set the target to only the
nouns specified by tagger.

3. Named Entity Recognition
Named Entity Recognition is
performed with GATE to identify
when a candidate sentence contains
the type of information requested in
a question. GATE is a Natural
Language Processing system written
in JAVA [3]. It ANNIE component
analyzes the sentences and marks
specific areas of each sentence such
as “location” or “organization”.
GATE will export the results to an
HTML file. The HTML files
identify regions of the file by
providing the byte start and end
locations of each result. We run
ANNIE on the files and then use the
annotation differential tool to export
them to HTML files based on the
category specified in the question
document. Sentences that do not
contain the type of information

required by the question are
discarded.

GATE is unable to identify many
types of named entities that would
match answers to questions asked by
the QA Track 2008. For example,
the track question might be asking
for a “reason” but GATE is not
capable of determining portions of a
sentence that match “reason”, which
hurt our QA system performance.

4. Parsing tree matching and scoring
Now the candidate sentences have
the same focus as the questions, and
also contain the type of information
asked by the questions. In this step
we will match the parsing tree of the
candidate sentence and the question
and generate a score. The candidate
sentences are ranked according to
their scores. Answer strings are
extracted from all the sentences
whose scores are above a preset
threshold.

The tree matching and scoring
process is shown in Figure 3. The
process starts with an edge matching.
If any edges match then the edges
are recursively linked together if
possible. Finally scores are
calculated for the largest possible
structure and any remaining nodes
should they exist.
For each candidate sentence

Load its parsing tree;

Search for the common nodes
between the parsing trees of
candidate sentence and
question;

Search for the common edges
between the parsing trees of
candidate sentence and
question;

Recursively search for the
common large structures
(including more than one edge)
between the parsing trees of
candidate sentence and
question;

Assign score to all common
nodes, edges, and structures,
calculate the total score;

Rank each sentence according to its
total score;

Figure 3 Sentence matching and score

process

3. Conclusion and Future Work

In this paper we discuss our Question
Answering system developed for the
TAC QA track 2008. Question
answering is not a single research task,
instead its performance is affected by
many processes involved. The key
component is our system is the Tree
Matching step to rank the candidate
sentences according to its structural
similarity to questions. This approach
may be more effective in large corpus
where the same information is expressed
in different ways hence improve the
probability of structural matching.

The future work includes the
development of our own Named Entity
Recognition software since categories
used in GATE are too coarse.

4. Acknowledgement

This work is partially funded by Scholar
Academy at the University of Houston-
Downtown.

Reference

1. BLOG06 corpus,
http://ir.dcs.gla.ac.uk/test_collections

2. BOOST C++ Library,
http://www.boost.org/

3. GATE Natural Language Processing
package, http://gate.ac.uk/ie/

4. Xin Li, Dan Roth, Learning Question
Classifiers. COLING'02, Aug., 2002.

5. D. Lin, Dependency-based
Evaluation of MINIPAR. In
Workshop on the Evaluation of
Parsing Systems, Granada, Spain,
May, 1998.

6. SLTagger, http://www-tsujii.is.s.u-
tokyo.ac.jp/uima/

7. Text Analysis Conference 2008
Question Answering Track,
http://www.nist.gov/tac/tracks/2008/
qa/

