
THU QUANTA at TAC 2008 QA and RTE track

Fangtao Li, Zhicheng Zheng,Yang Tang, Fan Bu, Rong Ge, Xiaoyan Zhu, Xian Zhang, Minlie
Huang

State Key Laboratory on Intelligent Technology and Systems,

Tsinghua National Laboratory of Intelligent Technology and Systems (LITS),
Department of Computer Science and Technology,

Tsinghua University, Beijing, 100084, China
lifangtao0923@163.com; zxy-dcs@tsinghua.edu.cn;

Abstract. This paper describes the systems of THU QUANTA in Text Analysis
Conference (TAC) 2008. We participated in the Question Answering (QA) track,
and the Recognizing Textual Entailment (RTE) track. For question answering track,
we enhanced the traditional question answering system by sentiment lexicon based
opinion analysis. The rigid list questions are divided into two categories based on
their answer types. And two snippet extraction approaches are proposed to answer
squishy list questions. For RTE track, we design different strategies to recognize
true entailment and false entailment. The similarity between hypothesis and text is
measured to recognize true entailment. We detect the exact entity and relation
mismatch to recognize the false entailment. The evaluation results show that the
proposed approaches are very effective for the QA and RTE tasks.

1 Introduction

In this year’s Text Analysis Conference, we participated in two tracks: the Question
Answering (QA) track and the Recognizing Textual Entailment (RTE) track. This paper
reports on our two developed systems for these two tracks.

The TAC 2008 QA track is different from previous TREC QA. It focuses on finding
answers to opinion questions. We develop the opinion question answering system by
enhancing our past participated system QUANTA[3] with lexicon based sentiment
analysis. We not only consider the topic relevance, but also pay attention to the sentiment
match between question and answers. By analyzing the rigid list questions, we divide all
the rigid list questions into two categories: the Opinion Holder Rigid List questions and
Other Types Rigid List questions. Opinion Holder Rigid List questions refer to the
questions whose answers are blog nicknames or blog holders. Other Types Rigid List
questions refer to the questions whose answers are same to traditional factoid questions,
such as person names, cities etc. The different strategies are designed for these two types
of rigid list questions. We also propose two snippet extraction approaches to answer

squishy list questions. The evaluation results show that our methods are very effective.
We rank 1st in this year’s opinion question answering task.

This is our first participation on RTE track. We design a two-way strategy for this task.
The main idea is that it is different to recognize true entailment and false entailment. Then
we propose two separated approaches for recognizing true entailment and false entailment.
For true entailment, we believe that the hypothesis can be transferred to the text by some
transformation rules. This means that the text and hypothesis are similar in some levels of
text linguistic representation. Therefore, we employ linguistic similarity to recognize the
true entailment. For false entailment, we believe that there must be some mismatches
between the text and the hypothesis. Therefore, we focus on “exact” entity and relation
mismatch recognition to determine the false entailment. The “exact” means that the entity
or relation plays a crucial rule in the textual entailment. If this “exact” mismatches, the
false entailment can be determined. In this year’s RTE track, the best result we achieved is
65.9% in accuracy.

2 Question Answering Track

Unlike past QA tracks, the TAC 2008 QA Track focuses on finding answers to short
series of opinion questions. It includes two types of questions: rigid list questions and
squishy list questions. We propose an opinion question answering framework by
combining traditional topic based QA method and lexicon based sentiment analysis. Our
QA system is augmented by sentimental lexicon based opinion analysis as follows: In
question analysis stage, the questions are classified into two sentimental types, including
positive and negative cases. After document retrieval, the sentimental determination is
performed to filter out the sentiment mismatch documents. For snippet selection, we
propose a unified model to combine the topic and the lexicon based sentiment to extract
snippets with topic relevance and sentiment match. The official evaluation results show
that our proposed approaches are effective. We achieved 0.156 for rigid list questions,
0.172 for squishy list questions and 0.168 for Average per-series score. Our rigid list
question score and average per-series score both rank 1st among the 17 submit runs.
The architecture of our Question Answering system is similar to traditional question
answering system. Several components are implemented in this framework: Blog
Processing and Indexing, Question Analysis, Query Generation, Document Retrieval, and
Answer Extraction for each type of question. The detailed introduction for each
component and the official results are described as follows:

2.1 Blog Processing and Indexing

Since the Blog06 corpus is different from the AQUINT news corpus. It contains much
noise. The blog corpus is tidied by several steps: filter bad chars directly; employ html

parser to extract the main text and eliminate the html tags; judge the char-set of the blog
post and discard non-English documents. These works are quite essential for 2008 QA
task, because blog data is the only corpus for this year’s question answering track.

We use the public information retrieval tool Lucene to index the document corpus.

2.2 Question Analysis

We followed our past participated QA task to analyze the questions, including anaphora
resolution, question normalization, question classification, and other syntactic and
semantic analysis. In this year, for the opinion questions, the sentiment analysis is also
employed:
1. Opinion holder, opinion object and opinion verb recognition.

We use a semantic role labeler (based on Propbank) to get all the predicates and
corresponding Semantic roles from the parse tree of the normalized question. If a
predicate is found in the semantic word list and has both semantic role A0 and semantic
role A1, the predicate together with its A0 and A1 will be returned as opinion verb,
opinion holder and opinion object respectively.
 We also use some patterns (e.g . “reason for XXX”, ”opinion about XXX”) to extract
opinion objects.
2. Sentiment classification

All questions are classified into positive opinion question and negative opinion
question categories based on their sentiment. We just identify the opinion words to finish
this procedure. If the question contains “dislike”, “negative” and other negative opinion
words, we classify this question into negative opinion question category. If the question
contains “like”, “positive” and other positive opinion words, we classify this question into
positive opinion question category. When the sentiment category is determined, we will
just consider the same or similar category’s documents and snippets for answer extraction.

2.3 Query Generation and Expansion

There are many sentence features can be used to generate queries, such as NP chunks,
topic words, named entities and so on. The wikipedia’s redirection function can be used to
expand those features so as to find more relevant documents. After experiments on the
TAC QA 2008 sample run data, we find that any single query generation strategy can
hardly produce satisfactory results. The main reason is the questions are so different from
each other. For some question, using the name entities as query can be very effective, for
others, there could be no name entities found. A query generation strategy helps to find
reasonable number of documents on some questions and no (or too many) documents on
others. Meanwhile, the error of parser and NER and the noise caused by wiki also add
uncertainty to query generation and expansion.

Considering robustness and efficiency, we generated a four-layer hierarchical query set
for each question. The four query generation methods are listed as follows:
1) Only contain a single term------the question topic .
2) All the NP chunks, proper noun and digits having IDF score under a predefined
threshold are collected as terms. All the terms are expanded through Wikipedia redirection
data. The IDF scores are pre-computed by Google.
3) Named Entities are collected as terms. All the terms are expanded through wikipedia.
4) Named Entities are collected as terms without expansion.

2.4 Document Retrieval

Four queries are designed for each question. So after search, each question will have four
returned document lists. We repeatedly collect the top N documents from these lists. That
is to say, we collect first document from list 1, second from list 2…forth from list 4 and
back to list 1…until we get N documents, or all the lists are empty.
In this year’s QA TAC, we get the documents in two ways: the first gets top 500
documents by the designed method above. And the second is to include the top 1000
documents from official search results. We compute the union for these two methods.

2.5 Rigid list Answer Extraction

Since cross-topic opinion mining is quite complicated and difficult, answering all types
of opinion questions in a unified structure is not reasonable and not possible.

In this point of view, we broadly divide rigid list questions into Opinion Holder Rigid
List questions (OHRL questions in short) and Other Type Rigid List questions (OTRL
questions in short) and solves these two types of questions using different schemes. The
answer for OTRL question refers to blog nickname or blog holder, and the answer for
OTRL question is the same as traditional factoid answers, including person name, book
name, movie name and so on. If the questions ask for “blog”, “blogger” or “who”, this
question belongs to the OHRL question, otherwise, it belongs to OTRL question.
Furthermore, according to the target of the questions, OHRL questions can be divided into
direct-OHRL questions and indirect-OHRL questions. Direct-OHRL questions aim to find
opinion holders who directly express some opinions on a given topic, such as “Who are
the people who enjoyed the movie "I Walk the Line"?”, while indirect-OHRL questions
focus on blogger names, like “What Bloggers expressed a positive attitude towards
Mahmoud Ahmadinejad?” In another word, once someone’s blog contains some relevant
opinion about a given target, no matter it is copied or quoted, the blogger’s name should
be returned as an answer of the indirect-OHRL questions. Thus, answering indirect-
OHRL questions is a bit easier than answering direct-OHRL questions. There are two
kinds of answers of direct-OHRL questions. One is the author of an article and the other is

the speaker of a quoted statement. We will give more details about this in the following
section.

Experiment results show that this “divide and conquer” method is very successful in
solving rigid list opinion questions. We get top ranked F score at Rigid List Questions in
17 systems with OHRL Question F score to be 0.131 and OTRL F score 0.193.

2.5.1 Answer Extraction for Opinion Holder Rigid List questions

Our OHRL Question-Answering System consist several separate modules working in a
sequential manner. In this way, we can easily share key modules in answering different
kinds of questions and perform expensive operations on the dataset. In general, our QA
system contains Question Processing Module, Document Retrieval Module, Answer
Candidate Selection Module, Candidate Scoring & Resorting Module and Answer
Generation Module. To accommodate the needs of OHRL Question-Answering, we adjust
all modules except Question Processing and Document Retrieval Module.
1) Answer Snippet Candidate Selection Module

This module aims to locate relevant snippets from the retrieval results. As we know,
when people express some opinion on a topic, the topic words ore relevant pronouns are
usually very close to the opinion words. Besides that, opinion sentence on the same target
always comes together. Based on this, we use a simple strategy to retrieve relevant
snippets. For the first step, a document is split into sentences with topic words and
pronouns marked. Then those sentences are grouped into several parts and sentences
without any topic words or pronouns are removed. Then we score snippets by the
occurrence of topics words and opinion words and select the top ranked snippets as the
answer candidates.
2) Snippet Candidate Scoring & Re ranking Module

This is the cardinal module of the whole system. We compute several scores based on
the occurrence of topic and opinion words.

a) title topic score = num of topic words in title / count of title words
b) title opinion score=num of opinion words in title * weight/ count of title words
c) snippet topic score = num of topic words in snippets / count of snippet words
d) snippet opinion score = num of opinion words in snippets * weight/ count of

opinion words
We have tried several opinion dictionaries, including Hownet, Wordnet and Mpqa, to

compute the opinion score and none of them works well because common opinion
dictionaries contain too much noise compared to a given topic. For example, “big”
expresses negative opinions when it comes together with “burden”, though in most cases
it is a positive word. To overcome this difficulty, we use a small opinion dictionary built
by ourselves together with Hownet to compute the opinion score. We assign words of
small opinion dictionary heavier weight to balance the accuracy and recall.

If a snippet’s title topic score and title opinion score are higher than a specified
threshold, this snippet is directly put into the answer pool. Otherwise, a final score is
computed by:

score(snippet) = a * title_topic_score + b * title_opinion_score +
c*snippet_topic_score + d * snippet_opinion_score (1)

a, b, c, d are concluded from sample questions. We discard snippets whose score is
less than a specified threshold. Then we select the top N ranked snippets into the answer
pool.
3) Answer Generation Module

As we have mentioned above, there are three types of answers: bloggers, answers and
text opinion holders. Since there are no available corpuses, it is impossible to train a
statistic-based extractor to get opinion holders. So we rely on heuristic rules to extract
exact answers. We write more than 30 regular expressions to extract blogger and authors
from the ordinary html files. Besides that, we write 6 six simple rules to extract opinion
holders. For example, we extract Tom as the opinion holder of the sentence “Tom said, ‘ I
love it’ “ .
If the question is an indirect-OHRL question, we only have to extract the bloggers directly.
To those direct-OHRL questions, we firstly extract opinion holders from nearby sentences.
If we can’t find any exact answers, we use the author-extractor to extract answers.

2.5.2 Answer Extraction for Other Type Rigid List questions

The answers for the Other Type Rigid List questions refer to the traditional factoid
answers, such as person name, movie name etc. We process these questions by following
steps:
1) Snippet Selection, we split the article into snippets with same number of sentences.
And then, all snippets are scored according to BM25 function. If the snippet score exceed
a predefined threshold, this snippet is extracted as candidate snippet.
2) Answer Candidate Generation: All candidate snippets are split into N grams as answer
candidates. We mark the support snippet list for each candidate.
3) Candidate Filtering: According to different question, we filter candidates in different
way. If we can easily access a name list from the external knowledge, such as
movies/actors from IMDB, we use the list to filter the candidates. If the name list is not
easy to fetch, we find the topic words and the answer type words for the question. We
calculate the information distance between candidates and answer type under the
condition of topic

log (, ,) max{log (,), log (,)}(,)
log () min{log (,), log (,)}

f x y c f x c f y cd x yc f c f x c f y c
−

=
−

 (2)
where x is candidate, y is answer type, c is topic, f(x) denotes the number of x[2]

Finally, we sort the candidate as a ranked list, and choose the top 50 candidates as the
essential candidates set.
4) Sentiment Checking: for each essential candidate, we calculate the opinion score for its
support texts based on sentiment lexicon Hownet. We count the number of opinion
words near the candidate words. Here, we just consider the opinion words with the same
polar to the question. We set different weights for opinion words based on the distance
between opinion words and topic words. We calculate the opinion score for each support
text. A threshold is defined according to the experiment in example questions, If the
highest score of the candidate's support text is above this threshold, then we add the
candidate to our final answer list, and the article, which contains the respond support text,
is recognized as the support document.

2.5 Squishy List Answer Extraction

In this section, we describe our approaches to answer squishy list questions. We use two
snippet extraction approaches to accomplish this task. One is the fixed number sentence
based snippet extraction, and the other is question topic and its pronoun based snippet
extraction.

2.6.1 Fixed Number Sentence based Snippet Extraction

The articles are split into snippets, which contain n (a fixed number, like n = 4) successive
sentences with overlap. We will calculate the opinion score and topic score for each
snippet:
1) Topic score

For topic score, we mainly consider two aspects: topic relevance score and
informative score: the snippet must have much relationship with the topic, and the snippet
should contain useful information. We use pattern and keyword based approach to
estimate the topic relevance score. We construct several patterns, like definition patterns,
why patterns, as features to rank the snippets. The keywords are extracted and expanded
from the question words. We also collect some related lists as keywords, for example,
given question “What reasons did people give for liking Ed Norton's movies?”, we
collect all the Norton’s movie from IMDB as this question’s keywords. The position of
keywords is also considered. If the keyword exists in the title or first sentence in the
document, the topic score will be enhanced. To estimate the informative score, we
calculate the average idf score for each snippet. The final topic score combines the topic
relevance score and average IDF score in linear weight.
2) Opinion score

We design a sentiment lexicon based approach to compute the opinion score. Here
the Hownet is employed as the sentiment lexicon. We first check the number of opinion

words existing in a predefined context window size. And then compute the snippet
opinion score by adding opinion scores for all opinion words.

The final snippet score is computed by the following function:

 _ () * _ () * _ ()final score S topic score S opinion score Sα β= + (3)
We set a threshold to extract the top ranked snippets as the answers for each squishy

list questions

2.6.2 Question Topics and Pronouns based Snippet Extraction

1). Topic words Extraction
We first construct the topic words, pronoun words for each question. The topic words are
the topic of series questions and its expansions.
2). Pronoun Words Extraction
To get the pronoun words, we first classify each topic into group, female, male, and other
categories. Group corresponds to pronoun words “they”, “them”, female to “her”, “she”,
male to “he”, “him”, ‘his”, and other to “it”, “its”. Meanwhile, we extract the pronoun
words from Wikipedia. For example, for topic “Nancy Grace”, the first sentence in
Wikipedia is “Nancy Ann Grace (born October 23, 1959) is an American legal
commentator, television host, and former prosecutor.” “commentator”, “host” and
“prosecutor” are also extracted as pronoun words.
3). Opinion lexicon construction

As described above, we construct a small opinion lexicon by collecting the most used
opinion words. For example, we collect the positive opinion words, including "good",
"cool", "innovative", "wonderful", "great", "excellent", "amazing", "interesting", "like",
"love", "pretty" etc, and negative words including “hate", "worse", "sad", "bother",
"stupid", "angry", "bitch", "idiot", "annoying", "weird", "disgust", "disappoint", "frustrate",
"sick", "nasty" etc. they are all common used words to express opinions.
4).Snippet Extraction

We first find the sentence, which contains both opinion word and topic word as the
initial snippet. If the following sentence contain the topic words or pronoun words, the
next sentence are also injected into the snippet. And the next sentence is recursively
checked and injected. We will extracted all the snippet and rank them by the snippet’s
length.

We submit two runs for squishy list questions: the first totally uses the first strategy,
the fixed number sentence strategy. For the second run, we use the question topic and
pronoun based sentence extraction approach for the question, whose topic is same as the
question series, and other questions are processed by the fixed number sentence extraction
strategy.

2.7 Evaluation Results

The evaluation results from the official evaluation from TAC 2008 are shown in the
following table. Among 17 submitted runs, our results are competitive.

Table 1. the evaluation results for Quanta
 Best Worst median Quanta1 Quanta2

Rigid 0.156 0.000 0.063 0.156 0.154

Squishy 0.186 0.018 0.091 0.136 0.172

per-series 0.168 0.011 0.093 0.149 0.168

3 Recognizing Textual Entailment Track

Textual entailment recognition task is to decide whether the text can entail the hypothesis.
In this proposal, we propose a textual entailment recognition framework from two
polarities. The assumption is that it is different to recognize the true entailment and false
entailment. Therefore, different strategies are employed for True entailment recognition
and False entailment recognition.

3.1 True Entailment Recognition

For the true entailment, we believe that the hypothesis can be transferred to the text by
some transformation rules. There rules mentions all levels of linguistic analysis, including
word transformation, phrase transformation, syntactic transformation and semantic
transformation. Therefore, we compare the similarity between the hypothesis and the text
in these levels of representation to recognize the True entailment:
1) Word match

The word similarity is calculated by the extended Local Lexical Matching method,
enhanced by several WordNet relations.
2) Named Entity Match

Named Entity similarity is calculated for phrase transformation. Two kinds of Named
Entity Recognition Tools, including Stanford NER and Sharp, are used to recognize eight
types of Named Entities. And the Entities are extended by Wikipedia Redirection data set.
We define five match relations: 1. Match; 2. Named Entity match, but Type not match
(the NER tools’ error) ; 3, Type Match, but Named Entity not match; 4, Mismatch; 5 Only
appears in Hypothesis. We define different weight score for each match relation.
3) Syntactic Match

Two approaches are designed to compute the similarity in syntactic level. The first
method is proposed based on the tree alignment approach [1], and we also consider the
number of negation verbs. The second method calculates the path similarity in the
syntactic tree.
4) Semantic Match

For semantic similarity, we first use a semantic role labeler to tag the predicate and
all the args. We compare the verb similarity by WordNet distance, and then to recognize
the augment similarity. The semantic match score is calculated as follows:
 (4) _ _ *SRL score predicate score arg score= _

1
_

0.5

verb match
predicate score

otherwise
=
⎧
⎨
⎩ (5)

_ ((
1

n
narg score Sim H i ii
∏=
=

), arg)
 (6)

Where n is the number of args and argi is the ith arg for predicate
5) Recognizing the true entailment
It is possible to set a threshold to recognize true entailment for each level similarity
method. And we also use the machine learning tool weka to combine all the similarity
values. The past RTE data sets are used to train a classifier to recognize the true
entailment.

3.2 False Entailment Recognition

For the false entailment, we believe that there must be some mismatches between the text
and the hypothesis. Therefore, we focus on “exact” entity and relation mismatch
recognition to determine the false entailment. The “exact” means that the entity or relation
plays a crucial rule in the textual entailment. If this “exact” mismatches, the false
entailment can be determined. After similarity methods discussed in previous section,
several levels of exact mismatch are used to detect false entailment, including word level,
phrase level, sentence level, and syntactic relation level:
1) Number Mismatch

If the number appears in the Hypothesis, but doesn’t appear in the Text, we predict
that the entailment is false. For example, we predict #621 is false because the number
“7.5” doesn’t exist in Text. Meanwhile, we consider the number relations. For example, if
the hypothesis contains “over 1000” and the text contains a numeric value above 1000,
like 1024, we don’t predict it as false entailment.
2) Time & Date Mismatch

Time & Date entity is a exact entity in RTE task. If the time and date mismatch, we
predict it is false entailment.
3) Location Mismatch

For each location entity in H, if there is no corresponding entity in T, we predict it is
false entailment. In some cases, one location can be expressed in different entities.
Therefore we also use Wikipedia, country-nationality (China--Chinese) list and country-
capital (China--Beijing) list to expand the location entities in T.
4) Quantifier Mismatch

We use the universal quantifiers (e.g. “all”, ”every”, ”each”) and negative words (e.g.
“no”, ”none of”, ”never”) as exact entities. If a noun (or noun phrase) appears both in H
and T and this noun (or noun phrase) is modified by universal quantifier (negative word)
in H but not in T, we predict it is false entailment. The intuition behind this feature is that
the constituents modified by universal quantifiers (e.g. “all”, ”every”, ”each”) or negative
words are hard to satisfy.
5) “Say” relation mismatch

This relation mismatch means that somebody says something happens in Text, but in
Hypothesis, it is said that somebody happens. Then we recognize this as false entailment.
6) “Locate” relation mismatch

For some special location description words, like “locate”, “base”, “from” exist in
Text. We first align the objects, and then compare the subjects for these location markers
in text and hypothesis. If the subjects mismatch, we predict it is false entailment.
7) Negation and subjunctive mismatch[5]

The text is first split into several small sentences. And then we compare each small
sentence with hypothesis. If their similarity value is higher than a predefined threshold,
we then check if only one has negation or subjunctive words. If only small sentence or
only hypothesis has negation or subjunctive words, then we conclude negation and
subjunctive mismatch, and predict it is a false entailment.

3.3 Submissions and Evaluation Results

Table 2. two-way evaluation results for Quanta
 Accuracy Average precision

QUANTA1 0.659 0.6225
QUANTA2 0.623 0.5926

Table 3. three-way evaluation results for Quanta
 2-way Accuracy 3-way Accuracy Avg precision
QUANTA 0.633 0.588 0.6332

We submit two results for two-way RTE task. The first submission QUANTA1 just uses
the word match, named entity match and task description as features to recognize true
entailment and uses all the mismatches to recognize false entailment. The second

submission QUANTA2 use all the match feature and task description features to
recognize true entailment and uses all the mismatches to recognize false entailment. The
training data set is the two-way task data in RTE 3. For the three-way RTE task, we just
change the Negation and Subjunctive mismatch as “CONTRADICTION”, and other false
entailments are denoted as “UNKNOWN”. The training data set is the annotated three-
way task data in RTE 3.

4 Conclusion

In this paper, we describe our systems in TAC 2008 QA and RTE track. The question
answering system is based on our past participated system, and enhanced by sentiment
lexicon based opinion analysis. The Recognizing textual entailment system use different
strategies to recognize true entailment and false entailment. The similarity methods are
first employed to recognize true entailment and the exact entity and relation mismatch
rules are then used to recognize false entailment. But both systems are still preliminary,
there are many aspects to be improved.

Acknowledgement

This work is supported by National Natural Science Foundation of China (60572084,
60621062), National Basic Research Program of China (2007CB311003), and 985 key
projects (SIST3002).

References

1. Marsi, E., Krahmer, E., Bosma, W., Theune, M. Normalized alignment of dependency trees for
detecting textual entailment. In Proceedings of the Second PASCAL Challenges Workshop on
Recognizing Textual Entailment, Venice, Italy. 2006

2 Xian Zhang, Yu Hao, Xiaoyan Zhu, and Ming Li. Information Distance from a Question to an
Answer. In Proceedings of the 13th ACM SIG KDD conference, USA, 2007

3. Jianshu Sun, Xian Zhang, Fangtao Li, Xiaoyan Zhu. THUQA at TREC 2007 QA Track. In
Notebook of 16th Text Retrieval Conference, Gaithersburg, USA, 2007

4. Rion Snow, Lucy Vanderwende and Arul Menezes. Effectively Using Syntax for Recognizing
False Entailment. In Proceedings of the Human Language and Technology Conference of the
North American Chapter of the ACL, pages 33-40, New York, June 2006.

5. Danilo Giampiccolo, Bernardo Magnini, Ido Dagan, Bill Dolan. The Third PASCAL
Recognizing Textual Entailment Challenge. in Proceedings of the Workshop on Textual
Entailment and Paraphrasing, pages 1–9, Prague, June 2007

	2.5.1 Answer Extraction for Opinion Holder Rigid List questions
	2.5.2 Answer Extraction for Other Type Rigid List questions
	2.6.1 Fixed Number Sentence based Snippet Extraction
	2.6.2 Question Topics and Pronouns based Snippet Extraction

