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Preface 

This document describes the use of the extended logistic function and the associated 

software for conveniently estimating the position, width, and asymmetry of interfaces 

between dissimilar materials (such as might be measured in depth profiles and linescans 

in surface analysis) in an unbiased fashion from a set of discrete measurements. 

Section 1 provides a brief explanation of this function and a rationale for its use in 

describing interface profiles. Section 2 provides instructions on the use of the program 

LFPF (Logistic Function Profile Fit) for fitting profiles to the extended logistic function.  

The results of tests to investigate the performance of the algorithm using synthetic profile 

data are given in Section 3.  Section 4 gives a detailed account of the development of the 

algorithm to perform iterative least-squares fits efficiently with this function for those 

who wish to know more about how the program LFPF works or wish to develop their 

own algorithm for performing similar analyses. 

Those wishing to use and evaluate the LFPF software should read Section 2 which 

describes the functions of the program and its options. This software was developed by 

William H. Kirchhoff who also prepared the documentation. Any questions or comments 

on the software or the documentation should be sent to lfpf@nist.gov. 

The Logistic Function Profile Fitting program is based on a Fortran program written for 

DOS and originally issued under the name LOGIT.  This program was successfully used 

to fit Auger sputter-depth-profile data [W. H. Kirchhoff, G. P. Chambers, and J. Fine, J. 

Vac. Sci. Tech. A 4, 1666 (1986)]. This approach and the associated software were 

applied in a number of laboratories, and formed the basis for an ASTM standard [E 1636-

10: Standard Practice for Analytically Describing Sputter-Depth-Profile Data by an 

Extended Logistic Function]. The logistic function (although not the specific LOGIT or 

LFPF software) has also been used to describe Auger linescans [S. A. Wight and C. J. 

Powell, J. Vac. Sci. Tech. A 24, 1024 (2006)].   An updated description of LFPF and its 

application to depth profile and line scan measurements has been recently published to 

serve as a reference when using this program [W. H. Kirchhoff, J. Vac. Sci.Tech. A, 30, 

051101 (2012).] 

The name Logistic Function Profile Fit (LFPF) has been adopted because (1) LOGIT has 

come to signify a statistical package for analyzing logistic distributions, and  (2) LFPF 

more directly relates to its intended use in profile analyses. 

A compact disc is available that contains the LFPF software and documentation. The CD 

contains the software as an executable file LFPF.exe, the documentation (this manual, 

LFPFdoc.pdf), and a help file, LFPFHelp.chm. Various text files with test data, described 

in this documentation are included on the CD so that the user can test the software and 

compare results with those in the documentation. It is suggested that these files be copied 

to an appropriate directory on the user's personal computer. 

If this program is installed from LFPF Setup.msi no further installation is required. 

LFPF.exe, Version 1.3, requires Version 2.0 or higher of the .NET framework.  All 

versions of the .NET framework can be installed by running the appropriate versions of 

dotnetfx.exe which can be downloaded without charge from Microsoft.  All versions can 

also be downloaded directly. 

mailto:lfpf@nist.gov
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If version 2.0 or higher of the .NET framework is not installed, attempting to run 

LFPF setup.msi to install LFPF or attempting to run LFPF.exe will result in an error 

message along the lines of: 

 

The LFPF software can be started simply by double clicking LFPF.exe in Windows 

Explorer. 

 

 

 

 

 

 

 

 

 

 

“All models are wrong; some models are useful”  George E.P. Box 

To run this application, you first must install one of the following versions of the .NET 
Framework: 

  v2.0.50727 

Contact your application publisher for instructions about obtaining the appropriate 
version of the .NET Framework. 
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1 The use of an extended logistic function for 
systematically analyzing interface profiles 

This document describes the use of an extended logistic function for systematically 

estimating the width and asymmetry of interfaces between dissimilar materials as measured, 

for example, by depth profile analyses.  Specifically, it describes the rationale for the choice 

of this particular function as an empirical description of an interface profile, how to use the 

function in a least squares fit of the function’s parameters to a measured profile, and how to 

interpret the statistics associated with the least squares fit. 

1.1 Depth Profiles 
The logistic function in its simplest form is given 

by 
1

1 X
Y

e



.  As X varies from -∞ to +∞, Y 

varies from 1 to 0 with a sigmoidal shape. 

That the logistic function might provide a 

reasonable representation of an interface is 

suggested by the following argument.  If we 

represent an interface between spheres labeled A 

and B as in Figure 1-1 to the right., the 

probability that an exchange of two neighboring 

spheres in a horizontal direction will result in the 

interchange of an A sphere and a B sphere is 

, 

where  is the fraction of A in a particular layer 

at X,
 

 and  are the fractions of A and B in the neighboring layer X + δX, and k is some 

measure of the propensity for exchange.   

This, plus the fact that at some distance from the interface the material is either pure A or 

pure B, suggests that the change in   as a function of X can be expressed as  

 (1 )A
A A

df
kf f

dX
   (1-1) 

which, upon integration, gives 

  (1-2) 

Since k will have the units of 1/X, we can replace k by 1/D.  Furthermore, if Y is an 

instrument response to a measurement of species A so that Y is proportional to the fraction

, then Y will be given by 

  (1-3) 
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Figure 1-1 Cartoon of an imagined interface 
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where X0 is the midpoint of the interface where Y = A/2.  Y varies from A to 0 through the 

interface.  The parameter D is seen to be a scaling parameter that defines the width of the 

interface.  As D→0, the profile of Y approaches a step function. 

The scaling parameter itself may not be constant.  If the spheres in the cartoon above were, 

for example, of a different size, the rate of change in  with X might well vary with X.  If 

we allow D to vary logistically with its own scaling factor, for example,  

  (1-4) 

the sigmoidal shape will be sharper at one side of the interface than the other.   

Equation (1-3) and (1-4) can be further generalized to  

 , (1-5) 

where the instrument response of the species of interest is allowed to vary with time (and 

therefore with X) as  and, where a background signal remains 

when the species of interest is depleted, as .  The value of Y 

thus varies from  to .  In 

practice,  and  are almost never included, or is occasionally included, and the 

baseline  or can often be held fixed at 0.   

Substitution of Equation (1-4) into Equation (1-5) results in the extended logistic function. 

In addition to the three parameters that define the interface region, X0, D0, and Q,  the 

interface can also be characterized independently of an assumed functional form by a width 

W  and an asymmetry η (to be distinguished from the asymmetry parameter Q) in the 

following way.  We define the width as beginning where the interface is some fraction, f, of 

the distance between the pre-interface asymptote and the post-interface asymptote, and 

ending where the interface is the fraction (1 – f) of the distance between the two asymptotes.  

This is particularly useful when the beginning and ending points of the interface are 

ambiguous or difficult to determine. If we designate the corresponding values of X as Xf and 

X(1-f) then 

 
1 f fW X X  . (1-6) 

The asymmetry η (as opposed to the asymmetry parameter Q – repetition added for 

emphasis) is defined as the skewing of Xf and X(1-f) about the center of the interface X0, 

namely,  

 
0 1

1

2 ( )f f

f f

X X X

X X






 



. (1-7) 

(With this definition of η, η and Q have the same sign.)  Clearly, if Xf and X(1-f) are equally 

spaced about X0,  η = 0.  To emphasize the point that W and η are functions of the choice of f, 

they can be designated as fW  and f .  fW  and f  can be calculated graphically from the 
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profile using rulers or can be related to the interface parameters of the extended logistic 

function through 

 
0

0
0 ( )

2 1
ln

1 f
f Q X X

D f
X X

fe


 
   

  
 and 

1 0

0
1 0 ( )

2 1
ln

1 f
f Q X X

D f
X X

fe 
 

 
   

  
 (1-8) 

Depth profile measurements are complex processes (see, for example, S. Hoffman, Rep. 

Prog. Phys. 61 (1998) 827–888 and references quoted therein.)  This introduction in no way 

should suggest that the extended logistic function is being advocated as an atomic scale 

model for describing depth profile analyses.  It merely provides a rationale for the use of the 

logistic function as a convenient and reasonable means for estimating the position, width and 

asymmetry of the interfacial profile in a systematic fashion from a set of discrete 

measurements.   

1.2 Line Scans 
In the case of line scans of materials deposited on surfaces or of surfaces with discrete 

regions of differing composition, Fig. 1-1 could be thought to represent an interfacial region 

between two surface areas with different compositions.  However, one important purpose of 

performing surface line scans is the determination of the lateral resolution of the measuring 

instrument when the transition region between the two materials is smaller than the expected 

lateral resolution.  For particle or photon beams incident on a suitable test surface, the lateral 

resolution can be usefully determined from a line scan over a sharply defined interface.  In a 

so-called knife-edge measurement, the beam intensity is measured as a function of the 

position of a knife edge partially or fully occluding the beam and thus represents the intensity 

distribution from zero to maximum intensity.  Such a measurement is equivalent to 

measuring the response of a beam (or for that matter an Atomic Force Microscope tip) 

scanned over a sufficiently sharp interface between two materials.  The measured response is 

a convolution of the point spread function of the beam and the object being measured (M. 

Senoner, T. Wirth and W. E. S. Unger, J. Anal. At. Spectrom.., 2010, 25, 1440–1452.) The 

line scan, sometimes referred to as the line spread function, has a sigmoidal shape 

representative of the underlying point spread function.  The width of the line spread function 

can be taken as a measure of lateral resolution.  Current practice, as recommended in ISO 

18516: 2006, Surface chemical analysis - Auger electron spectroscopy and X-ray 

photoelectron spectroscopy - Determination of lateral resolution (International Organization 

for Standardization, Geneva, 2006), calls for the width to be defined as various percentages 

(12% to 88%, 16% to 84%, 20% to 80%, or 25% to 75%) of the maximum intensity in the 

line spread function.  The choice of percentages for determining lateral resolution from the 

line scan reflects assumptions about the underlying point spread function as well as effects 

from the test sample (e.g., the role of backscattered electrons in Auger electron 

spectroscopy).   Most prominent among the functions used to describe point spread functions 

are the Gaussian (12% to 88% for the width at half height and 16% to 84% for the 1 width) 

and Lorentzian, (25% to 75% for the width at half height) though sums of Gaussians and 

pseudo-Voigt profiles have been considered along with the so-called top hat model (uniform 

beam intensity across a circular profile).   

The point spread function is the derivative, dY/dX of line scan measurement across the 

interface and the width at half height is a measure of the lateral resolution.  From the logistic 
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function parameters derived from the fit of the line scan measurements, the derivative, 

dY/dX,  can be calculated from which the value of X where dY/dX is a maximum, maxX  ,can 

be determined as can the two values of X, X   and X  , where dY/dX is half its maximum 

value.  From these we can define a width and asymmetry analogous to the definitions of 
fW  

and 
f  in Eq. (1-6) and Eq. (1-7) above, namely 

 hhW W W     (1-9) 

 
 

 
max2

hh

X X X

X X
  

 

 



 (1-10) 

If Q = 0, then  max max 02ln 3 8X X X X D      and max 0X X for the symmetric 

profile.  If 0Q  , maxX , X  and X  must be solved numerically.  For symmetric profiles 

where Q = 0, the width at half height is 14.64% to 85.36% and these are the default values 

used in LFPF. 

An unusual feature of the point 

distribution function based on 

the extended logistic function is 

that hh has a maximum value of 

0.2589 at 0QD = 0.8346  and 

max 0X X  a maximum value of 

0.7587 0D at 0QD = 0.829.  

Similarly, hh has a minimum 

value of -0.2589 at 0QD = 

-0.8346  and max 0X X  a 

minimum value of -0.7587 0D at 

0QD = -0.829.  In effect this 

limits the asymmetry of the 

point distribution function and 

the uncertainties returned by the 

least squares fit for these 

parameters should take these 

limits into account. 

In practice, the line spread function is the result of unknown or incompletely known factors 

and can be expected to deviate from any particular mathematical function such as a Gaussian.  

The extended logistic function is thus no more than another possible function to use in fitting 

a measured line scan to provide a suitable measure of lateral resolution. A measured line scan 

typically consists of intensity measurements at discrete steps (e.g., of a beam across a knife 

edge or a sharp compositional interface), and use of a suitable fitting function is convenient 

for obtaining an objective measure of lateral resolution given the finite steps and the presence 

of statistical noise. The logistic function has slightly longer tails than a Gaussian function 

with the same width (whose integral is the error function) though not nearly as long as the 

 

Figure 1-2 Asymmetry and position of the point distribution 

function as a function of QD0 
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Lorentzian (whose integral is an arctangent function).  When integrals of Gaussian, 

Lorentzian, or pseudo-Voigt functions are fitted with the extended logistic function, the 

residual standard deviation is less than 1.5% of the maximum intensity.  Therefore, the 

choice of which function to use is at present mostly one of ease and convenience.  The 

inclusion of an asymmetry factor in the extended logistic function is a further indicator of the 

shape of the point spread function. 
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2 A program for obtaining a least squares fit of an extended 
logistic function to a measured profile 

A computer program for fitting an extended logistic function to depth profile measurements has 

been written in Microsoft Visual Basic.Net.  The following discussion serves as a “user manual” 

for that program.  Many features have been added to the program beyond fitting interfacial 

profiles, mostly for the benefit of program development and the testing and interpretation of the 

profile fits.  While some of these features may be of limited interest to the average user, we have 

decided retain them so that those who may be more concerned about details of the fitting process 

can do their own testing.  While this decision may leave the analysis options more extensive than 

necessary for many users, the display has been designed to be as simple and intuitive as possible. 

In short, the name of a data file is entered,  an “OK” button is clicked after the data are listed in 

the LFPF window, and when the graph of the data is displayed, a button labeled “Fit (Converge)” 

is clicked and that is it.  The following is a description of the operation of all the program 

features. 

An extensive Help file (LFPFHelp.chm) accompanies the program which contains most of the 

information contained in this documentation, albeit in very abbreviated form.  Several data files, 

most notably BgtAQp 25.txt (B greater than A, Q positive with 25 data points), are included with 

the program and the analyses of these data are described in this documentation. 

2.1 Program Startup 

The program is run in the usual Windows manner, either by double clicking the file name 

 

Figure 2-1  Logistic Function Profile Fit (LFPF) opening display 
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“LPFP.EXE” in Windows Explorer, or Clicking Start, Run, and entering “LPFP.exe” with its full 

path name, or clicking a shortcut icon to LPFP.exe on the desktop. 

Note:  The first time LFPF is run, two directories are created by the program.  The first, 

\NIST\LFPF is created in the user’s APPS directory (an often hidden directory), either 

C:\Users\<username>\AppData\Roaming\NIST\LFPF\<version number> or C:\Documents and 

Settings\<username>\Application Data\NIST\LFPF\<version number> depending on the 

Windows operating system.  This directory is used to contain a text file with the list of the five 

most recent data files opened.  The second directory created by LFPF is in the user’s \Documents 

directory and is used as a fall back default directory for various program outputs as described 

later in this document.  If either of these directories is erased, it is re-created the next time LFPF 

is run. 

The program begins with a window that displays instructions and a text box, as in Figure 2-1, 

into which data  from another application can be copied and pasted.  Alternatively data could be 

entered directly into the text box from the keyboard. Up to five entries per line can be accepted 

which can be assigned, once entered, to the independent variable X, the dependent variable Y 

and optionally a weighting factor W.  The data entries in each line can be separated by tabs, 

spaces, commas, or semicolons.  Separators used in combination such as a comma followed by a 

space, or several spaces together, are considered as a single separator.  Spaces are always 

interpreted as separators except when used in exponential notation such as nnn.nn Emm where 

the space before the E is ignored.  As soon as any entry is made an OK button and a Cancel 

button appear to the right of the values entered as in Figure 2-2 below. 

 

 

Figure 2-2  Entering data in the text box of the opening display 
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The data in the text box can be edited as with any text editor.  Clicking the Cancel button erases 

the entries in the text box.  Clicking the OK button clears the window and displays two lists as in 

Figure 2-4 above.   

Instead of copying and pasting, data 

contained in text files can be read by clicking 

“open…” in the file menu, whereupon the 

usual Windows open file dialog box appears 

(Figure 2-3).  Once the file is opened, the text box is replaced with two lists as in Figure 2-4. 

Note that the title bar of the window now contains the name of the data file. 

The list on the left in Figure 2-4 

contains the unparsed data as 

entered.  The list on the right 

contains the data as parsed and 

assigned to X and Y based on the 

most recent assignment used. 

The radio buttons above the 

unparsed list indicate which item is 

X and which is Y (and, optionally, 

which is the weighting factor W.)  

Up to five items per line of text can 

be accepted and interpreted.  If the 

data file contains only two items of 

data per line of text, only the option 
 

Figure 2-3  Open File dialog box 

 

 

Figure 2-4  Comparing data as read with data as parsed 
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of identifying which entry is X is given.   At this point, individual entries, such as titles, as in the 

top line of the two lists in Figure 2-4 can be deleted by double clicking the corresponding entry 

in either list.   If an entry is identified as “NaN”, i.e., not a number, as in the parsed, assignment 

list in Figure 2-4, it will be eliminated from the data table automatically when the OK button is 

pressed. 

It is important to emphasize the role of data separators when entering data or when reading data 

as lines of text in a text file.  Data separators can be spaces, commas, and semicolons and are 

always interpreted as such.  Combined separators such as a comma or semicolon followed by a 

space or several spaces together are considered to be a single separator.  In addition, in text files, 

tabs are considered to be separators and will appear as tabs in the unparsed list on the left of 

Figure 2-4.  The only time a space is not interpreted as a separator is when it precedes an E in 

numbers using exponential notation nnnnn.nn Emm.  Commas appearing as thousands markers 

will be ignored so that if they are used as data separators they should be followed by a space. 

Once the data as interpreted are deemed correct, clicking the OK button clears the window and 

replaces it with the data analysis display which includes a graph of the data, the list of data, a list 

of the extended logistic function parameters, buttons to initiate the least squares fit, and 

additional parameters associated with the fit as shown in Figure 2-5 on the following page. 

Note:  For the routine that calculates the initial 

estimates of the parameters to work correctly, 

the data may have to be in order of increasing 

X.  Consequently, the data are tested and if not 

in order of increasing X a warning message is 

printed and the option of sorting the data is 

offered before the analysis display appears.   

In the list of the logistic function parameters 

in the lower left hand side of the window 

shown in Figure 2-5 , only those parameters 

whose boxes are checked will be evaluated by 

the least squares fit.  Any parameter can be 

held at a fixed value entered by the user.  The default parameters to be evaluated are A, B, X0, 

D0, and Q.  Unless the check box below the list of parameters, labeled “Permit A΄ and/or B΄” is 

checked, the routine determining the initial estimates does not attempt to give them values other 

than 0.  Additionally, the parameters accommodating curvature in the pre and post interface 

asymptotes, A˝ and B˝, cannot be varied until at least one least squares fit of the data has been 

performed in which they are not varied.  The reason for doing this is to discourage the addition 

of parameters merely to improve the residual standard deviation. 
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2.2 Data Selection and Identification 
Data can be identified by clicking the individual data points in the graph.  When a point on the 

graph is clicked with either mouse button, a crosshair appears at that point and the values of X 

and Y are printed at the top of the graph.  If clicked near a data point, the crosshair is moved to 

that data point which is then highlighted in red while the corresponding values of X and Y are 

highlighted in the data list.  Similarly, if an entry in the data list is clicked, it is highlighted and 

the corresponding point on the graph is marked with a crosshair.  If the data list is active (the 

selected item in the list is highlighted) the cursor keys (up, down, left, right) move the selected 

entry up and down the list and the crosshairs to the previous or next point in the graph.  If a data 

point on the graph is double clicked, its display changes (dimmed, replaced by a single 

screen pixel, or replaced by an X, See Section 2.6.18 View > Ignored Data) and it is ignored 

in the least squares fit of the data.  If an ignored data point is double clicked, its display returns 

to normal and it is subsequently included in the least squares fit of the data.  The entries for 

ignored data in the displayed list are dimmed. The delete and insert keys also mark data as 

ignored or not.   A range of data may be selected by employing the data selection box (See 

Section 2.6.10 below, View > Data Selection Box.)  If a Data Selection Box is displayed on the 

screen, the delete key will mark all the data in the box as ignored.   The insert key will restore 

them. 

If a least squares fit of the data to the extended logistic function has been performed, the 

calculated value of the function is drawn on the graph.  When the calculated values are 

displayed, clicking on a data point displays the value of Y(observed) – Y(calculated) along with 

 

Figure 2-5  Initial graphical display of data along with the analysis options and parameter list 



 

2-6 

the confidence interval (not the standard deviation) of that difference.  If any point other than a 

measured point is clicked, the calculated value of Y for the selected value of X is printed on the 

top line along with its confidence interval (not its standard deviation.)  The confidence interval is 

the standard deviation multiplied by the t distribution confidence limit for the selected 

confidence level (95% default.) 

2.3 The Least Squares Fit 

The least squares fit minimizes the sum 2

1

( )
n

obs calc

i i i

i

W Y Y


 where obs

iY are the measured values of 

the profile and calc

iY  are the values calculated from Equation (1-5).  If the weights, iW , are 

proportional to the inverse square of the standard deviation of the measured values, then the sum 

of the squares should follow a chi square distribution.  2 2

1

( ) / ( )
n

obs calc

i i i

i

s W Y Y n m


    is the 

estimate of the variance (square of the standard deviation) of the normally distributed errors in Y.  

The variance of a particular measurement, iY  is 2 / is W .   
2s  is the variance of a measurement 

with unit weight. 

The three buttons shown in Figure 2-5, FIT (Converge),   FIT (Step)  and  Initial Estimate , 

control the least squares fit of the data to the extended logistic function.  The function is non-

linear in the parameters and the least squares fit is based on an iterative Newton-Raphson 

linearization of the function, that is, a Taylor series approximation cutting off at the linear term 

as described in Section 4 of this document.  Each iteration calculates corrections to the parameter 

values.  The rapidity of convergence, indeed whether the procedure converges at all, depends on 

the quality of the initial estimates of the parameters.  The calculation of initial estimates is also 

discussed in Section 4 of this report.  Briefly, the curvature parameters for the asymptotes, A˝ 

and B˝, are always assumed to be 0 and are not varied in the analysis unless explicitly requested 

by checking their boxes in the parameter list, and only after a least squares analysis of the data 

has been performed at least once.  Initial values of the slopes of the asymptotes, A΄ and B΄, will 

be calculated only if the box labeled “Permit A΄ and/or B΄” is checked and only if it appears that 

their values differ significantly from 0.  If the fit is unstable, preference is always given to 

evaluating Q over evaluating the slopes of the asymptotes with which the value of Q is usually 

highly correlated.  The remaining parameters are given initial estimates by examination of the 

data, identifying the asymptotic regions and the interface region.  If the data are well structured, 

the initial estimates routine is reasonably robust.  By well structured is meant at least 7 data 

points for which each asymptote has at least two values within 5% of its limiting value, and at 

least three values within the interface region that lie more than N standard deviations away from 

each asymptote, where N is the normal distribution confidence limit.  The confidence limits for 

both the normal and the student’s t distribution are calculated by the program.  
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When  Initial Estimate  is clicked, the starting values of the parameters are estimated as described 

in Section 4.1 of this documentation and are reported and graphed on the analysis display as seen 

in Figure 2-6 below.  Next to the parameter names are the initial estimates of their values.  The 

“Data Scatter” is a model independent measure of the noise in the data (See Section 2.6.3, View 

> Data Scatter) and is estimated for the purpose of comparison with the standard deviation 

returned by the least squares fit of the data to the extended logistic function.  A standard 

deviation significantly greater than the data scatter indicates the likely influence of model errors.  

Since the extended logistic function is an empirical representation of the interface, it should 

always be assumed that model errors will likely be present along with random measurement 

errors. 

The Residual Standard Deviation is that calculated from Equation (4-12), namely,  

2

1

( ) / ( )
n

obs calc

i i i

i

s W Y Y n m


  
  
, where n is the number of data points, m is the number of 

fitting parameters, Wi are the weights of each datum (= 1 if weights are not included in the data 

file) and calc

iY  are calculated from the extended logistic function using, in this case, the initial 

estimates of the parameters. In the case of the initial estimates, model errors are expected from 

the approximate nature of the initial, estimated values of the parameters and, as seen in Figure 

2-5, the data scatter was 1.389 compared with the calculated standard deviation of 1.759.  This 

comparison is the only indication that the parameter values have not yet been optimized.  The fit 

of the initial values of the parameters to the data appears to be quite good.  Inspection of the 

residuals, obs calc

i iY Y , shows no systematic trend. (Residuals can be displayed by clicking the 

 

Figure 2-6  Display of initial estimates of the extended logistic function parameters 
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Residuals item in the View menu as described below.)  The initial estimates are arrived at by 

using a variety of techniques depending on the structure of the data as described in Section 4.1.  

(See also Section 2.6.10 View > Data Selection Box.)  Notes on the calculation of the initial 

estimates appear in the text box labeled “Analysis Notes” in the lower right of the window such 

as the following:  

 

Because the check box labeled Permit A′ and/or B΄ below the list of parameters and their values 

was checked, the slope of the initial baselines, A΄and B′, were determined and found to be 

significantly different from 0.  

The central box on the graph in Figure 2-6 defines the interface region used for the initial 

estimate of D0 as determined by the program.  For poorly structured data, this region can be 

controlled by the user by clicking the “Select Data Box” item in the View menu.  This will be 

discussed below in Section 2.6.10. 

Two small text boxes labeled “Max Iterations” and “Profile Percentage limit” appear on the 

display:  

Max Iterations:  The iterative fit is curtailed at the specified maximum number of iterations 

if it has not yet converged.  A prime number for the maximum number of iterations is 

desirable to identify when the least squares fit is oscillating between two neighboring 

minima.  A value of 11 seems to be adequate for most cases tested and is the default value.  If 

convergence is not reached, re-clicking the FIT (Converge) button repeats another round of 

iterations beginning with the current values. 

Profile width fraction f:  The profile width fraction f defines the reported width and 

asymmetry of the interface.  Because of the exponential nature of the extended logistic 

function, the asymptotes are never reached.  The reported width of the interface is therefore 

taken as the spread in X from the value at which the interface is f percent complete to the 

value at which the interface is (1-f) percent complete. Sigmoidal depth profiles were 

originally fit to error functions as a way of parameterizing their width so that the values of X 

corresponding to x = ± σ in the normal probability function were used as a measure of the 

width.  Other measures have included 12% and 88% for the width at half height of a 

Gaussian function or 25% and 75% for the width at half height of a Lorentzian function (the 

integral of which is the arctangent function.) The distribution function underlying the logistic 

function (   
1

/ 1 1z zdY dX e e


   
 

) has a width at half-height of 14.64%  (  1/ 4 8 ) 

to 85.36% and this is taken to be the default value for the profile width fraction f.  In LFPF 

any value between 0 and 50 can be entered into the box labeled “Profile width fraction f.”  If 

0 is entered (the width would be infinite), the default value of 14.64 is restored.  This 

measure of the width, i.e. between f and 1-f, is somewhat insensitive to, though not 

completely independent of, the functional form used to represent the interface profile.  The 

Initial estimates:  
 A  =  .3028667 
B  =  99.9795 
Xo =  49.144 
Do =  4.2 
Refined value for first asymptote determined from the first 7 points, X =  1 to  29:  A  =  5.2112 A' =  .1261202 
Refined value for second asymptote determined from the last 8 points, X =  69 to  97:  B  =  100.0594 B' =  .002253869 
Refined value for Do = 3.894566 ± .1834962 determined by fitting all the data to Y-Y(Do)=(dY/dDo)δDo  
Initial value of Q = .01103739 ± .0105855 determined by fitting all the data to Y = (dY/dQ)Q 
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width and asymmetry values along with their confidence limits are printed in the Analysis 

Notes following the least squares fit. 

When the FIT (Converge) button is clicked, the values of the parameters are iteratively refined 

until convergence is achieved or the maximum number of iterations is reached, following which 

the display will resemble Figure 2-7.  The tests for convergence are based on the changes in the 

values of the parameters compared with their standard deviations and on changes in the standard 

deviation of the fit.  Convergence is declared when the following occurs:  (1) the corrections to 

the parameters are all less than 1 percent of the values of their standard deviations and (2) the 

standard deviation does not change from one iteration to the next by greater than 1 part in a 

thousand.  In some instances, most notably when exact data are being fit, the convergence limit 

may never be reached because of round off errors. 

Clicking the  FIT (Converge)  button always begins the iterative procedure starting with the 

current values of the parameters.  If no initial values have been estimated, they are first estimated 

as if the  Initial Estimate  button had been clicked.  To restart from scratch, the  Initial Estimate  

button must first be clicked. 

Clicking the  FIT (Step)  button performs one iteration of the least squares fit beginning with the 

current estimates of the parameters, which could be the initial estimates.  Repeated clicking of 

the  FIT (Step)  button differs from the  Fit (Converge)  button in that the slope parameters, A΄ 

and B΄, and the curvature parameters, A˝ and B˝, are evaluated (if their boxes are checked) even 

if their values do not differ significantly from 0.  The  Fit (Converge)  button will set these 

parameters to 0 if their confidence limits include 0 as in Figure 2-7. 

 

Figure 2-7  Results of a least squares fit of the profile data to the extended logistic function 
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2.3.1 Wild Excursions, Divergences and Instabilities 

Primarily because FIT (Converge) and FIT (Step) always proceed with the current values of the 

parameters, instabilities that occur with poorly structured data (see Section 3.2 below) can get 

out of hand and drive the parameter values so far from their least squares values that the program 

more or less freezes on values far from the convergent solution in order to avoid crashing.  The 

many procedures incorporated into the program to deal with unstable or diverging situations do 

not work for all eventualities.  In such cases it will usually be necessary to click the Reset All 

item in the Tools menu and start afresh.  It would then be advisable to proceed by clicking 

Initial Estimate and continue step by step to determine where the instability appears and which 

parameters must be held at some fixed value selected by the user. 

2.4 Parameter Values, Associated Statistical Statements, and 
Analysis Notes 

 

Following Fit (Converge)  or FIT (Step), the graph of  the extended logistic function 

0 0 0

2 2

0 0 0 0 0

( )/ ( )/ ( )

( ) ( ) ( ) ( ) 2
where

1 1 1
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Y D

e e e
   

          
  

  
 

is drawn on the graph of the data as in Figure 2-7. 

The values of the parameters are printed with their confidence limits.  The confidence limits are 

based on the confidence level which is under the control of the user. (Default value = 0.95) If the 

measurement errors in the values of Y are normally distributed, the values of the determined 

parameters should follow a student’s t  distribution.  The confidence limits reported for the 

parameters are calculated by multiplying their standard deviations returned by the least squares 

fit by the value of t , labeled on the display “t distribution confidence limit,” that satisfies the 

stated confidence level entered in the box labeled “Confidence Level” (see Equation (4-33) and 

accompanying discussion).  Note: The values for the normal distribution confidence limit 

and the t distribution limit, as reported in the LFPF program are both two-tailed limits.  If 

the confidence level is 95% then 2.5% of the distribution fall above the confidence limit and 

2.5% fall below the negative value of the confidence limit.  The value of t  will depend only 

on the number of degrees of freedom (number of data being fit minus the number of parameters 

varied) and the confidence level.  The confidence limit for the normal distribution does not 

depend on the number of degrees of freedom and it is the limiting value for t  as the number of 

degrees of freedom approaches infinity and the student’s t  distribution approaches the normal 

distribution.  Note that the errors in the parameters are correlated, the values and correlations 

being contained in the so-called variance-covariance matrix (Equation (4-15).)  It cannot be 

stressed often enough that the confidence limits are based not only on the assumption of 

normally distributed errors in Y, but also on the assumption that the values of X are error 

free. 
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As mentioned above, the reported Residual Standard Deviation is that calculated from 

2

1

( ) / ( )
n

obs calc

i i i

i

s W Y Y n m


   where Y
calc

 is calculated using the parameters returned by the 

least squares fit and reported in the parameter table.   

If the measurement errors follow a normal distribution, the estimate of the variance (square of 

the residual standard deviation) of a sample of the data will follow a so-called chi-square 

distribution.  In contrast to the normal distribution confidence limits and the t distribution 

confidence limits, the chi-square distribution confidence limits used by LFPF to calculate 

the confidence limits of the residual standard deviation are one-tailed.  5% of the time, the 

residual standard deviation will fall below the lower confidence limit and 5% of the time 

above the upper confidence limit when the confidence level is 0.95.  The true value of the 

population standard deviation will fall between the values of the 95% confidence limits, 

determined from the sample variance and reported below the Residual Standard Deviation, 90% 

of the time.  (See Equation (4-18) and its accompanying discussion.) In Figure 2-7 those limits 

are 0.8348 < σ < 1.420.  The data scatter, being based only on an estimate of the noise in the 

data, remains the same as it was in the display for the initial estimates. 

Because the “Identify Outliers” item was checked in the View Menu when the  FIT(Converge)  

button was clicked, the expression “Excluding 2 possible outliers, s < 0.7826,” appearing in 

Figure 2-7 below the Data Scatter, is the value of the standard deviation obtained using the most 

recent values of the parameters but excluding all those data identified as possible outliers from 

the calculation of the standard deviation though not from the fit itself.  If they were excluded 

from the fit, the standard deviation would be less than the figure quoted because the exclusion 

would lead to a slightly lower minimum, hence the < sign in the expression. Below that on the 

display is the F test result comparing the standard deviations with and without the outliers: F > 

1.43 compared to F(0.95) = 2.191.  In this case, because F < F(0.95), the exclusion of outliers 

does not lead to a statistically significant drop in the standard deviation.  For more discussion on 

outliers, see Section 2.6.7 View > Identify Outliers 

The Analysis Notes give additional information on the analysis, such as: 
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The Analysis Notes, along with the values of the parameters and the statistics of the fit are 

automatically copied to the Windows clipboard for pasting in other applications. 

The analysis notes include the number of iterations performed, various warning messages, 

information on the interface width and asymmetry, the number of data included in the fit, the 

number of parameters varied, the number of degrees of freedom used in calculating confidence 

limits for the selected confidence level, additional information on the distribution of residuals 

and scatter, and the correlation coefficients among the parameters varied in the fit.  The notes 

conclude (not shown in the sample) with the minimum precision for X and Y determined from 

the data appearing in the unparsed list, the ratio of standard deviation to minimum precision 

which indicates whether the precision of the data is limiting the accuracy, and finally, a 

statement on the completeness of the interface at the beginning and the end of the data.  If 

incomplete to an extent greater than 5% at either end, a warning is included in the analysis notes 

to be careful in interpreting the confidence limits for D0 and Q. 

As noted in the discussion of initial estimates and depicted in Figure 2-7, A′ and B′ were 

determined to be possibly significant, assigned starting values, and varied in the fit.  After 

completion of the least squares fit, the value of A΄ and B′ were found to be less than their 

confidence limits, whereupon their values were set equal to 0, and the analysis continued.  The 

analysis notes mention this and give the values that were obtained for A′ and/or B′.  This is one 

difference between Fit (Converge)  and repeatedly clicking FIT(Step)  until convergence is 

reached.  In the latter case, A΄ and B′ would have continued to have been included in the fit even 

though their values were not statistically significant.  Other warning messages can be quite 

The iterative procedure converged after 7 iteration(s) but only after problems with evaluating all the parameters. 
 
The value of A', 0.0121 ± 0.0140, was initially varied and found not to be significantly different from 0.  Consequently, A' 
was set = 0 and the iterations restarted.  To avoid this and to force inclusion of A' in the fit, check the box for A' and 
repeatedly click the [FIT (Step)] button until convergence is reached. 
 
For  f = 14.64% 
Profile interface width = 14.5816 ± 0.0813 
Asymmetry η = (2Xo - (XU + XL) ) / (XU - XL)) = 0.17475 ± 0.00542 
Dimensionless QD0 = 0.20066 ± 0.00640 
 
    At XL =  41.43037 the interface region is  14.64% complete 
    At XU =  56.01193 the interface region is  85.36% complete 
 
The maximum magnitude of dY/dX = 6.481 at X = 51.5013 ± 0.0539 
The full width of the derivative dY/dX at half height  = 13.2159 ± 0.0853 
Corresponding asymmetry η = 0.11788 ± 0.00352 
 
    dY/dX = 3.241 at X = 44.11433880 where Y = 21.79325000 ( 21.77% complete) 
    dY/dX = 3.241 at X = 57.33025649 where Y = 90.37413506 ( 90.32% complete) 
 
The number of data included in the fit was 25 
The number of parameters varied in the fit was 5 giving 20 degrees of freedom 
 
Corr Coef     A      B      Xo     Do     Q  
A   1.0000  0.0622  0.1640 -0.4667 -0.5044 
B   0.0622  1.0000  0.1798  0.1999 -0.2512 
Xo  0.1640  0.1798  1.0000 -0.2296  0.3340 
Do -0.4667  0.1999 -0.2296  1.0000 -0.1099 
Q  -0.5044 -0.2512  0.3340 -0.1099  1.0000 
 
Minimum precision of X = 1 and of Y = 0.000000000001 
(Standard Deviation)/(Minimum precision of Y) = 9.45E+10 
At the initial point, X =  4, the interface is 0.18% complete. 
At the final point, X =  100, the interface is 100.00% complete. 
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lengthy, reflecting difficulties encountered in the analysis.  If A′ and/or B′ were varied and found 

to be significantly different from 0, then the graphs of the asymptotes would have been drawn on 

the screen.   

Along with the values of the interface width and asymmetry, the interface percent values for the 

values of X at the width limits are given as a check on the calculation.  The dimensionless 

asymmetry parameter, η, and its uncertainty are discussed in Section 4.5, Equation (4-43).  The 

dimensionless quantity QD0 which, if less in magnitude than 1, is comparable in magnitude to 

is also given.  In general, a value of QDo much greater than 1 indicates an unrealistic asymmetry 

and possibly a runaway value for Q.  The interface width can be displayed on the graph in the 

form of a box when the interface item in the View menu is checked. 

As mentioned above in the discussion of the use of LFPF in determining lateral resolution from 

surface line-scan measurements, another measure of the width of the interface is the width at 

half-height of the derivative dY/dX.  Following the report of 
fW  and 

f in the analysis notes, the 

value of X where dY/dX is a maximum, maxX , is given along with the values of X where dY/dX is 

half its maximum value.  These two values of X, X   and X   , can then be used to provide a 

width hhW  and hh  with Eqs. (1-9) and (1-10) 

2.4.1 Statistically  Significant  Interface  Region 

Because the interface is essentially infinite, owing to the exponential nature of the logistic 

function, all of the data correspondingly fall within the interface.  The statistically significant 

interface region is that range in X, lowerX to 
upperX , where the calculated value of Y lies more 

than an exaggerated confidence interval (eci) away from either asymptote.  The eci begins with 

the estimate of the maximum value for the standard deviation based on the residual variance and 

the upper percentile of the 2 distribution for the selected confidence level.  We multiply the 

upper confidence limit for  by the normal distribution confidence limit to give the eci.  We note 

those data whose measured values of X lie between lowerX and 
upperX  and whose measured values 

of Y lie between the two asymptotes and more than eci from each asymptote.  We describe these 

data as lying in the “statistically significant interface region.”  The statistically significant 

interface region is thus defined by range in X, lowerX  to 
upperX  for which Y lies between f  and (1-

f) of completion where /f eci B A  .  The number of such data will inform the program 

whether the interface parameters 0X , 0D  and Q , are likely to be reliable or even determinable. 

2.4.2 Warning Messages in the Analysis Notes 

The analysis notes may contain additional warning messages if problems are encountered or if 

the structure of the data might indicate concern about the interpretability of the parameter 

confidence limits.  These messages are described below. 

If the measurement errors follow a normal distribution, the ratio of the variances (squares of the 

standard deviations) of two independent samples should follow an F distribution.  If we assume 

that the residual standard deviation and the data scatter (see Section 4.2.2 below for a discussion 

of the data scatter) are two such independent samples (in the sense that one depends on the 

extended logistic model and the other does not) then the value of F for the ratio of the square of 
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the standard deviation of the fit over the square of the scatter in the data should be less than the 

value of F for the number of degrees of freedom for each (see Equation (4-30) and the preceding 

discussion.)  If it is greater, a message to this effect appears in the Analysis Notes, such as,  

 

This is an indication that, at the 0.99 confidence level, model errors may dominate random 

measurement errors limiting the interpretability of the confidence intervals for the parameters. 

Consider now the separation of the data into three regions, the statistically significant interface 

and the pre- and post-interface regions.  The region prior to the statistically significant interface 

is dependent almost solely on the parameters A, A′, and A″.  Similarly, the region following the 

statistically significant interface is dependent almost solely on the parameters B, B′, and B″.  
While the statistically significant interface depends on all the parameters, it is this region that is 

most sensitive to X0, D0, and Q.  Since the asymptotic regions are virtually model-independent, 

the variance of those regions will not be sensitive to model errors whereas the statistically 

significant interface will be.  The variances of the three regions are calculated from: 
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    (2-1) 

nA, nI, and nB are the numbers of data in the pre-interface asymptotic region, the statistically 

significant interface region, and the post-interface asymptotic region respectively and pA, pI, and 

pB are the number of varied parameters on which each of the regions is dependent so that the 

three regions have, respectively, , , andA I B   degrees of freedom where A A An p   , etc.  

Typically Ap  and Bp  will each be 1 and Ip  will be 2 or 3 depending on whether Q is varied. We 

can perform the F test on the ratio of the interface variance with each of the asymptotic variances 

to test for systematic errors. If  2 2/ , ,I A I As s F    or  2 2/ , ,I B I Bs s F     where   is the 

confidence level for the F distribution, we may have reason to suspect model errors.  As usual, 

the more data available for the three regions, the more likely the effect will be noticed. 

If both interface/asymptote F tests fail, a warning message similar to: 

 

will appear in the Analysis Notes. 

The spacing of the values of X is noted.  If the values of X are not uniformly spaced and if the 

standard deviation of the spacing in X is more than 1% of the average spacing, a warning 

comment will be printed in the Analysis Notes such as: 

 

The spacing need not be uniform for the statistical interpretation of the confidence limits for the 

parameter values, but they must be error free.   If they are not, they will likely fail the 

NOTE!!! The values of X are not uniformly spaced. 
  The average spacing is 3.971 with a standard deviation of 10.93% 

   If the values of X are not error free the parameter confidence limits may be underestimated. 

The F test for the ratios of the interface/asymptote variances suggests the possibility of systematic error 
   F(interface/pre-interface) = 13.598 compared to F(0.95) = 1.732 
   F(interface/post-interface) = 2.636 compared to F(0.95) = 2.185 

F(std/scatter) = 2.39 compared to F(0.99, ndf1 = 105, ndf2 = 107) = 1.575 
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interface/asymptote F test.  See the discussion in Section 3.2.5 Errors in the Independent 

Variable X. 

If the data are poorly structured, the least squares analysis can become unstable and diverge.  

When this occurs, the program attempts to fit the data by holding Q , 0D , and/or 0X at some 

predetermined value.  The three typical cases are 1) those situations where the interface is very 

sharp and less than 3 data fall in the statistically significant interface region, 2) those situations 

where the interface is not complete and one of the two asymptotes is not reached and 3) the noise 

level is on the order of 10% or more of the separations between asymptotes or greater.  The 

instability of the least squares analysis is also noted when numerical overflows or underflows 

occur or when the corrections to 0X  or 0D  or the confidence limits for 0X  or 0D  on any 

iteration indicate that either is poorly determined. See the discussion in Section 3.2 Difficult Data 

and Analysis Instabilities. 

The program notes the number of data falling in the statistically significant interface region and 

if less than five, a message to this effect appears in the Analysis Notes similar to the following: 

 

In this message, | Y-Asymptote | > 1.90 defines the confidence limit for deciding if a datum 

differs significantly from an asymptote.  If two or fewer data fall in the statistically significant 

interface region and the least squares fit becomes unstable, Q is first set equal to 0.  If the least 

squares fit continues to be unstable, X0 or D0 is held fixed at a value determined from the 

distribution of the data surrounding the interface.  The details of how D0 and X0 are handled 

when fewer than three data are found in the statistically significant interface region are further 

discussed in Section 3.2.  The analysis notes report on which of the parameters is held fixed and 

why.  

If either asymptote appears to be incomplete, a corresponding warning message appears in the 

Analysis Notes: 

 

If the noise in the data becomes significant compared with the separation between asymptotes, a 

warning similar to the following appears in the Analysis Notes: 

 

Both of these situations are discussed further in 3.2. 

2.5 Setting the values of parameters  
If an entry in the parameter table 

is double clicked (or the key 

combination <ctrl>-Enter is 

The ratio of the upper limit of the standard deviation from the chi squared distribution to the 
value of A-B, 19.2%, may make the determination of Xo, Do, and Q problematic and possibly 
result in false, local minima.. 

Warning!!  At the final point, X = 55, the interface is only 89.38% complete.  The final asymptote is not 
reached and the confidence limits for Xo, Do, Q, and B may be underestimated. 

3 data  between 42.0 and 58.0 with | Y-Asymptote | > 1.90 appeared to fall in the statistically significant 
interface region 
7 possible interface values from X = 38.0 to X = 62.0, were tested 
Based on the statistics of the fit, the upper limit for Do was 1.88 

Figure 2-8 Dialog box for setting a parameter value 
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pressed), as noted in the label above the 

parameter table, a dialog box appears on the 

screen as in Figure 2-8 where X0 has been 

double-clicked. 

Entering a value for X0 in the text box 

assigns that value to X0.  When the OK 

button is clicked (or the enter key pressed), 

the dialog box disappears and the graph of 

the calculated value of Y is redrawn using 

the new value of X0.  Unchecking the check 

box for, in this case X0, will cause X0 to be 

held fixed at this value in subsequent analyses while the other parameters are varied.  To vary X0 

starting with the entered value, just make sure its check box is checked. 

2.6 Additional Displays and the View Menu 
The View Menu allows display of additional information concerning the analysis.  

2.6.1 View > Residuals 

The examination of the residuals, that is, the values of the observed data, Y
obs

, minus the 

calculated values, Y
calc

, as in Figure 2-9, is by far the best way to detect systematic errors 

inherent in a semi-empirical model.  The eye can quickly detect trends in what should be a 

random scatter of points.   Clicking Residuals on the View Menu marks it with a check mark and 

replaces the graph of the data with the graph of the residuals.  To return to a display of the data, 

just re-click and uncheck Residuals. When the residuals are displayed, the root mean square, rms, 

of obs calcY Y ,  
2

1

/
n

obs calc

i

rms Y Y n


  , is printed above the graph.  Note that the rms is 

unweighted while the standard deviation incorporates the weight factors.  The weighted 

(standardized) residuals,  obs calcW Y Y , are tested in the trend analysis. 

Discussion of the residuals is more obvious if we take as our example a data set with the same 

parameter values as those we have been using but with 100 data instead of 25.  Analyzing these 

data while holding Q fixed at zero results in confidence limits for the standard deviation of 1.702 

< σ < 2.160.  The lower limit is almost twice the estimate of the standard deviation from the data 

scatter, 0.9972, suggesting a possible model error or a systematic trend in the residuals.  This can 

be further tested by clicking the Residuals item in the View menu to display the graph of the 

residuals as in Figure 2-9, where the residuals appear to indicate an oscillating trend suggesting 

model errors 

2.6.2 View > Trends 

In a multi parameter fit of say, n parameters, to data with only systematic errors, the residuals 

will typically cross the Y
obs

 - Y
calc

 axis n or n+1 times resulting in a seemingly oscillatory pattern.  

This suggests the use of a Fourier analysis of the residuals to test for trends.  Clicking the Trends 

item in the View menu fits the weighted residuals to a Fourier series: 

Figure 2-9  Display of residuals with a trend line 
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  (2-2) 

Figure 2-9 shows the resulting trend line as well as the unweighted residuals themselves.  Each 

of the values of iU  and iV  returned by the least squares fit is compared to its confidence limits at 

the confidence level selected and if the ratio of the absolute value to its standard deviation is 

greater than the value of 
,t   the ratio is printed.  The Analysis Notes accompanying the trend 

line in Figure 2-9 demonstrate this: 

 

 
 

We note that the “improved” residual standard deviation is more in line with the standard 

deviation estimated by the data scatter.  Even if no single term appears to be statistically different 

from 0 because no value of t is greater than 
,t  , some linear combination of the coefficients may 

be significant and if the upper value of the standard deviation of this fit is less than the standard 

deviation of the residuals, a warning message along the lines of the following is printed in the 

Analysis Notes:  

 

 

This analysis reinforces the conclusion reached from visual inspection of the residuals that the 

analysis suffers from slight systematic errors.  The, in this case obvious, source of error is the 

constraint 0Q  .   This would have been less obvious if only 25 data had been included in the 

analysis. Note that the Trends item on the View menu is enabled only when the residuals are 

displayed.  . 

It should be noted that the value of D0 = 3.872 ± 0.182 corresponding to the residuals in Figure 

2-9 falls at the low end of the 95% confidence limits given for D0 obtained for 25 data when Q 

was varied.  See Figure 2-7 above, where D0 = 4.038 ± 0.211.  The presence of systematic errors 

can seriously cloud and may even negate the statistical interpretation of confidence limits, which 

can, in extreme cases, be underestimated by as much as an order of magnitude.   

2.6.3 View > Data Scatter 

A model-independent estimate of the standard deviation of the data can be obtained from third 

differences in the data.  Given a set of measurements Yi, the first differences are defined as  

Sequentially fitting the weighted residuals to Ui sin (iz) + Vi cos (iz) for i = 1 to 5, where z = 2π (X - Xmin) / (Xmax 
– Xmin) , showed no single term to be significantly non-zero at the 99% confidence level.  This analysis suggests 
a standard deviation in the range 0.807 < σ < 1.19 is due to random error at the 99% confidence level.  The graph 
represents the sum of all Ui sin (iz) + Vi cos (iz) whether or not individual coefficients are significantly non-zero. 

Sequentially fitting the weighted residuals to Ui sin (iz) + Vi cos (iz) for i = 1 to 6, where z = 2π (X - Xmin) / (Xmax 
– Xmin) .  For each value of Ui and Vi calculate T = value / (standard deviation of value).  The following values of 
T were significant beyond the 95% confidence level where T > 1.985.  The percentage in parentheses is the 
confidence level that Ui or Vi is non-zero. 
 
T(cos(2x) term) = 3.141 (99.8315%) 
T(sin(3x) term) = -3.298 (99.9026%)   T(cos(3x) term) = 4.857 (99.9999%) 
T(sin(4x) term) = 6.439 (100%)   T(cos(4x) term) = -4.012 (99.994%) 
T(sin(5x) term) = -3.024 (99.7504%)   T(cos(5x) term) = 3.556 (99.9623%) 
 
This analysis suggests a standard deviation in the range 0.843 < σ < 1.14 is due to random error at the 95% 
confidence level.  The graph represents the sum of all Ui sin (iz) + Vi cos (iz) whether or not individual coefficients 
are significantly non-zero. 
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(1)

1 ,i i iY Y Y   second differences as (2) (1) (1)

1 1 22 ,i i i i i iY Y Y Y Y Y       and third differences as 
(3) (2) (2)

1 1 2 33 3 .i i i i i i iY Y Y Y Y Y Y           If Y is a slowly varying function of X so that the 

change in Y between neighboring data is less than the variability in the point to point scatter of 

Y, the third differences, which magnify the point to point scatter but minimize the systematic 

variation in Y, can provide a model-independent estimate of the standard deviation of the 

measurements.  (Indeed, if Y were a linear or quadratic function of X and the values of X were 

evenly spaced, the contribution from the systematic variation in Y would vanish identically.)  In 

the presence of non-uniform weighting, we use a modified form of the third differences: 

 (3)

3 3 2 2 1 1

1
3 3

20
i i i i i i i i iY Y W Y W Y W Y W         , from which we calculate 

3
2 (3)

3

1

1

( 3)

n

d i

i

Y
n









 as a model independent estimate of the variance against which to compare 

the variance from the fit of the data to the logistic function.  

 In order to avoid confusion between 3d and s we refer to 3d  as the scatter in the data.  In the 

calculation of 2

3d  those values of (3 )d

iY  suspected of having a pronounced contribution from the 

underlying sigmoidal function are excluded.  (See Section 4.2.2 for a discussion of third 

difference estimates of the variance, their calculation and their interpretation.) 

Clicking View > Data Scatter displays the values of 
(3) / 20iY   (not (3)

iY though for unit 

weighting, the two are the same) as shown in Figure 2-10  Note that the displayed values of (3)

iY  

are unweighted as are the residuals even though the calculation of  2

3d  is weighted as is s (when 

weights are used.) 

In Figure 2-10 the values strongly affected by the sigmoidal profile interval have nearly all been 

identified by red x’s.   Only the two points prior to the identified values have been missed.  The 

header reads “Third differences with a rms value (excluding 5 values) = 0.253 (0.741).”  The 

number in parentheses is the (weighted) root mean square of the (3)

iY  with all values included.  If 

the data have been fit to a logistic function, the scatter is recalculated from the residuals, not the 

data, to remove the systematic contribution from the logistic function itself and to minimize the 

contribution of any remaining systematic errors.  See Section 4-6 below. 

Figure 2-11 shows a comparison of the residuals of Figure 2-9 with the scatter from the same 

data.  The graph of the data scatter has been displaced downward for ease of comparison.  The 

pattern of the data scatter does not echo the pattern of the residuals because each point in the 

scatter is the result of a combination of four adjacent data values in addition to the presence of 

systematic errors in the residuals.  

2.6.4 View > Connect 

Connects the displayed Data points with a straight line as in Figure 2-11. 
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2.6.5 View > View Memory (Data) 

If data (or a range of data) have been saved in memory by clicking Remember on the Tools 

menu, this menu item becomes visible. When it is checked by clicking it, the memorized data are 

drawn on the display.  If the memorized data fall off the scale of the display, they are shifted to 

be superimposed on the existing display.  If a least squares fit was active when the graph was 

saved to memory, and a least squares fit is currently active, the memorized graph is shifted to 

match the midpoints of the interfaces.  This item is not visible if no graph has been 

“remembered.”  The remembered graph can be shifted vertically by dragging it up or down 

while the Ctrl key is depressed.  Figure 2-11was created in this manner by saving the Data 

Scatter graph (See Section 2.6.3 above.) 

2.6.6 View > View Memory (Calc) 

If a least squares fit is active when the “Remember” item on the Tools menu is clicked, this 

menu item becomes visible. When it is checked by clicking it, the memorized line calculated 

from the least squares fit of the corresponding data in memory is drawn on the display.  If the 

memorized line falls off the scale of the display, it is shifted to be superimposed on the existing 

display.  (If a least squares fit is currently active, the shift matches the midpoints of the 

interfaces.)  This item is not visible if no graph has been “remembered.”  The remembered graph 

can be shifted vertically by dragging it up or down while the Ctrl key is depressed. 

2.6.7  View > Identify Outliers 

When the Identify Outliers item of the View menu is clicked, the item is checked and those data 

for which Y
obs

 – Y
calc

 fall outside the confidence limits for a normal distribution (see Equation 

(4-38)) are identified by circling the points in red.  The default confidence limits are based on the 

two-tailed 95% confidence level for a student’s t distribution. 

If any outlier is found, the statistics associated with excluding outliers from the calculation are 

displayed below the Data Scatter.  For example, as in Figure 2-7: 

 

Excluding 2 possible outliers, s < 0.7826 
F > 1.43 compared to F(0.95) = 2.191 

 

 

Figure 2-11  Comparison of Data Scatter (lower 

trace) with the Residuals (upper trace) from the 

least squares fit 

 

 

Figure 2-10  Scatter with values most strongly 

affected by systematic error and excluded from the 

calculation displayed as red x’s 
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If the two data identified as outliers were excluded from the fit, the standard deviation would be 

less than the figure quoted because the exclusion would lead to a slightly lower minimum, hence 

the < sign in the expression. (When this was done, the resulting residual standard deviation was 

0.7120.)  The F test result compares the ratios of the standard deviations with and without the 

outliers (> 1.43) with the value of 1 2( , ) 2.191F n n  , where   is the confidence level and 1n  

and 2n  are the number of degrees of freedom for the data including and the data excluding the 

outliers respectively.   In this case, performing the least squares fit excluding the two data 

identified as outliers gave a value of F=1.724 which, because it was less than 0.95 2.191F    

(which is also greater than 1.43) indicated that the two standard deviations were not statistically 

distinguishable and the two outliers are simply two data on the wings of a normal distribution. 

Upon clicking a data point, when the calculated function is displayed on the graph, the values of

, obs calcX Y Y , and the confidence limits of obs calcY Y are printed above the graph.  When a data 

point identified as an outlier is clicked on the graph, a message similar to: 

 X = 65.000, Y(obs) − Y(calc) = −2.660 ± 0.994 (0.743%) 

is printed on the top of the graph.  Here, the difference Y(obs)-Y(calc) = −2.660 is seen to be 

well beyond its standard deviation, 0.994 and    
/ obs calc

obs calc

Y Y
t Y Y s


   = −2.69 while the 95% 

confidence limit for the normal distribution is 1.96.  The value in parentheses, 0.743%, is the 

confidence level of this difference.  That is, we would expect only 0.743% of the data whose 

difference, obs calcY Y , has an uncertainly of 0.994 to fall 2.660 or more from its expected value 

of 0.   See also Eqs. (4-37) and (4-38) for the difference in the standard deviation of obs calcY Y

when 
obsY is included in the fit or not. 

Information on the data identified as outliers is included in the extended analysis notes and can 

be displayed and at the same time copied to the windows clipboard for pasting in another 

application by clicking View > Analysis Notes (see Section 2.6.19 below.) 

Data identified as outliers are still included in the least squares fit.  Any point, whether 

identified as an outlier or not, can be excluded from future fits by double clicking that 

point.  Double clicking a point will change the display of that point by dimming it, replacing it 

with a single pixel, or replacing it with an x.  In subsequent least squares fits, data marked as 

ignored are not included in the fit. Double clicking an ignored point restores that point to its 

original status. 

It should be stressed that the identification of a particular point as an outlier should not 

suggest that point be necessarily excluded from the fit.  The identification of a point as an 

outlier only means that its value falls beyond the selected confidence limits.  Exclusion of a point 

as an outlier should be justified by considerations of why the point may be suspect beyond the 

fact that its value falls in the tail of the distribution.  Out of 100 data, we would expect 5 to fall 

beyond the 95% confidence limits based on the standard deviation of the fit and a normal 

distribution of errors.  As already mentioned,  the uncertainty in 
obs calcY Y that is serving as the 

basis for considering a point as an outlier must take into account that the value of 
obsY was used 

in the calculation of 
calcY so that their errors are correlated.  This correlation must be included 

explicitly as described in the discussion accompanying Equation (4-38) 
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2.6.8 View > Error Bars 

When the Error Bars item on the View menu is checked by clicking it, error bars are drawn on 

each of the displayed data equal to / iNs W where iW  is equal to the weight of the i
th

 datum 

(usually equal to 1), s is the standard deviation of the fit and N is the two-tailed normal 

distribution confidence limit (=1.96 for the default 0.95 confidence level).  The error bars are 

displayed on both the data and the residuals graphs.   Note, the error bars are confidence limits, 

not standard deviations. 

2.6.9 View > Confidence Limits 

When the Confidence Limits item on the View menu is checked by clicking it, confidence bands 

are drawn for the calculated values of Y equal to , ( )calc

it s Y   where 
,t   is the two-tailed t 

distribution confidence limit for ν degrees of freedom at the α confidence level and ( )calc

is Y is the 

standard deviation of the calculated value of Y from Equation (4-36).  The confidence limits are 

displayed for both the data and for the residuals and can be displayed simultaneously with the 

error bars.  The confidence limits take into account the correlation of errors among the 

parameters from the least squares fit. 

2.6.10 View > Data Selection Box 

Data can be “selected” for special treatment by drawing a box around the selected data.  

Clicking the Select Data Box item on the View menu draws a box on the screen as the starting 

data selection box such as that seen in Figure 2-12.  The Analysis Notes give guidance on how to 

size and position the selection box. 

The Data Selection Box can also be invoked with a combination of left and right mouse clicks.  

Clicking a point on the graph with the RIGHT mouse button when a crosshair is already 

displayed displays the data selection box as defined by the crosshair and the right mouse click. 

To resize and reposition the box, drag either side of the box to its new position, or click 

anywhere on the area of the graph and the side nearest to the spot clicked will be moved to that 

spot.  Only the X values of the selection box are significant.  The top and bottom of the box are 

set to include the minimum and maximum values of Y in the box. 

Clicking anywhere in the LFPF window outside the graph erases the box.  Unchecking the Select 

Data Box item on the View menu erases the selection box.   If the selection box is erased, 

clicking the Select Data Box item on the View menu again, or clicking the right mouse button 

when the cursor is on the graph and a crosshair is not displayed, redisplays the selection box as it 

was when it was erased. 

When a selection box is displayed, the Zoom in item on the View menu is enabled and clicking 

“Zoom in” redraws the graph of only those data inside the selection box. Alternatively, clicking 

the right mouse button alone at any point inside the selection box performs the same function as 

checking the “Zoom in” item in the View menu.  When zoomed, the axes are correspondingly 

rescaled.  If a zoomed graph is displayed, the “Restore” item on the View menu is enabled and 

clicking “Restore” returns the display to the full range of data.  Alternatively, clicking the right 

mouse button anywhere on the zoomed graph returns the display to the full range of data. 
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Note:  The range in X for the selected data printed on the top of the graph is calculated from the 

pixel values of X for the graph.  Typically, there are less than 1000 pixels in the width of a 

displayed graph and this limits the precision with which the values of X can be calculated.  Slight 

differences may be noted when redisplaying a previously displayed selection box. 

When doing a least squares analysis, only the displayed data are used for the analysis.  This 

is one of the major uses for the data selection procedure.  The data on a zoomed graph can be 

further zoomed by displaying a data selection box on the zoomed graph and proceeding as above.  

If the “Zoom out” item on the View menu is clicked, the range of data for the display is 

increased by 20%, 10% in each direction.  This can be used for fine tuning of the data selection 

or for extrapolating the calculated graph of the interface profile.  When the “Restore” item on the 

View menu is clicked, the graph returns to the full range of data no matter how many times the 

zoomed graphs were nested. 

2.6.10.1 Using the Data Selection Box for calculating initial estimates 

If a selection box is displayed when  Initial Estimate  (or  Fit (Converge)   or  FIT (Step)  for a 

new data set) is clicked, the initial estimates of the parameters are based on straight lines 

through the three regions identified by the selection box.  The pre-interface baseline is 

calculated from the data to the left of the selection box and the post-interface baseline is 

calculated from the data to the right of the selection box.  The values of X0 and D0 are calculated 

from a straight line passing through the five points (if there are more than five) nearest the center 

 

Figure 2-12  Data Selection Box 
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(in the Y direction) of the interface region inside the box. This line is interpreted as a tangent line 

to the logistic function.  X0 corresponds to the midpoint of the “tangent” line where 

( ) / 2Y A B  .  D0 is determined from the slope,   0/ / 4dY dX B A D  .  The value of Q is 

initially set equal to 0 and the slopes of the asymptotes are allowed to vary. This alternative 

method for making initial estimates is provided primarily for the analysis of poorly structured 

data where the algorithms for making the initial estimates from the structure of the data fail. 

2.6.11 View > Zoom in 

If a selection box is displayed, the “Zoom in” item on the View menu is enabled and clicking it 

redraws the graph of only those data that were inside the selection box.  The axes are 

correspondingly rescaled.  This can also be accomplished by clicking the right mouse button 

with the cursor positioned in the selection box.  A least squares fit, if performed, is based only on 

the data displayed.   

2.6.11.1 View > Zoom out (Ctrl-Z) 

Clicking the “Zoom out” item on the View menu expands the scale of the displayed X axis 

symmetrically by 20%, 10% in each direction.  The purpose of this is primarily to look at 

extrapolation of the calculated logistic function.  This can be repeated as often as one wants.  

Ctrl-Z performs the same function (overriding the usual undo or delete windows function for 

Ctrl-Z) 

2.6.11.2 View > Restore 

If a graph is a zoomed graph, whether zoomed in or zoomed out, the “Restore” item on the View 

menu is enabled and clicking it restores the graph of the data to its original scale.  This can also 

be accomplished by clicking the right mouse button while no crosshair is displayed and the 

cursor is positioned anywhere on the graph.   

2.6.12 View > Interface  

Clicking the “Interface” item on the View menu draws a box around the width of the interface as 

defined by the profile width fraction  f  (default values 14.64% and 85.36%) with opposing 

corners at the exact points, X and Y, given by the calculation.  If the interface box is displayed, 

checking “Select Data Box”  on the view menu will erase the interface box and replace it with a 

data selection box of the same size and the graph can be zoomed to display only those data 

within the defined width of the interface. (Clicking the right mouse button does the same thing.) 

2.6.13 View > Statistical Interface 

When this item is clicked, a box is drawn representing the range of the calculated interface for 

which the calculated values of Y differ from the two limiting asymptotes by more than the 

confidence limits of the residual standard deviation (See 2.4.1.)  Data falling in this box are those 

that contribute most significantly to the determination of X0, D0, and Q.  The statistically 

significant interface region is invoked to estimate the maximum value for D0 when less than 

three data fall in this region.  In determining the number of data falling in the statistically 

significant interface, only the deviations of the observed data from the asymptotes are used.  In 

testing for data falling in the statistically significant interface, a range approximately equal to the 

statistically significant interface above and below X0 is used.  The test region is therefore 
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approximately twice the width of the statistically significant interface.  The statistically 

significant interface drawn on the graph is calculated from the values of X0, D0, Q, and the 

confidence limits of the residual standard deviations.  The statistically significant interface 

region is also used to test for the possible influence of errors in the independent variable X (see 

Section 4.2.3 below) 

2.6.14 View > Asymptotes 

Clicking the “Asymptotes” item on the View menu draws the two asymptotes, 
2

0 0( ) ( )A A X X A X X     and 2

0 0( ) ( )B B X X B X X     connected by a vertical line at 

X0.  Inclusion of any of the parameters A′, B′, A″, or B″ in the least squares fit will always 

improve the residual standard deviation but the asymptotes themselves may not be physically 

reasonable.  For this reason, whenever they are varied in the fit the “Asymptotes” item in the 

View menu is checked by the program and the asymptotes are displayed, prompting the analyst 

to consider whether these asymptotes are physically reasonable or not.  If any of A′, B′, A″, or B″ 

is required only for an improved fit to the data, very likely these terms indicate that the extended 

logistic function is not an accurate representation of the data.  Moreover, their inclusion in the fit 

may shift the width and asymmetry well beyond their confidence limits. 

2.6.15 View > Draw dY/dX 

Clicking the “Draw dY/dX” item on the View menu draws the derivative dY/dX on the graph, 

scaled to fit the graph with the half height marked by a horizontal line and with vertical lines 

marking the maximum value of dY/dX and connecting the half-height points to the logistic 

function line.  On the top of the graph, the values of X where dY/dX is a maximum as well as the 

two values of X at half-height, X  and X  are printed (see Eqs. (1-9) and (1-10)) 

2.6.16 View > ΔX/ΔY from Data 

Replaces the graph of the data with the derivative of the data approximated by the ratio of 

differences from neighboring points:    1 1/ / /i i i idY dX Y X Y Y X X        for 

1 1i n    with corresponding values of  1 / 2i iX X X   .  Any random noise in the data 

will be magnified but the resulting display can be compared with /dY dX  from the logistic 

function by also clicking View > Draw dY/dX.  The comparison is strictly visual but may help 

in the interpretation of /dY dX ,  When ΔY/ΔX and dY/dX are simultaneously displayed they are 

displayed with the same, correct scale.  That is, dY/dX is not scaled as it is when displayed with 

the original data. 

2.6.17 View > Parameter Derivatives 

If a parameter is selected by clicking its entry in the parameter list, for example Q, that entry is 

highlighted in the list.  The View menu then displays the additional item, in the present example, 

“Draw dY/dQ.”  Clicking “Draw dYdQ” draws dY/dQ on the current graphical display, scaled to 

fit the display as in Figure 2-13 below.  This provides some insight into which parameters are 
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sensitive to which regions of the data.  Note that it is not necessary for any parameter to be 

varied (have its entry checked) in order to draw its derivatives.  

If Q is non-vanishing and the parameter D0 is selected then an additional item, “Draw D,” is 

offered on the View menu to display the variation in D, scaled from 0 to 2D0, over the range of 

data as shown in Figure 2-14 

 

  

2.6.18 View > Ignored Data 

This item allows the user to choose how data which have been designated to be ignored in the 

least squares fit are displayed.  Data can be designated as ignored by double clicking a data 

point, hitting the delete key when a data point is highlighted or double clicking the corresponding 

entry on the data list.  The display options include a dimmed point, a single screen pixel, or an x. 

2.6.19 View > Analysis Notes 

Displays extended analysis notes as a message box on the screen and copies the same to the 

windows clipboard.  The extended analysis notes include the values of the parameters the 

statistics of the least squares fit and scatter, and outliers (if Menu > View > Outliers is checked.)  

Along with a copy of the graph (Menu > Edit > Copy Graph) it provides a complete record of 

the analysis which can then be pasted into another application and archived. 

2.7 Edit Menu: Editing and Copying Data, Results and 
Graphs 

The “Edit” item on the Menu Bar contains several items to allow the user to paste data into the 

starting window for subsequent analysis, edit or reassign X and Y, or copy the results of the 

analysis, the currently active data, and the graphical display. 

2.7.1 Edit > Paste 

Pastes the contents of the Windows clipbord into the data entry text box on the starting screen.  

Ctrl-V works as well.  This is enabled only when the data entry text box is displayed on the 

screen as in Figure 2-2 

 

Figure 2-14  Displaying D for non-zero Q 

 

 

Figure 2-13  Displayin dY/dQ 
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2.7.2 Edit > Edit Data 

Returns to the initial display with the currently active data in the text box (see Figure 2-2) where 

it can be subsequently edited as with any text editor. 

2.7.3 Edit > Interchange X, Y 

Exchanges X for Y and Y for X and reorders the data in order of increasing X for the new values 

of X. 

2.7.4 Edit > Reassign X, Y 

If the current data file being analyzed contains more than two “columns” of data, this menu item 

becomes visible and when clicked, the screen displays the original columns of data as in Figure 

2-4  above where the columns corresponding to X and Y (and/or W) can be reassigned. 

2.7.5 Edit > Normalize Y 

Shift and rescale the Y axis so that the maximum value of Y is 1.0 and the minimum is 0.0.   

2.7.6 Edit > Copy Data 

Copy the table of displayed data onto the clipboard for subsequent pasting into a word processor 

or spread sheet program or the input text box of this program.  If a zoomed graph is displayed, 

only the data in the zoomed graph is copied.  This is useful for generating various test data sets 

for further testing or intercomparisons of computational approaches.  Note also that the displayed 

data can be saved to a file by clicking the save item on the File menu. 

2.7.7 Edit > Copy Results 

Copies a summary of the results of the least squares analysis to the Windows Clipboard.  The 

summary includes the values of the parameters and their confidence limits, the values of the 

standard deviation and data scatter, all of the information in the Analysis Notes as they appear on 

the screen, and the data included in the analysis.  (Note that following an analysis, the contents of 

the Analysis Notes are automatically copied to the clipboard.) 

2.7.8 Edit > Copy Graph 

Clicking Edit > Copy Graph brings up a dialog box, Figure 2-15, providing a number of options 

for copying a displayed graph including such items as the interface box, outliers, various 

derivatives, etc.   

The first option copies the displayed graph to the Windows clipboard for subsequent pasting into 

a word processing document.  Figure 2 13 and Figure 2 14 above were generated in this fashion.  

Alternatively,  the graphical image can be saved in a variety of graphical file formats including 

bit mapped (BMP), Graphics Interchange Format (GIF), Joint Photographic Expert Group format 

(JPEG), Portable Network Graphics (PNG), or Tagged Image File Format (TIFF) with Lempel-

Ziv-Welch (LZW) compression.  The graphics file is stored, if possible and as a default, in the 

same folder as the data file with the same file name but with the file extension replaced by bmp, 

gif, jpg, png, or tif.  The usual windows save file dialog box provides the user with the ability to 
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store the file anywhere with 

any name. The folder 

(directory) \NIST\LFPF created 

by the program in the users’ 

\Documents folder when it is 

first run is the default, fall back 

folder for saving graphical 

images. The graph can be saved 

with or without its original 

colors. X and Y axis labels can 

be added as well as the file 

name and date as a caption.  If 

the graph contains header 

information it can be included 

or ignored or replaced with a 

caption entered by the user.  If 

a header caption is added by 

the user, it is automatically copied unless the “Retain Header” box is checked, whereupon the 

header displayed on the graph will be copied.  If no header is displayed on the graph and the 

Retain Header is checked, no header will be copied, even if one is entered in the Copy Options 

form.  The font size for the axis labels can also be set with the default value being based on the 

number of pixels displayed on the graph.   Font size is specified in points, one point being 1/72 

of an inch.  The resolution (dots per inch, dpi) can be specified.  Screen resolution is typically 96 

dpi and printed graphics typically have to be at resolutions of 300 or 600 dpi.  The width of the 

image must also be specified.  All of the graphics routines are pixel or dot centered so the 

working scale for the program is determined from the specified size and resolution. The screen 

size, on the other hand, is specified in terms of pixels.  As the window is resized, the pixel values 

for the height and width of the graph are printed on the top line of the graph.  When saving a 

graphics file, only the width of the saved graph is specified.  LFPF maintains the aspect ratio of 

the graph when saving a graphics scale regardless of the resolution and width. 

2.8 Tools 
The Tools menu includes routines that were used during the development of LFPF and have been 

retained because of possible general interest. 

2.8.1 Tools > Reset All (Ctrl-R) 

Clicking Reset simply redraws the graph of the data, omitting any other lines or diagrams that 

may have been displayed.  The parameters are reset to 0 and the default parameters are checked 

in the parameter table. 

2.8.2 Tools > Remember 

Stores the currently displayed graph and, if a least squares fit has been performed, the current 

parameter values in memory to allow redrawing for comparison.  This would allow, for example, 

display of the residuals on the same graph with the original data, or comparison of the data 

 

Figure 2-15  Dialog Box for copying or saving a graph 
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scatter with the residuals (as in Figure 2-11), or two sets of data.  When graphs of data are stored 

in memory, the item View Memory (Data) on the View Menu is visible and can be checked to 

draw the memorized data on the display.  If a least squares fit is active when Remember is 

clicked, the item View Memory (Calc) on the View Menu is visible as well and can be checked 

to draw the memorized calculated graph on the display.  The data in memory remains until the 

program is terminated or a new graph is saved to memory.   

2.8.3 Tools > Log Results 

When this item is checked the results of intermediate calculations as well as the analysis notes on 

the final calculation are printed in a file with the same name as the data file being analyzed, but 

with a .log extension, and in the same folder as the data currently being analyzed.  If that is not 

allowed by the operating system, the log file is saved in the default fall back subfolder 

\NIST\LFPF in the user’s \Documents folder created by the program when it is first run.  The log 

file may be of some use in 

interpreting situations that lead to 

unexpected or bizarre results or 

program crashes. 

2.8.4 Tools > Statistics 

The program provides a means for 

performing multiple calculations on 

synthetic sets of data that differ only 

in the distribution of errors.  Initially 

these calculations were incorporated 

into the program for the purpose of 

program development and testing.  

However, the results may be of more 

general interest and therefore the 

capability has been retained and can 

be accessed through clicking the 

“Statistics” item on the “Tools” 

menu.  Using this feature, the 

reliability of the reported confidence 

intervals can be tested.  For example, 

slight model errors might be 

introduced by the linearization 

process of a truncated Taylor’s series 

(no such errors have yet been 

detected).  Were this so, the validity 

of the confidence limits calculated 

from the linearized function would 

be called into question. 

The calculation proceeds in the following way.  Baseline data are defined.  A least squares fit is 

performed on the baseline data providing the true values of the logistic function parameters.  

Following this, random normal deviates with a standard deviation of unity are generated, 

 

Figure 2-16  Analysis of Statistics Dialog Box 



 

2-29 

multiplied by a target standard deviation entered by the user, and added to the Y values of the 

baseline data.  This new set of data is then fit by least squares to the logistic function.  This can 

be repeated for any number of times under the control of the user. 

When the “Statistics” item on the Tools menu is clicked, a new dialog box appears as in Figure 

2-16Error! Reference source not found..  Several options are provided.  Enter the number of 

data sets to be analyzed and the target standard deviation.  The baseline for the data sets can 

consist of the original X and Y values themselves, i.e., the original data, or the original X values 

with Y values calculated from the current values of the parameters.  If the calculated values of Y 

are to be used as the baseline to which errors are added, the user has the additional option of non-

uniform spacing in X.  If 
X is the average separation between adjacent values of X,  ir  is a 

random, normal deviate with unit standard deviation,  and 
fs is the “X value scatter scale factor” 

entered by the user, each value of X is shifted by f X is r  giving i i f X iX X s r    as X values for 

the baseline data.  The corresponding baseline Y values, iY  , are calculated from iX  . If the “X 

value scatter scale factor” is left blank or set to zero, the baseline X values are the original values 

of X.  If, on the other hand, “Random errors in X and Y” is checked, then the values of Y are the 

values of Y calculated from the original values of X. The baseline values of Y, iY  , no longer 

correspond to the values of iX  .  The X values are therefore no longer error free.  In this case, the 

effect of errors in the X values on the confidence limits of the parameter values can be evaluated.   

If “Re-initialize each calculation” is checked, then each calculation begins with the calculation of 

initial estimates.  If not, each calculation begins with the original values of the parameters. The 

latter results in a somewhat more rapid calculation because convergence is reached more rapidly.   

If a parameter box is unchecked, its value will be held fixed at its current value in the 

calculations of all the data sets.  If this is not the first time the statistics have been tested, an 

additional option to re-initiate the random normal deviates is offered.  If unchecked, the 

generation of random errors continues from where the previous calculation left off.  

If desired, the resulting parameter values from each of the data sets analyzed can be saved by 

clicking the  Save results of individual 

analyses  button.  The results are saved 

to a text file named “Results.txt” residing 

in the same folder (directory) as the 

original data (or if not allowed by the 

operating system in the fall back directory 

\Documents\NIST\LFPF created by the 

LFPF program).  If the button  Don’t 

Save  is clicked, only a summary of all 

the data sets will be printed in the 

Analysis Notes. 

Depending on the number of data sets 

being analyzed, the calculation can last 

for a few seconds to many minutes. An 

estimate of the time required is printed in 

the Analysis Notes based on the time 
 

Figure 2-17  Dialog Box following statistical analysis 
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taken to do the first 50 datasets. 

When the analysis is complete, a message is printed on the screen similar to that in Figure 2-17.  

The option is given to continue working with the original data or to replace the original data with 

the data from the last data set analyzed.  

(Note:  If the statistics test is performed with one data set, a target standard deviation of 0, and 

the calculated values as a baseline, the last (and only) data set analyzed will consist of values 

calculated from the extended logistic function with no errors.  Opting NOT to restore original 

data will replace the data with data calculated from the displayed parameters and will be exact.  

Furthermore, the calculated profile can then be copied to the clipboard by clicking the “Copy 

Data” item of the Edit menu or saved as a new data file from the File menu.) 

After selecting yes or no, the screen will appear something like Figure 2-18 below.  

The summary of the statistics appearing in the Analysis Notes will be difficult to read but these 

results are also copied to the Windows clipboard and can be pasted into another application. For 

the analysis appearing in Figure 2-18, the contents of the Analysis Notes were pasted into this 

document, formatted, and appear following Figure 2-18. 

 
 
LFPF Version 1.3 2/27/2013 2:07:09 PM 
Summary of the analysis of 1000 sets of data based on data in the file C:\Users\William H Kirchhoff\Documents\NIST\LFPF\Sample 
Data\BgtAQp 25.txt 
using uniform weighting 
 

Number 
of values 

Parameter True 
Value 

Ave 
Value 

Difference SD of 
Ave 

Ave 
SD 

Min 
Value 

Max 
Value 

80% 90% 95% 99% 

1000 A  0 0.01 0.01 0.46 0.48 -1.76 1.52 15.2% 8.6% 4.5% 1.5% 

1000 B  100 100.01 0.01 0.33 0.32 99.05 100.91 21.8% 11.7% 5.7% 1.1% 

 

Figure 2-18  Screen shot following completion of a statistics analysis 
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1000 Xo 50 50.004 0.004 0.125 0.120 49.642 50.345 20.8% 10.8% 5.1% 1.0% 

1000 Do 4 4.002 0.002 0.105 0.104 3.596 4.351 20.3% 10.8% 5.1% 0.7% 

1000 Width (14.6%) 14.53 14.55 0.02 0.41 0.41 13.07 15.79 18.4% 9.3% 4.8% 0.9% 

1000 dY/dX W 13.18 13.17 -0.01 0.43 0.43 11.68 14.85 19.8% 9.7% 5.0% 1.0% 

1000 Q  0.05 0.0502 0.0002 0.0080 0.0081 0.0279 0.0779 18.8% 8.9% 4.5% 0.5% 

1000 ETA 0.1742 0.1745 0.0003 0.0266 0.0273 0.0938 0.2670 17.9% 8.6% 4.6% 0.8% 

1000 QD0 0.2 0.2006 0.0006 0.0315 0.0323 0.1067 0.3135 18.1% 8.3% 4.6% 0.7% 

1000 dY/dX ETA 0.1175 0.1175 0.0000 0.0172 0.0176 0.0639 0.1741 18.2% 8.9% 4.3% 1.1% 

1000 X at max dY/dX 51.497 51.499 0.002 0.264 0.270 50.712 52.466 17.9% 8.1% 3.6% 0.9% 

 Std. Dev. 1.004 0.992 -0.012 0.158  0.520 1.505 20.5% 9.6% 5.1% 0.8% 

 True SDev. 1.004 0.994 -0.010 0.140  0.628 1.474 19.0% 10.2% 4.9% 0.8% 

 Scatter 1 0.978 -0.022 0.226  0.297 2.053 40.3% 28.2% 19.7% 8.2% 

 True Sctr 1 0.982 -0.018 0.225  0.296 2.054 38.2% 26.8% 18.5% 6.2% 

 Ftest        16.8% 8.0% 3.2% 0.8% 

 Outliers        20.8% 10.0% 4.9% 0.6% 

 True Outliers        20.2% 10.3% 5.2% 1.0% 

 
As a check on the calculation of standard deviation of the asymmetry 
calculated from the half heights of dY/dX using numerical derivatives 
d(dY/dX)/dCi, the ratio of the average standard deviation of η to the 
standard deviation of the average values of η = 1.027 
 
Corr Coef 
 A  B  Xo Do Q 
A  1 0.0617 0.1651 -0.4659 -0.4975 
B  0.0617 1 0.1787 0.2004 -0.2518 
Xo 0.1651 0.1787 1 -0.2288 0.3377 
Do -0.4659 0.2004 -0.2288 1 -0.1123 
Q  -0.4975 -0.2518 0.3377 -0.1123 1 
 
Each data set contained 25 data 
For the distribution of the scatter and the standard deviation in the 1000 data sets: 
 Moment Scatter True Scatter Std. Dev. True Std. Dev. 
 Average 0.977687112 0.982028895 0.992319106 0.994393382 
 Std. Dev 0.225670465 0.224759501 0.158337107 0.139654575 
 Skewness 0.493256933 0.493528129 0.227271229 0.239418033 
 Kurtosis 0.729293315 0.768131034 -0.193102754 -0.07486338 
For the individual data sets: 
 The average skewness for the scatter was -0.001874 and for the residuals was 0.009358 
 The average kurtosis for the scatter was -0.4818 and for the residuals was -0.2052 
 The average scatter from the logistic function was 0.1663 
For these 1000 data sets, the scatter = -0.0231 ( ± 0.0629 at the  95% confidence level) + 1.0086 X the standard deviation 
The ratio of (Scatter RMS)/(Standard Deviation) ranged from 0.4419 to 1.4366 
The ratio was, on average, 0.9847 ( ± 0.203  0.260  0.311  0.408  at the 80%, 90%, 95%, 99% confidence level)  
The analyses required, on average, 3.5 iterations to reach convergence 
Tests for divergence were based on the 95% confidence level 
For each data set, the initial values of the parameters were estimated from scratch 
    1000 data sets used the Trial & error method for initial estimates. 
In the parameter value statistics above: 
   Only those parameters whose values could be evaluated in the least squares fit were included 
   The confidence limits are based on the "True" values of the parameters 
Outliers were identified only after convergence was reached which can affect the count of data in the interface 
The minimum number of data in the statistically significant interface region was 6 
The average number of data in the statistically significant interface region was 8.39 
The statistically significant interface region, based on the target standard deviation, was between X =  24 and X =  64 
The maximum interface width is 34.60 and the average data spacing is 4.000 
The ratio is  8.649858 
The maximum limit for Do averaged 4.940 ± 0.3277 
At the minimum value of X, 4.00, the fractional completeness ranged from 0.0% to 0.3% complete (True = 0.2%) 
At the maximum value of X, 100.0, the fractional completeness ranged from 100.0% to 100.0% complete (True = 100.0%) 
Initial error seed = -1 and last error value added = -0.213317558169  and the calculation took 3  seconds. 
33 sets failed the pre-interface/interface F test 
39 sets failed the post-interface/interface F test 
4 sets failed both. 
 
The following are the root mean square values of Y(obs)-Y(calc) for each datum averaged 
over all data sets. Note that they are all less than the root mean square of the errors 
added in the column labeled 'True' because the values of Y(calc) also contain errors that 
are correlated with the errors in Y(obs).  The 'adjusted' values are scaled by the square 
root of s²/(s²-s²(Ycalc)) and these should agree with the 'True' values.  If not, the data should 
be considered ill structured and the confidence limits of the affected parameters cannot 



 

2-32 

be trusted.  The sums of the squares of the rms values of Y(obs)-Y(calc) divided by the 
square of the rms value of the standard deviation is given for the pre-interface region, the 
interface region, and the post interface region.  These should reflect the number of degrees 
of freedom for each of these regions. 
 
X rms(Yo-Yc)*W adjusted True*W         
4 0.887349 0.993011 0.985487  
8 0.932877 1.03455 1.00878  
12 0.923358 1.01273 0.992343  
16 0.951506 1.03013 1.04012  
20 0.95019 1.01541 1.02482  
24 0.941412 0.997099 0.975993  Σ W(Yo-Yc)²/s² = 5.15, n =  6  
28 0.966969 1.02643 1.01935  
32 0.867965 0.942428 0.95065  
36 0.910529 1.03606 1.00863  
40 0.881504 1.05318 1.0681  
44 0.833066 1.01687 0.984773  
48 0.714806 0.987283 1.02864  
52 0.6561 0.963585 1.0067  
56 0.629513 0.972434 0.978541  
60 0.791358 0.968196 0.969662  Σ W(Yo-Yc)²/s² = 5.89, n =  9  
64 0.986982 1.04176 1.05249  
68 0.968811 1.01919 1.0212  
72 0.926975 0.978093 0.981731  
76 0.941887 0.994225 0.992789  
80 0.948788 1.00161 1.00478  
84 0.950368 1.00317 0.994723  
88 0.94707 0.999745 1.00371  
92 0.95627 1.00953 1.0237  
96 0.961496 1.01495 0.996269  
100 0.916382 0.967367 0.981157  Σ W(Yo-Yc)²/s² = 8.95, n =  10       

 

Although in this example every parameter reported was determined for every data set analyzed, 

this is not always so and for this reason, the values of the number of analyses that led to the 

values reported are given under the heading “Number of Values”.  Regardless of whether the 

original data or calculated values were selected as the baseline, the “True Values” reported are 

the values of the parameters when the “Statistics” item on the Tools Menu was clicked.  Note, 

these values can be entered into the parameter list by the user just before clicking the statistic 

menu item and need not have any relationship to the data being analyzed before clicking the 

statistics menu item. 

The “Average Value” reported is the average over the N values that were determined.  The 

“Average std dev” is the average over the N values of the standard deviation for the parameter 

returned by the least squares fits while the standard deviation of the average is just that.   The 

confidence limits for the parameter values, based as they are on the standard deviation of the fit 

which is an estimate of the standard deviation of the population of all errors, should follow a 

student’s distribution .  The percentages given in the table above are the percentage of those 

values that fall beyond the 80, 90, 95, and 99 two-tailed percentile values for a student’s t 

distribution.  Because the true standard deviation is known, the standard deviations of the 

parameters can by scaled by the ration of the standard deviation of the population divided by the 

standard deviation of the fit and those values should follow a normal distribution.  This has been 

tested and found to be so. 

In the above example, good agreement with a student’s t distribution resulted, as well they 

should have, including the statistics associated with the normal distribution of those data whose 

value of Yi(obs) – Yi(calc) lie outside of the 80%, 90%, 95% and 99% confidence limits and are 

identified as “outliers” in the analysis.  These should follow the statistical distribution dictated 

by:  



 

2-33 

2 2 2( ) ( )obs calc calc

i i is Y Y s s Y     (2-3) 

where s
2
 is the standard deviation of the data (which should follow a χ

2
 distribution) and  

2

1 1

( )
calc calcm m

calc cvi i
i jk

j k j k

Y Y
s Y

C C 

 


 
 V   (2-4) 

(See Equation (4-16) and accompanying discussion.)  The – sign in equation (2-3) arises from 

the fact that the error in calc

iY  is correlated with the overall standard deviation through the 

variance-covariance matrix, 
cv

jkV , which is a multiple of s
2
.  Whereas the uncertainties in Yi 

should follow a normal distribution, the uncertainties in 2 ( )calc

is Y should follow a student’s t 

distribution.  In counting outliers, we use the confidence limits of the normal distribution as if 

our sample size were infinite.  For higher values of the confidence limit and lower values for the 

number of degrees of freedom, we will underestimate the number of data falling outside the 

confidence limits.  This, fortunately, corresponds to the guidance that outliers should not be 

identified as outliers based solely on their falling in the tails of the normal distribution but on 

factors related to the manner in which their values were measured. 

The F test percentages are those for which the square of the standard deviation divided by the 

square of the data scatter from third differences is greater than the value of  (see 

Equation (4-30) and its accompanying discussion.)  While fewer than expected in the current 

example fail the F test, at all confidence levels, 16.8%, 8.0%, 3.2%, 0.8% compared to 20%, 

10%, 5%, 1%, they are close enough to be useful in signaling the possible presence of model 

errors.  Of interest, this underestimation remains more or less constant as the number of data in 

each set increases from 25 to 1000 (see Table 3-4 in the following chapter.) 

Much of the remaining report from the statistics analysis deals with tests of the consequences of 

the possible influence of systematic error.  While most of the information is straightforward, the 

items “33 sets failed the pre-interface/interface F test, 39 sets failed the post-interface/interface F 

test, 4 sets failed both.” requires additional explanation.   

When the calculation of the 1000 data sets was repeated with errors in the X values as well as the 

Y values, the resulting statistics did not follow the normal and student’s t distributions because 

the effect of introducing errors into the X values causes those errors to be interpreted as errors in 

Y.  Those errors will be greater in the transition region where small changes in X result in large 

changes in Y whereas in the asymptotic regions, errors in X will have no effect on the perceived 

errors in Y.  Hence the errors are not randomly distributed and the statistics resulting from the 

calculation are wrong.  The effect of errors in the X values can only be seen in the display of 

residuals in Figure 2-19 below which also includes the statistically significant interface box.  

If we were to perform the F test on those data in the pre-interface region and those data in the 

interface region, that is comparing the ratio of the variance of the data in the interface region 

over the variance in the pre-interface region with the value of F from the F distribution with the 

appropriate number of degrees of freedom of the two populations and the stated confidence level, 

we would see that the two sets of residual standard deviations represented different populations.  

A similar statement can be made for the ratio of the variance from the post-interface region to 

that of the interface region.  In the example for which only the Y values contained errors, the 

ratios of the variances were less than the value of F for the confidence level and the number of 

1 2, ,1F  
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degrees of freedom. For the extreme case data, represented by Figure 2-19, the F test values were   

F(interface/pre-interface) = 68.876 compared to F(0.95) = 6.094 and F(interface/post-interface) = 

125.138 compared to F(0.95) = 3.293.  This will be discussed further in Section 4.2.3 below. 

 

Figure 2-19  Residuals when all errors are in the values of X.  The box represents the statistically significant 

interface region used for the F test. 

2.8.5 Tools > Smooth Data 

When Smooth Data on the Tools menu is selected, an n (where n is the square root of the number 

of data) point quadratic fit of the data is performed, replacing the center datum with its calculated 

value from the fit.  The purpose of this is to examine the effects of one particular type of data 

smoothing on the statistics associated with the least squares fit.  In particular, examining the 

residuals shows the effects of the averaging.  This "smoothing"can be performed as often as 

desired.  Once data has been smoothed at least once, the option of restoring the original data is 

offered on the Tools menu. 

Smoothing alters the functional dependence of the resulting values of Y on X.  If the original 

data obey an extended logistic function, the smoothed data will not and will exhibit systematic 

errors characteristic of model errors.   It is recommended never to smooth the data, or, if doing 

so, to use methods that do not introduce correlation between the data.  The fit of the raw data to 

the extended logistic function is itself a more rational kind of smoothing for the purpose of 

estimating the interface properties of position, width, and asymmetry. 

2.8.6  Tools > Straight Line 

Performs a least squares fit of the displayed data to a straight line, displays the resulting line on 

the graph, and prints the equation for the line on the top of the graph.  If a selection box is 

displayed, the line is estimated for those points in the selection box only. 

2.9   Help 

Clicking the help menu displays an abbreviated version in html format of the information in this 

section. 
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2.10  Conclusion 

While the preceding description of the details of the working of the LFPF program may seem 

overly complicated, it should nevertheless prove to be intuitive and the user is encouraged to 

simply try it, using this documentation as a reference.  If the program crashes because of some 

circumstance unanticipated by the author, simply restart the program.  The authors would greatly 

appreciate any feedback on problems encountered it using this application.
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3 Results of analyses of synthetic interface data using the 
extended logistic function. 

The easiest and most useful approach to assessing the performance of a computer program 

written to implement the analysis of interfacial data has been to construct data sets calculated 

using the extended logistic function to which random, normally distributed errors have been 

added.  The random, normal deviates were generated using a Basic version of the Fortran 

function codes  GASDEV and RAN1 found in Press, W.H., Flannery, B.P., Teukolsky, S.A. and 

Vetterline, W.T., “Numerical Recipes, The Art of Scientific Computing”, Cambridge University 

Press, 1989,  191-203.  100,000 random, normal deviates generated by these algorithms were 

compared with the table of 100,000 random normal deviates originally published in 1955 by the 

Rand Corporation (“A Million Random Digits with 100,000 Normal Deviates,” Rand 

Corporation monograph no. MR-1418-RC, Rand Corpopation, Santa Monica, CA 2001.)  The 

two sets of numbers had comparable first, second, third, and fourth moments. 

Ten thousand data sets consisting of 100 X,Y data pairs, 25 X,Y data pairs, and 7 X,Y data pairs 

were analyzed. The values of X in each of the data sets were evenly spaced.  Random errors with a 

standard deviation (square root of the variance) equal to 1% of the separation between A and B 

were added to the Y values only.  The results of these analyses are presented in Tables 1 – 3. 

Table 3-1  Extended Logistic Function fit to 1000 data sets of 100 data each 

Parameter 
True 
Value 

Average 
Value 

Std Dev 
of Ave 

Average 
Std Dev 

Minimum 
Value 

Maximum 
Value 

% Beyond Confidence Limits 

80% 90% 95% 99% 

A  0 0.002 0.23 0.23 -1.15 0.82 20.2% 10.2% 5.4% 1.2% 

B  100 100.00 0.16 0.16 99.33 100.63 19.4% 9.8% 4.9% 0.9% 

X0 50 50.00 0.06 0.06 49.75 50.21 19.8% 10.0% 5.1% 1.0% 

D0 4 4.00 0.05 0.052 3.81 4.24 20.2% 10.0% 4.8% 1.1% 

Width (14.5%) 14.53 14.53 0.20 0.20 13.79 15.53 20.2% 10.2% 5.2% 0.9% 

Width (dY/dX) 13.18 13.17 0.21 0.22 12.34 14.05 19.3% 9.6% 4.9% 1.0% 

Q  0.05 0.0500 0.0041 0.0040 0.0353 0.0669 19.8% 10.2% 5.1% 1.1% 

η 0.174 0.174 0.014 0.014 0.123 0.233 19.8% 10.4% 5.0% 1.2% 

QD0 0.2 0.200 0.016 0.016 0.140 0.271 19.7% 10.4% 5.1% 1.2% 

η (dY/dX) 0.118 0.118 0.009 0.009 0.084 0.154 19.9% 10.5% 5.1% 1.2% 

X at (dY/dX)max 51.50 51.50 0.14 0.14 50.97 52.05 19.7% 10.0% 5.3% 1.2% 

Std. Dev. 1 0.997 0.073  0.755 1.285 20.2% 10.0% 5.1% 1.1% 

True Std. Dev. 1 0.997 0.071  0.749 1.267 20.3% 10.2% 5.3% 1.0% 

Scatter 1 0.988 0.112  0.590 1.458 36.2% 24.1% 16.5% 7.1% 

True Scatter 1 0.994 0.109  0.610 1.458 39.7% 27.6% 19.3% 8.8% 

F Test 17.5% 7.9% 4.0% 1.0% 

Outliers 20.2% 10.0% 5.0% 0.9% 

True Outliers 20.0% 10.0% 5.0% 1.0% 



 

3-2 

Table 3-2  Extended Logistic Function fit to 1000 data sets of 25 data each 

Parameter 
True 
Value 

Average 
Value 

Std Dev 
of Ave 

Average 
Std Dev 

Minimum 
Value 

Maximum 
Value 

% Beyond Confidence Limits 

80% 90% 95% 99% 

A 0 0.00 0.48 0.48 -1.82 1.67 20.2% 10.1% 5.0% 1.1% 

B 100 100.01 0.32 0.32 98.76 101.15 20.0% 9.8% 4.9% 1.0% 

X0 50 50.00 0.12 0.12 49.54 50.43 20.0% 10.4% 5.1% 0.9% 

D0 4 4.00 0.10 0.10 3.60 4.46 19.9% 9.9% 5.2% 1.0% 

Width (14.5%) 14.53 14.55 0.41 0.41 13.07 16.29 19.6% 9.7% 5.1% 1.1% 

Width (dY/dX) 13.18 13.16 0.43 0.43 11.43 14.85 19.7% 9.5% 4.8% 1.0% 

Q 0.05 0.050 0.008 0.008 0.021 0.081 19.8% 9.8% 4.7% 0.9% 

η 0.174 0.175 0.027 0.027 0.076 0.274 19.7% 10.0% 4.9% 0.9% 

QD0 0.200 0.201 0.032 0.032 0.086 0.322 19.6% 9.9% 4.8% 0.8% 

η (dY/dX) 0.118 0.118 0.018 0.018 0.052 0.178 20.0% 10.4% 5.3% 1.0% 

X at (dY/dX)max 51.50 51.50 0.27 0.27 50.40 52.50 19.9% 10.2% 5.1% 1.0% 

Std. Dev. 1 0.988 0.158  0.449 1.647 20.1% 10.1% 5.3% 1.0% 

True Std. Dev. 1 0.991 0.141  0.515 1.589 19.9% 10.0% 4.9% 1.0% 

Scatter 1 1.134 0.280  0.290 2.157 58.3% 43.4% 32.2% 15.0% 

F Test 14.0% 9.1% 5.4% 1.6% 

Outliers 20.8% 10.0% 4.7% 0.6% 

True Outliers 20.1% 10.1% 5.0% 1.0% 

 

Table 3-3 Extended Logistic Function fit to 1000 data sets with 7 data each 

Parameter 
True 
Value 

Average 
Value 

Std Dev  
of Ave 

Average 
Std. Dev 

Minimum 
value 

Maximum 
value 

 
   

80% 90% 95% 99% 

A  0 0.70 1.12 0.98 -4.75 3.78 30.1% 14.8% 7.2% 1.5% 

B  100 100.17 0,63 0.63 97.85 102.83 17.6% 8,7% 4.5% 1.0% 

X0 50 49.39 0.70 0.66 46.10 51.33 43.7% 25.2% 10.8% 2.2% 

D0 4 3.999 0.163 0.188 3.372 4.653 13.9% 6.9% 3.4% 0.9% 

Width (14.5%) 14.53 14.36 0.68 0.65 12.26 18.01 18.6% 8.7% 4.4% 0.8% 

Width (dY/dX) 13.18 13.55 0.93 1.26 7.95 16.13 20.8% 9.8% 5.3% 1.7% 

Q  0.05 0.030 0.040 0.040 -0.168 0.114 24.4% 12.9% 6.6% 1.3% 

η 0.174 0.099 0.134 0.128 -0.447 0.365 24.8% 13.1% 6.6% 1.3% 

QD0 0.2 0.115 0.156 0.154 -0.606 0.452 24.7% 13.1% 6.7% 1.3% 

η (dY/dX) 0.118 0.066 0.088 0.081 -0.249 0.222 25.0% 13.3% 6.8% 1.4% 

X at dY/dX)max 51.50 50.39 1.85 1.72 43.64 53.59 15.6% 8.4% 4.2% 0.8% 

Std. Dev. 1.003 1.020 0.523 

 
0.009 3.054 30.2% 18.1% 10.7% 3.2% 

True Std. Dev. 1.003 0.967 0.266 

 
0.223 2.235 20.9% 10.2% 5.1% 1.1% 

Scatter “1” 14,2 0.7 

 
11.5 16.9 100% 100% 100% 100% 

F Test 0.0% 0.0% 0.0% 0.0% 

Outliers 28.3% 8.9% 6.0% 5.3% 

True Outliers 20.1% 10.2% 5.2% 1.0% 

 

The distribution of results appearing in Tables 1 - 3 are consistent with what would be expected 

from random errors, normally distributed.  The number of parameter values falling outside their 

80%, 90%, 95%, and 99% confidence limits is consistent with a normal distribution.  The square 

root dependence of the parameter standard deviations on sample size is also obvious in 

comparing the tables.  Since, in each data set, errors were drawn from a population of random 

normal deviates with a standard deviation of 1.000, one can compare the “true” standard 

deviation for each data set with that returned by the least squares fit of an exact extended logistic 
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function to which those errors had been added.  These are given in Tables 1 - 3 with the heading 

“True Std. Dev.”  It can be seen that the least squares fit of the extended logistic function returns 

consistent estimates of the standard deviations when compared to the values added to the 

calculated data. This is also borne out in the comparison of the average of the standard deviations 

of each parameter returned by the fits with the standard deviation of the average of the parameter 

values returned by the fits.  As the number of data in the sets increases, these numbers become 

closer.   When the number of data in each set was 7, however, the beginnings of the breakdown 

in the statistics can be seen with lower or higher than expected values falling outside the 

confidence limits. In fact, the value of Q (and associated asymmetries) could be determined for 

only 6,400 of the 10,000 data sets.  With only 2 or 3 degrees of freedom, it is surprising that the 

confidence limits are obeyed as well as they appear to be.  In fact, it is fortuitous.  In these data 

sets, the separation between data was equal to 2.5 0D  with, on average, 2.3 data values falling in 

the statistically significant interface region.  When the spacing was increased to 3.5 0D  with, on 

average, 2 data values falling in the statistically significant interface region, the fits were not 

nearly as good with larger ranges for the returned values, particularly 0X , and larger than 

expected numbers of parameter values falling outside their confidence regions.  If the number of 

data in each set is increased from 7 to 10, all sets returned values for Q and the distribution of 

parameter errors followed the student’s t distribution more closely.  Similarly, when the standard 

deviation of the errors added to the data sets (of 7 data) is decreased to 0.2 % of the separation 

between A and B, the distribution of errors again follows a student’s t distribution. 

In Table 3-4, the data scatter estimated from third differences is compared with the standard 

deviation of the fit as a function of the number of data.  One thousand data sets were analyzed.  

The sets contained varying number of data from 7 to 4000.  

The F test compares the value of  
2

3 /d s with the value of F for the F distribution for the 

corresponding degrees of 

freedom (See Section 4.2.3 

below.)  For the data sets 

consisting of 100 data, 20% of 

the sets should give values of 

 
2

3 /d s < (1.00 -0.10)
2
 or > 

(1.00+0.10)
2
 and out of 1000 

data sets, 15.6% did.  This 

reflects the effect of the 

correlation between 

neighboring third difference 

values, showing a broader 

distribution for the data scatter 

than for a 2 distribution.  

Except only for the very small 

number of data per set, the 

distribution of data scatter was 

sufficiently close to a normal 

distribution that it might prove 

 

Figure 3-1  Scatter as a function of the Residual Standard 

Deviation for 1000 analyses of data sets containing 100 data. 
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useful for signaling the possible presence of systematic errors.  However, in the following 

section dealing with systematic errors, it proved for the case tested, only marginally useful. 

Table 3-4  Comparison of Scatter and Standard Deviation for 1000 sets of data with varying numbers of data 

in the set 

Number of 
Data 

 

Average
Ratio of

3 /d s
 

 

Confidence Limits of Ratio Min 
Value 

Max 
Value 

% Failing the F test beyond F 
distribution confidence limits 

80% 90% 95% 99% 80% 90% 95% 99% 

4000 1.00 0.016 0.021 0.025 0.033 0.959 1.039 13.7% 5.9% 2.2% 0.2% 

1000 1.00 0.033 0.042 0.051 0.067 0.895 1.087 16.7% 6.5% 1.9% 0.3% 

100 1.00 0.10 0.13 0.16 0.21 0.70 1.24 15.6% 6.0% 2.7% 0.7% 

25 0.98 0.20 0.26 0.31 0.41 0.44 1.44 16.8% 8.0% 3.2% 0.8% 

10 0.78 0.28 0.36 0.42 0.56 0.12 1.22 40% 21% 11% 3% 

7 0.59 0.23 0.29 0.35 0.46 0.19 1.04 56% 25% 14% 4% 

 

It is interesting to note that as the number of data increase, the spread in the ratio of scatter to 

standard deviation decreases, but the number of values falling beyond the 2  distribution 

confidence limits remains stable.  This reflects the parallelism of the scatter and standard 

deviations apparent in Figure 3-1exhibiting the full set of values of the scatter, 3d  as a function 

of the residual standard deviation,  s,  for 1000 analyses of 100 data.   

3.1 Notes on Systematic (Model) Errors 
As pointed out in this documentation on several occasions, the uncertainties presented by the 

least squares fit of the logistic function have little significance beyond what to expect for the 

parameter values were the measurement of the profile to be repeated because of systematic 

deviations from a pure logistic function.  The results of these tests do demonstrate that the 

extended logistic function can be used to provide a width and asymmetry of a profile in a 

systematic and reliable manner. 

The above tests were repeated with randomly spaced values of X and with different random 

spacing patterns for each data set.  No change in the values of the parameters or  the distribution 

of the reported confidence limits was detected. 

The tests were repeated yet again, but this time with random errors added to the X values. That 

is, for each value of X a value of Y was calculated after which a random error was added to the 

X value.  In this case, the uncertainties for the interface parameters X0, D0, and Q, were slightly 

underestimated but not by much as long as the errors in X produced apparent errors in Y 

comparable to the true errors in Y.  On the other hand, the uncertainties for the asymptotes, A 

and B were overestimated.  As anticipated, when errors were added to the values of X alone, the 

confidence limits on the values of the parameters no longer reflected the student’s t distribution.  

This is not surprising since placing all the errors in X gives rise to effective errors in Y that are 

larger in the interface (where Y is rapidly varying) and vanishing in the wings of the distribution 

which can be seen in examining the residuals shown in Figure 3 2. The student’s t distribution in 

this case is based on the incorrect assumption that the errors in the wings of the profile are the 

same as the errors in the interface region; hence the confidence limits for A and B are 

overestimated while those for X0, D0 and Q are underestimated as judged by the overall standard 

deviation for all the data.  This is a form of a model error, the model being a normal distribution 

of errors in Y.  In this case the F test indicated model errors in all 1000 sets.  
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When, instead of an exact extended logistic function, an incomplete gamma function,

  1

0

, 1/ ( )

x

t ss x s e t dt     , is used as the basis for generating test data, systematic, i.e., model, 

errors will be present which can affect the interpretation of the results.  The incomplete gamma 

function, unlike the error function, presents an asymmetric profile.  A fit of the extended logistic 

function to an incomplete gamma function is shown in Figure 3-3.   

 

Figure 3-3 Analysis of data representing an incomplete gamma function 

While the agreement between the calculated fit and data appears quite good in Figure 3-3, the 

residuals, the values of the incomplete gamma function minus the fitted logistic function, clearly 

show the presence of model errors in Figure 3-4.  The standard deviation of the fit is 0.5199, half 

a percent of the range in Y, compared to the estimate of the standard deviation from third 

differences of 0.0039 (with the systematic error minimized though not eliminated.)  For 

comparison, the data scatter (third differences) are also displayed in Figure 3-4 and seen to be 

barely discernible.  The standard deviation estimated by third differences is due exclusively to 

the functional difference between neighboring residuals.  (The value of F = (0.52)
2
/(0.0039)

2
 = 

17,777 was far in excess of F95,99,0.95 = 1.40 though such a comparison is inappropriate for 

completely non-statistical errors.) 

 

Figure 3-2 Residuals when all errors reside in X values but are assumed to reside in Y values.  The 

rectangle represents the statistical interface region 
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When random normal deviates are added to the incomplete gamma function and then analyzed 

with LFPF the presence of systematic errors is detectable but much less so.  

 

Figure 3-4  Residuals from a fit of the extended logistic function to an incomplete gamma function along with 

the data scatter (red points, deviation from 0 barely discernible.) 

Two series of numerical experiments were performed.  In both cases, 1000 data sets, based on  

the 100 data values depicted in Figure 3-3 and Figure 3-4, were analyzed.  To each data set, 

random normal deviates were added.  In the first series, the standard deviation of the random 

errors, 0.5, was comparable to the standard deviation of the fit of the exact incomplete gamma 

function of  Figure 3-3.  The results are summarized in Table 3 5. 

Table 3-5  Summary of 1000 fits of the extended logistic function to an incomplete gamma function to which 

random errors comparable to the systematic error have been added.   

Parameter True Value Average Difference 
Average 
Standard 
Deviation 

Per Cent Beyond Confidence Intervals 

80.0% 90.0% 95.0% 99.0% 

A 0 -0.20 -0.20 0.13 68.4% 47.8% 28.9% 7.2% 

B 100 100.64 0.64 0.17 99.6% 99.6% 99.2% 95.2% 

X0 49.17 49.23 0.057 0.05 47.2% 28.1% 15.8% 2.5% 

X at (dY/dX)max 47.5 48.08 0.58 0.11 99.9% 100.0% 100.0% 100.0% 

Width 

12 to 88% 18.29 18.61 0.32 0.17 79.5% 60.6% 44.0% 14.3% 

14.6 to 88.4% 16.36 16.41 0.05 0.15 9.3% 2.8% 0.8% 0.0% 

16 to 84% 15.46 15.41 -0.05 0.14 10.5% 4.0% 1.2% 0.0% 

20 to 80% 13.07 12.84 -0.23 0.11 86.2% 70.6% 53.5% 22.4% 

25 to 75% 10.47 10.15 -0.32 0.09 99.9% 99.8% 99.2% 92.2% 

dY/dX half hgt 17.74 15.73 -2.00 0.15 99.9% 100.0% 100.0% 100.0% 

η 

12 to 88% -0.125 -0.128 -0.003 0.010 7.2% 1.4% 0.4% 0.0% 

14.6 to 88.4% -0.112 -0.113 -0.001 0.009 5.7% 1.2% 0.3% 0.0% 

16 to 84% -0.106 -0.107 -0.001 0.009 5.1% 0.9% 0.2% 0.0% 

20 to 80% -0.090 -0.089 0.001 0.007 5.7% 1.3% 0.3% 0.0% 

25 to 75% -0.072 -0.071 0.001 0.006 7.4% 2.0% 0.3% 0.1% 

dY/dX half hgt -0.130 -0.077 0.053 0.006 99.9% 100.0% 100.0% 100.0% 

Residual Std. Dev. 0.5017 0.7215 0.2198  100.0% 100.0% 100.0% 100.0% 

“True“ Var. 0.5017 0.5004 -0.013  21.5% 10.1% 5.3% 1.3% 

Data Scatter 0.4984 0.4946 -0.0038  38.2% 27.6% 17.7% 7.1% 

Outliers     20.6% 10.2% 5.0% 0.8% 

3 /d s F test  
   

 99.8% 98.9% 96.3% 87.1% 
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The width, 
fW , and asymmetry, 

f , are given for commonly used values for f .  The true 

values of the parameters are those of the exact incomplete gamma function itself.  Because the 

parameters Do and Q have no relevance to the incomplete gamma function, there are no “true” 

values for these quantities and they are not included in the table. The average value is the 

average over the 1000 data sets.  The confidence limits for the parameters are derived from the 

values of the parameters determined by the fit minus the “true” value divided by the standard 

deviation of the parameter from the fit.  These ratios should follow a student’s t distribution and 

the percentage of values falling beyond the student’s confidence limits for 95 degrees of freedom 

appear in the table. 

In the second series, random normal errors from a population with a standard deviation twice that 

of the first series, i.e. twice the systematic error, were added.  The results are summarized in 

Table 3-6.  

Table 3-6  Summary of 1000 fits of the extended logistic function to the incomplete gamma function to which 

random errors twice the systematic error have been added.   

Parameter 
True 
Value 

Average 
Average 
Standard 
Deviation 

Per Cent Beyond Confidence 
Intervals 

80.0% 90.0% 95.0% 99.0% 

A 0.00 -0.20 0.20 37.0% 21.8% 11.3% 3.2% 

B 100.00 100.64 0.26 89.3% 81.5% 69.0% 41.5% 

X0 49.17 49.23 0.07 30.5% 17.8% 10.2% 2.2% 

X dY/dX max 47.50 48.08 0.17 98.7% 97.4% 92.6% 78.8% 

Width 

12 to 88% 18.29 18.61 0.27 47.8% 31.2% 18.9% 5.1% 

14.6 to 88.4% 16.36 16.41 0.23 17.0% 7.1% 2.3% 0.3% 

16 to 84% 15.46 15.41 0.22 15.8% 7.8% 3.3% 0.2% 

20 to 80% 13.07 12.84 0.16 55.6% 43.8% 32.1% 15.2% 

25 to 75% 10.47 10.15 0.14 86.5% 76.5% 63.3% 37.0% 

dY/dX width at half hgt 17.74 15.74 0.23 99.6% 99.7% 99.7% 99.7% 

η 

12 to 88% -0.125 -0.128 0.016 13.8% 5.3% 1.7% 0.2% 

14.6 to 88.4% -0.112 -0.113 0.014 13.4% 5.1% 2.0% 0.1% 

16 to 84% -0.106 -0.106 0.014 13.6% 4.7% 2.1% 0.1% 

20 to 80% -0.090 -0.089 0.010 20.2% 10.7% 5.1% 1.0% 

25 to 75% -0.072 -0.071 0.009 13.5% 5.9% 2.2% 0.1% 

dY/dX width at half hgt -0.130 -0.077 0.010 99.6% 99.7% 99.7% 99.7% 

Variance 1.00 1.1287  20.9% 10.9% 5.2% 1.4% 

“True“ Var. 1.00 1.0007  22.4% 10.8% 5.7% 1.8% 

Data Scatter  0.9968  43.9% 32.4% 22.2% 10.6% 

3 /d s F test  
   67.2% 47.6% 30.3% 11.8% 

 

The extended logistic fit gave a residual standard deviation of s = 1.13 ± 0.08 in good agreement 

with the true value of 1.0.  For the incomplete gamma function, the width and asymmetry as 

measured in the vicinity of f  = 15% gave good agreement with the true value.  On the other 

hand, the agreement between the maximum of dY/dX from the logistic function and that from 

the incomplete gamma function as well as the width at half height and the corresponding value of  

 were quite poor compared with the standard deviation for these quantities returned by the fit.  

Agreement is much better the smaller the asymmetry.  Different systematic differences may give 

better agreement at different percentage points. 

If, instead of comparing the values of the parameters with their “true” values, we made the 

comparison with the average of the 1000 values returned from the individual fit, the number of 
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values falling beyond the confidence intervals proved to be less than the expected number.  This 

is to be expected because each set has the same systematic error which the average over all sets 

takes into account.   But this also shows that as long as the systematic error is constant, repeated 

measurements will result in differences from set to set less than the statistics associated with a 

normal distribution of errors would indicate. 

The F test, invoked to compare the standard deviation of the fit with the data scatter estimated 

from third differences, proved to be a moderately strong test for the second series with 30% of 

the sets failing at the 95% level.  Had a smaller number of data been used, the distribution of  F 

test failures would be just that expected for two samples from the same population of errors. 

The usual means for estimating the presence of systematic errors is in examination of the 

residuals shown in Figure 3-5 to Figure 3-7 below.   

 

Figure 3-5 Residuals from a fit of a logistic function to an incomplete gamma function with random normal 

errors comparable to the systematic error.  The residuals from the fit of the exact incomplete gamma function 

are shown in red.  The systematic error can be easily discerned in the residuals from the data with random 

errors plus systematic error. 

 

Figure 3-6  Residuals from a fit of a logistic function to an incomplete gamma function with random normal 

errors twice that of the systematic error.  The residuals from the fit of the exact incomplete gamma function are 

shown in red.  The systematic error can still be discerned but is aided by the superposition with the 

systematic error. 

Figure 3-5 corresponds to one of the data sets contributing to Table 3-5 with random errors 

comparable to the systematic error. The systematic error is obvious.  Figure 3-6 corresponds to 

one of the data sets contributing to Table 3-6 with random errors twice that of the systematic 

error.  In this case, the systematic error is less obvious but easily seen when superimposed with 

the systematic error (from a fit of the exact incomplete gamma function data.)  If we look at the 

same residuals without the random error superimposed, Figure 3-7, it is not at all obvious that a 

systematic error would have been detected.  If the residuals in Figure 3-5 are fit with a Fourier 

series five terms are found to have t values (parameter value divided by its standard deviation) 

greater than the 95% confidence limit.  Moreover, the inclusion of these five terms reduced the 

standard deviation of the fit below its lower chi-square confidence limit and comparable to the 

added random errors.  If the residuals in Figure 3-6 are fit with a Fourier series, no terms are 

found to be significant. 
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Figure 3-7  Residuals from a fit of a logistic function to an incomplete gamma function with random normal 

errors twice that of the systematic error.  This is the same graph as that appearing in Figure 3-6 but without 

the systematic error superimposed, the systematic error in the noisy data is less obvious. 

On the other hand, had we performed the same 

numerical experiments with data sets consisting of 

only 25 data, it would not have been possible to 

spot the systematic error. 

In line with the observation made above that the 

asymptotic data appear to absorb the systematic 

errors, data from the central half of the data were 

analyzed, throwing out the upper and lower 

quartiles.  The number of parameters exceeding 

their confidence levels increased, particularly for 

the interface parameters 
0 , , andf fX W  .  When 

the average values are substituted for the true values, the values falling outside the confidence 

levels were about  3/4 as many as expected.  The residuals of the set giving the largest value of 

      /f f fW obs W true s W , where  fs W  is the standard deviation of Wf from the least 

squares fit, show no hint of a systematic error as can be seen in Figure 3-8. 

Does any of this really matter?  Probably not since model errors are generally unknown so that 

the measured profile, even though it may contain systematic differences from a logistic function 

profile, will generally be close enough that the model errors will be small or even undetectable.  

The analysis in terms of the logistic function gives a central position, a width, and an asymmetry 

to a measured profile that can serve as a description of a depth profile or the lateral resolution of 

a surface line scan. 

3.2 Difficult Data and Analysis Instabilities 
In the preceding discussion, all of the data sets discussed included values in the asymptotic 

regions and at least three data with values lying between the asymptotes and more than a 

confidence limit away from each asymptote (which we call here the statistically significant 

interface region, see Section 2.4.1 above).  In all cases, the standard deviations were one percent 

of the separation between the asymptotes.  Data this well behaved may be encountered often, but 

not always.  We therefore discuss briefly three cases of difficult data, namely, incomplete data 

for which one of the asymptotes is not reached, i.e. where the values at one end or the other are 

more than 5% of the asymptotic separation away from the corresponding asymptote; very sharp 

interfaces in which only one datum or none falls in the statistically significant interface region; 

and data with errors on the order of 10% or greater of the separation between asymptotes, so-

called noisy data. 

Figure 3-8 Residuals of a fit of the central 49 data 

points from data consisting of an incomplete 

gamma function with errors on the order of twice 

the systematic error 



 

3-10 

The extended logistic function is continuous and well behaved (with the exception of a 

singularity when D → 0, with analytic first derivatives of Y with X and first derivatives of Y 

with each of the function’s parameters.  However each parameter is sensitive only to certain 

regions of the profile.  A (as well as A′ and A″) is sensitive to the pre-interface and the early 

stages of the interface and B (as well as B′ and B″) to the late stages of the interface and the post-

interface region.  The interface parameters X0, D0, and Q are sensitive only to data in the 

interface, significantly distant from either asymptote, i.e. to data in the statistically significant 

interface region.  In addition, correlation between parameters (such as Q and A′ if Q is positive or 

Q and B′ if Q is negative) can cause indeterminacy in the parameters and the iterative process can 

not only converge slowly, it can also diverge. 

Generally, a fit of all the desired parameters is first attempted and if it appears the iterative 

procedure may be diverging, certain parameters are held fixed at predetermined values 

depending on the parameter and the structure of the data as revealed by the nature of the 

divergence.  The divergence tests include the following: 

 A 10% increase in the standard deviation of the fit from one iteration to the next when 

the number of parameters being varied has not changed 

 An increase by a multiplicative factor on the order of 2 (the value of the normal 

distribution confidence limit for the selected confidence level is the actual, somewhat 

arbitrary, factor chosen) in the standard deviation of any parameter value when the 

number of parameters being varied has not changed. 

 A correction to D0 that would make its value negative or confidence limits for D0 that are 

larger than the magnitude of D0, i.e., include 0 in the range. 

 A correction to X0 that would move its value beyond the interface width (by default the 

14.6% and 85.4% limits) or confidence limits for X0 that are greater than the interface 

width 

These tests are performed before the corrections are added to the parameters being varied.  When 

any of these tests indicates divergence, one of the parameters being fit is fixed at its current value 

or some predetermined value, depending on the situation, and corrections to the remaining 

parameters are ignored for that one iteration where the divergence was noted.  Descriptions of 

the actions taken are included in the analysis notes, examples of which will appear in the 

following sections. 

3.2.1 Incomplete Profiles 

If the data being fit do not reach one or another of the asymptotes, it becomes problematic to 

form an initial estimate of the asymmetry parameter Q because the value of Q depends primarily 

on the difference in curvature in the profile near the pre- and post-interface asymptotes.  It may 

still be possible to determine Q if the level of noise in the existing data is small, but it is 

generally not possible to make an initial estimate for the value of Q. Hence Q is initially set to 

zero but may still be varied in the iterative analysis. For the same reason, the slope of the 

undeveloped asymptote is held fixed at 0.  A typical result appears in Figure 3-9 below where 

only the data in the displayed selection box have been included in the fit in order to demonstrate 

effect of an incomplete profile. 
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Figure 3-9  Fit to incomplete data.  Only data in the box were included in the fit.  The gray area represents 

the confidence limits for the value of Y calculated from the extended logistic function 

  The Analysis Notes will contain a message similar to: 

 

Fitting 1000 data sets, based on the logistic function with random normal errors added but with 

the upper, in this case more rapidly converging, portion of the profile incomplete resulted in 

analyses similar to the one pictured in Figure 3-9.  All 1000 analyses produced values for all 

parameters including Q and B.  The estimated degree of completion from the analyses varied 

from 52% to 94% (true value = 81%) with corresponding values of B ranging from 160 down to 

85 (true value = 100), width from 16.23 down to 9.8 (true value 11.3) and the asymmetry from -

.01 to +0.26 (true value = 0.138.)  Figure 3-10 shows the fits of the data set with the most 

negative value of ( )t B  (  ( ) /calcB B s B  ) and most positive value of ( )t B .  For all the 

parameters the distribution of parameter values was symmetric above and below their true values 

but on the most negative side, the uncertainties on B were typically underestimated. 

 When the lower portion, the more slowly converging portion, of the profile was incomplete and 

A was poorly determined, only about 97% of the data produced a stable value for A.  In this case 

the distribution of values of ( ) ( ) / ( )calct A A A s A  ) gave fewer values at the 80% confidence 

level than expected and more values at the 99% confidence level than expected.  

At the final point, X =  55, the interface is only 75.12% complete.  The final asymptote is 
not reached and the confidence limits for Xo, Do, Q, and B may be underestimated. 

 

Figure 3-10  Fit to incomplete incomplete data:  (a) data set with the most negative value for t(B)  (b) data 

set with the most positive value for t(B).  Both data sets based on the same underlying function. 

 



 

3-12 

If one were limited to the incomplete data alone, then there would be nothing more one could do 

other than holding B fixed at its true value supposing that true value were known.  This situation 

could occur, for example, if the spectroscopic values for pure species A and B were known and 

those spectroscopic properties were the basis for the profile measurement.  In the example in 

Figure 3-9, holding B fixed at its true value of 100 resulted in accurate and reliable values for X0, 

D0, and Q with confidence limits consistent with a student’s t distribution.  For the case of the 

data with systematic error, the analyses were less stable and the variability from one data set to 

the next was less but the width, 
fW , for example, varied by 16% of its value.   

If the divergence test for the incomplete asymptote parameter fails, i.e., if the confidence limit 

for A or B increases by a multiple of the confidence limit for a normal distribution from one 

iteration to the next, that asymptotic parameter is held fixed at its most recent stable value, which 

may be its initial estimate.  A sentence in the Analysis Notes similar to the following warns of 

the action taken: 

 

In addition, the value of Q may not be determinable because, as already mentioned, it depends on 

the difference in curvature between the approaches to the two asymptotes.  If the iterative 

procedure continues to diverge, it may be necessary to hold Q fixed at 0 and a message similar to 

the following appears in the Analysis Notes:  

 

Note that while the confidence limits for D0 should have caused D0 to be held constant at its most 

recent stable value, setting the value of B removed the instability for D0 and the iterative 

procedure continued until it became necessary to hold Q fixed at 0.  Q will always be held fixed 

at 0 and another iteration attempted before setting the values of X0 or D0.  Note also that Q can 

always be held fixed at any value set by the user. 

3.2.2 Sharp Interface Regions 

When only one or no datum falls within the interface region, as in Error! Reference source not 

ound. below, it is not possible to determine Q and D0 and/or X0 though limits may be placed on 

their values based on the standard deviation of the data. 

Defining A as the point just before the interval (because of its proximity to the asymptote A) and 

B as the point just after the interval, the value of X0 will lie somewhere between XA and XB.  

Similarly, the upper limit for the value of D0 will be less than that which would cause YA to 

differ from its asymptote, A, by more than the confidence limit for the value of YA and YB from 

its asymptote, B, by more than the confidence limit for the value of YB.  Therefore, from 

Equation (4-6),  

0 0

1 ( )
ln A A

A A

A

f CL Y
X X D where f

f B A

 
   

 
 (2-5) 

Procedure began to diverge on iteration 4.  Assume Xo, Do, and Q could not be determined 
simultaneously.  The confidence Limits for Do, 11.79077, were greater than Do (= 6.354834) on 
iteration 1    The iterative procedure was continued with Q fixed at 0.   The value of Q, 
determined from the data by varying only Q and holding the remaining parameters fixed at their 
current values, = 0.0142 ± 0.0247 

 

Procedure began to diverge on iteration 1.  Because B appears to be ill determined (confidence 
limits = ± 156.0), it has been held fixed at its most recent stable value.   
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and  0 0

1 ( )
ln B B

B B

B

f CL Y
X X D where f

f B A

 
   

 
 (2-6) 

and where CL(YA) and CL(YB) are the confidence limits on the values of YA and YB. 

Generally, the confidence limits on both are the same and equal to the standard deviation 

multiplied by the cumulative factor for a normal distribution of unit variance, namely, 1.96 for 

the 95% confidence limit.  This gives 

0
1

2ln

B A
A B

X X
D where f f f

f

f


  

 
 
 

 (2-7) 

The confidence limits CL(YA) and CL(YB) are calculated from the one tailed 2   distribution for 

the stated confidence limit and the standard deviation of the fit.  This gives the maximum value 

for the standard deviation and from this, the one tailed probability that a measured point is not a 

random error for a normal distribution at the stated confidence limit, but in fact lies within the 

statistically significant interface region.  The upper limit for D0 from Equation (2-7) is referred to 

in the analysis notes as the statistical upper limit of D0. 

If any of the divergence tests for D0, X0, or Q fails, Q is first set equal to 0 and the iterative step 

is repeated without any changes in the remaining parameters. 

If any of the divergence tests for D0 fails (whether or not any of the divergence tests for X0 fails), 

and Q is not being varied, the value of D0 is held fixed at its most recent stable value (which 

could be its initial value) unless it is less than half the statistical upper limit for D0 or greater than 

the statistical upper limit for D0 whereupon it is set equal to D0(upper limit)/2 or D0(upper limit) 

respectively.   The iterative step is repeated without adding the corrections to the remaining 

parameters from the iteration where the divergence was noted. 

If any of the divergence tests for X0 fails, the value of X0 is set equal to the average of the two 

values of X bordering the interface.  Generally this occurs only when no datum falls in the 

statistically significant interface region.  The corrections to the remaining parameters that were 

 

Figure 3-11Analysis of a profile with no data in the interface 
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calculated in the iteration where the divergence was noted are ignored and the iterative procedure 

is then resumed. 

In effect this approach gives the values of X0 and D0 that one could have obtained by inspection 

with the exception of the factor   2ln 1 /f f appearing in Equation (2-7) and the averaging of 

the asymptotic limits. 

Reports on all of the above actions appear in the Analysis Notes following the iterative least 

squares fit along the lines of the following: 

 

In this case, several divergence tests failed and because the values of X0 and D0 could have been 

displaced far from their probable values, the iterative procedure was halted and begun again with 

the initial estimates of the parameters, holding Q fixed at 0.   Even so, holding Q fixed at 0 was 

not enough to force convergence and the standard deviation of D0 was still too large forcing D0 

to be held at its most likely value with an additional message in the Analysis Notes: 

 

While this may give the impression that D0 can be determined, its value is strongly correlated 

with the value of X0 and hence the confidence limits are underestimated by an unknown amount. 

Four ensembles of 1000 data sets each were generated using a logistic function as the basis but 

with a very sharp interface equal to 1/8 the separation between adjacent data.  In each ensemble, 

the data were shifted relative to X0 so that one or no point fell in the interval. For the ensembles 

with one point in the interval, X0 was near one or the other asymptote or in the center.  For the 

ensemble with X0 equally spaced between XA and XB, those two points differed from their 

asymptotes by 3.4% of the separation between A and B.  With a true value of D0 = (XA-XB)/8 , 

and a standard deviation equal to 1% of the separation between A and B, only data falling more 

than 2.6% from either asymptote would be counted as falling in the interval.  Figure 3-12 below 

represents one of those 1000 data sets in which only one value of YA or YB (before the addition 

of random errors) is further from its nearest asymptote by more than 2.6% (Note: the errors 

added to the data represented by Figure 3-11 and Figure 3-12 were the same.) 

It should be noted that with no datum falling in the interface, the interface will be defined by the 

separation between the two embracing data above and below the apparent midpoint of the 

interface.  Therefore, D0 will typically have tighter limits placed on it (assuming X0 is determined 

by the least squares fit) if no point falls in the interval than when one point does even though the 

two data sets represent the same values of D0 and X0.  On the other hand, X0 will be more 

The confidence Limits for Do, 0.683, were greater than Do (=0.374) on iteration 2  

The standard deviation(s) for  Xo, Do increased by more than a factor of 1.960 on iteration number 2 
Consequently, Do was held fixed at 0.362, its value determined by varying Do alone at iteration 2. 

0 data  with | Y-Asymptote | > 2.20 appeared to fall in the statistically significant interface region 
4 possible interface values from X = 44.0 to X = 56.0, were tested 
Based on the statistics of the fit, the upper limit for Do was 0.489 

The iterative procedure began to diverge on iteration  0. 
Assume Xo, Do, and Q could not be determined simultaneously.   
The confidence Limits for Do, 35.6, were greater than Do (=0.424) on iteration 0   
The change in Xo, 400.0, was greater than the interface halfwidth, 4.00, on iteration 0 
The iterative procedure was continued with Q fixed at 0.  
The value of Q, determined from the data by varying only Q and holding the remaining parameters 
fixed at their final, converged values = 0.007 ± 0.386 
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difficult to evaluate for no point falling in the interval but will be well determined if one point 

falls in the interval.  In the analysis of the four ensembles of 1000 data each, this was borne out. 

For an ensemble with no point in the interval (really two equally spaced points barely in the 

interval,) of which Figure 3-11is one example, the analyses of 1000 synthetic data sets 

determined that 444 data sets had one datum in the interval and 154 sets had two.  Since the 

difference between the true values of Y and the corresponding asymptotes are 1.8% (for the 

parameter values used in this example) we would expect a certain number of the data sets to have 

values within the 2.2% boundary for being considered within the interval with 95% confidence.  

In fact we would expect 33% of the data to have at least one point falling between A+0.018(B-A) 

and B-0.018(B-A) (for a standard deviation of unity) and we observe 44%. We would only 

expect 11% of the data to have at least two points falling in the interval and we observe, for the 

sample studied, 15%.  The uncertainties returned by the analysis for X0 and D0 did not follow a 

student’s t distribution nor were they expected to since the values for the interface parameters, 

X0, D0, and Q were underdetermined.  Nevertheless, the uncertainties proved to be conservative. 

Since the parameters D0 and X0 cannot be independently calculated from profiles with fewer than 

two data in the interface region, one may wonder why one would try to include their evaluation 

in this analysis.  The answer is to allow for a reasonable determination of D0 and X0 without 

knowing a priori that the data would present a sharp interface.  The idea is to allow the analysis 

to proceed without the need for operator intervention and to present values of X0 and D0 in a 

manner close to what one would use without the logistic model and to take advantage of the 

statistics from the remaining data to place limits on the determination of D0. 

In general, the number of data in the statistically significant interface region must be greater than 

the number of interface parameters, X0, D0, and Q, being varied.  See also Equation (4-38) and 

the discussion following Equation (4-38) on the idea of localized degrees of freedom. 

3.2.3 Highly Asymmetric Profiles:  Runaway Q 

Closely related to the problem of narrow interface regions with few data in the region is the 

situation where the magnitude of Q becomes quite large (whether positive or negative.)  D then 

varies from its minimum value of 0 to its maximum value of 2D0  over a narrower range of X 

 

Figure 3-12Analysis of a profile with 1 datum in the interface 
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than the interface itself.  The interface region is skewed heavily so that one edge of the region is 

almost coincident with X0.  When this happens, no data falls between its closest edge and X0 and 

the data on the opposite side of X0  depend solely upon D0.  Q then becomes poorly determined 

and can increase in magnitude dramatically from one iteration to the next until the least squares 

fit becomes completely unstable and, frequently, the program aborts. 

The program constantly monitors the value of |QD0| and when its value becomes 10 (the logistic 

range of D is 1/10 the range of the interface itself) and the correction to Q is greater than Q itself, 

the value of Q is frozen at its value from the previous iteration and the analysis continues.  This 

places a lower bound on the magnitude of Q.  The value of Q is immaterial at this point and only 

its sign is important.  Note also that at this point, the asymmetry η is approaching its limit of ± 1.  

Because this allows, in effect, the remaining parameters to catch up to the value of Q, it is 

occasionally possible to achieve convergence by clicking Fit (Converge) a second time. 

3.2.4 Noisy Data 

We have already mentioned from time to time situations where the standard deviation of the data 

becomes an appreciable fraction of the spacing between the asymptotes.  As long as the data are 

normally distributed, this does not seem to present too much of a problem. However, as the 

standard deviation approaches 10% or higher of the separation between A and B, the initial 

estimates, which depend on individual data rather than the full range of data, can be sufficiently 

in error to lead to false minima.  As a warning, a message something like the following will 

appear: 

 

It is sometimes noted that the minimum value for the standard deviation occurred on an iteration 

before the final one and a note to this effect is included.  This can most often occur when one of 

the parameters cannot be determined and is set to some otherwise determined value. 

If an analysis of noisy data begins with initial estimates sufficiently far from their proper values, 

the procedure may converge very slowly or even diverge.  If the procedure is not diverging but 

has not yet converged, repeated clicking of  Fit (Converge)  may eventually lead to convergence.  

Alternatively, or for a procedure that has begun to diverge, it may be possible to obtain 

convergence by using the data selection box to identify the interface region and restart the 

analysis by clicking the  Initial Estimate  button which may give a better estimate of the starting 

values of the parameters. 

The limit on the value of the standard deviation relative to the separation between asymptotes to 

allow fitting the data depends on the number of data being analyzed.  For few data, the statistical 

advantage of the averaging inherent in the least squares fit is lost.  Data sets with larger numbers 

of data can support larger variations, the 1/ n  advantage. 

3.2.5 Errors in the Independent Variable X 

Comment has been made earlier in this manual of the fact that the analysis being described and 

used in the program LFPF presumes all the statistical error is contained in the values of Y; that 

The ratio of the upper limit of the standard deviation from the chi squared distribution to the value of A-
B, 19.2%, may make the determination of Xo, Do, and Q problematic and possibly result in false, local 
minima.. 
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the X values are precisely and accurately known.  The statistical behavior described by the 

program assumes a normal distribution of errors in Y, and numerical experiments with synthetic 

data are in agreement with behavior expected for a normal distribution.  This is true even when 

the values of X are not evenly spaced but still accurately known. 

If the values of X themselves have errors, the analysis described herein and realized in the 

program LFPF will still ascribe all scatter to a normal distribution in Y.  Whereas errors in X in 

the asymptotic regions will not contribute significantly to the perceived errors in Y, they will in 

the interface region where small changes in X are accompanied by large changes in Y.  In this 

case, the error distribution is not uniform but, in fact, is larger in the interface region.  It may 

well be that this problem can be overcome with appropriate weighting of the data to reflect this, 

but in this version of the program, this has not been done.  If the errors in X are small compared 

to the errors in Y, they will not present much of a problem as has been seen to date in analyses of 

various series of synthetic data. 

In examining the residuals, the residuals in the interface region are expected to be slightly 

smaller than in the asymptotic region because more parameters are affected by their values.  (See 

the discussion following Equation (4-38))  If the residuals in the interface appear larger as 

exaggerated in Figure 3-2, the effects of errors in the values of X can be easily deduced.  If not, it 

may still be possible to use the F test to compare the standard deviations of the statistical 

interface region (to which the interface parameters X0, D0, and Q are sensitive) with the standard 

deviations of each of the asymptotic regions. 

Consider the separation of the data into three regions, the statistically significant interface and 

the pre- and post-interface regions.  The region prior to the statistically significant interface is 

dependent almost solely on the parameters A, A′, and A″.  Similarly, the region following the 

statistically significant interface is dependent almost solely on the parameters B, B′, and B″.  
While the statistically significant interface depends on all the parameters, it is most sensitive to 

X0, D0, and Q.  Since the asymptotic regions are virtually model independent, the variance of 

those regions will not be sensitive to model errors whereas the statistically significant interface 

will be.  The variances of the three regions are calculated from: 
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, , andA I Bn n n  are the numbers of data in the pre-interface asymptotic region, the statistically 

significant interface region, and the post-interface asymptotic region respectively and 

, , andA I Bp p p  are the number of varied parameters on which each of the regions is dependent so 

that the three regions have, respectively, , , andA I B    degrees of freedom where A A An p   , 

etc.  Typically Ap and Bp  will each be 1 and Ip  will be 2 or 3 depending on whether Q is 

varied.  If 2 2/ ( , , )I A I As s F    or 2 2/ ( , , )I B I Bs s F     where   is the confidence level for the F 

distribution, we may have reason to suspect model errors and, particularly for the case under 

discussion, errors in the values of X.  Similar to other situations already mentioned, the more 

data available for the three regions, the more likely the effect will be noticed. 

The values of X are tested and if they are not evenly spaced, a message to that effect appears in 

the analysis notes much like the following: 
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In this case, the interface/post-interface F test failed indicating the possibility of a model error 

and more specifically, of possible errors in the X values. 

For many data sets encountered in practice where the number of data through an interface is on 

the order of 25 or less, it will be difficult to extract much from the data in way of determining the 

aptness of the logistic function model.  Inspection of the residuals will give some idea of the 

importance, if any, of systematic errors compared to random errors.   Even so, the analysis will 

still give systematic and reasonable measures of the position, width and asymmetry of the 

interface, whether or not the statistics of the least squares fit can be exploited.

NOTE!!! The values of X are not uniformly spaced. 
  The average spacing is 3.971 with a standard deviation of 10.93% 
   If the values of X are not error free the parameter confidence limits may be underestimated. 
   F(interface/pre-interface) = 4.287 compared to F(0.95) = 6.041 
   F(interface/post-interface) = 7.928 compared to F(0.95) = 3.438. 
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4 Detailed discussion of the least squares fit of an 
extended logistic function to a measured profile 

The least squares fit of the measured values of Y to Equation (1-5) is a nonlinear one and is 

approximated by fitting the linear form, 

| | 1

|
1

( ) ( ,{ }) ,
m

k k

obs calc in
i i

Y
Y X Y X C

C
 




 


  (4-1) 

i.e., as a Taylor series expansion of Y about the values of |( ,{ })k

calcY X C  calculated using the 

values of the parameters |{ }kC (= ) following the k
th

 iteration 

and where the derivatives are all evaluated using the values of the parameters from the 

k
th

 iteration, namely |k

iC .  are the measured values of Y being fit. 

The corrections to the parameters | 1k

i
 are obtained from the linear least squares fit of 

Y - Y{C
|k
} and the corrected values of the parameters, | 1 | | 1k k k

i i iC C    , are used for the next 

iteration.  The procedure continues until convergence when the corrections to the parameters 

are insignificant compared to the uncertainties in the parameters returned by the least squares 

fit. 

A particularly convenient feature of the logistic function is that all of the derivatives of Y 

with respect to the parameters can be evaluated analytically from a set of current values .  

In particular, 
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The remaining derivatives are more complicated and it helps to further define: 
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Of importance in the discussion that follows is the calculation of the fraction of completeness 

of the interface.  The fraction f of completeness at X = Xf  where Y = Yf  is given by: 

  (4-3) 

 

which simplifies to 
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If the profile is symmetric, i.e., if Q=0, then 

 (4-6) 

4.1 Initial Estimates of the Parameters 
The rapidity of convergence, if the iterative process does indeed converge, depends on the 

quality of the initial estimates of the parameters.  When the program for whatever reason 

is unable to calculate reasonable initial estimates of the parameters, the user can define, 

by inspection of the graph of the data, the interface region and the program can then 

draw straight lines through the data in each of the three regions.  The straight line 

through the data in the region identified as the interface is then interpreted as a tangent 

to the logistic function from which D0 can be determined from the slope and X0 can be 
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determined as the value of X where the tangent is midway between the pre-interface 

and post-interface lines.  Q in such cases is initially assumed to be 0. 

While this works very well for all kinds of data, well behaved or not, it is desirable to find 

algorithms that can yield initial estimates automatically without requiring the user to define 

the interface.  Several approaches have been evaluated and all work well for well structured 

data with small random errors.  A trial and error approach that appears to work well with 

incomplete profiles, high levels of random noise, and very sharp profiles with few if any data 

in the interface region, is one of assigning values for the asymptotic parameters from the first 

and last data values (in the sense of increasing values of X), a width parameter D0 equal to 

the average separation between X values, evaluating the root mean square (rms) deviation for 

various values of X0, and selecting the value that gives the lowest rms deviation.  This is 

accomplished by dividing the data range into 10, testing the midpoint of each section, 

selecting the section containing the value of X0 with the lowest rms deviation, dividing that 

section into 10 sections and repeating the process and continuing until the separation between 

trial values of X0 is equal to 0.1% of the range of X values.  Following this, the starting 

estimate of D0 is obtained by first setting D0 equal to ¼ the range of X values, calculating the 

rms deviation, dividing the value of D0 by 2 and continuing until the minimum value of D0 is 

reached.  D0 is then determined by sampling the region around this minimum value of D0. 

Finally, D0 is further refined by fitting the linear form, Equation (4-1), varying only δD0.  

The initial value of Q is estimated by fitting the linear form varying only δQ. 

This procedure for determining the initial estimates of the parameters must be modified if the 

data do not encompass the entire interface region as in Figure 4-1 below: 

 

Figure 4-1 Initial estimates from an incomplete interface 

A straight line is drawn connecting the first and last data values and the number of points 

falling above and below that line is calculated.  If the number is greater than 80% (or less 

than 20%) of the data, the interface is considered to be incomplete.  In this case the initial 

values of X0 and D0 are obtained by locating short line segments (five points) where the 

maximum slope is observed.  The center of the segment is taken to be X0 and the slope is 

taken to be 01/ 4D . 

If these methods fail to give reasonable initial estimates, then the user can identify the 

interface region graphically using a data selection box as described in Section 2.6.10.1 above. 
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4.2 Review of linear regression and confidence limits 
Linear regressions, i.e., linear least squares fits, are the subjects of numerous textbooks on 

statistics and the interpretation of the quality of the fit, i.e., the measure of the agreement 

between Yobs and Ycalc can be as complicated as desired.  Most of the conclusions that can be 

drawn from an analysis of residuals (Yobs-Ycalc) rely on the assumption that all the variability 

resides in the values of Yobs and arises from a normally distributed population of errors.  This 

is seldom the case.  However, this is mostly of concern when attempting to determine a true 

value for some quantity derived from the data, a true value that can be compared with a 

fundamental calculation such as an average atomic separation in a crystal.  In the case of the 

measurement of interfaces, there is no such true value for the width, the center and the 

asymmetry.  The best that can be said about the estimates returned by the least squares 

analysis is that a repetition of the same measurements on the same material will return the 

same values within the stated uncertainties.  This will now be discussed in some detail.  In so 

doing, it will be necessary for establishing a frame of reference to review briefly the least 

squares fit calculation. 

For simplicity we rewrite (4-1) as 

|

1

|
| 1

( ) ( ,{ }),

( ,{ })
,

m
k

i j ji i obs i calc i

j

k
kcalc i

ji j j

j

y c x where y Y X Y X C

Y X C
x and c

C
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for the i = 1 to n (> m) measured values of Yi.  In a least squares fit, we are seeking those 

values of the parameters {cj} for which sum of the squares

2

1 1

n m

i i k ki

i k

W y c x
 

 
 

 
   is a 

minimum,  that is, those values of {cj} which satisfy

2

1 1

0
n m

i i j ji

i jj

W y c x
c  

  
   
    
  , or, 

1 1 1

1
n m n

i i ji k i ji ki

i k i

yW x c W x x for j to m
  

     

 (4-8) 

If we adopt a matrix notation, y = (y1 y2 … yn), c = (c1 c2 … cm),  

11 12 1

|
21 22 2

|

1 2

( ,{ })

n

k
n calc i

ji k

j

m m mn

x x x

x x x Y X C
where x

C

x x x

   
 

     
       
 

   

x  (4-9) 

and W is an n dimensional, diagonal matrix (all measurement errors are uncorrelated) whose 

elements are the weights iW , then the least squares equations (4-8) become 

T T
yWx = cxWx   (4-10) 
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and solving for c, 

    
-1

T T
c = xWx yWx   (4-11) 

The matrix x is often referred to as the design matrix.  The quality of the fit is determined by 

the residual standard deviation of the fit, 

2

2

1 1 1

( )

n m n
obs calc

i i j ji i i i
i j i

W y c x W Y Y

s
n m n m

  

 
  

 
 

 

  
, (4-12) 

where the second equality holds at convergence of the iterative, linear process.  The standard 

deviations of the values of the parameters are obtained through the usual propagation of 

errors formula: 

 (4-13) 

where si is the standard deviation of the i
th

 measurement.  Note that this assumes that the 

individual measurement errors are uncorrelated.  If not, and if that correlation is known, then 

Eq. (4-13) can be suitably modified to carry along this correlation.  Generally the si are not 

known and si is set equal to the standard deviation of the fit, s, as determined by Eq. (4-12).  

Substituting Eq. (4-11) into Eq. (4-13) and performing some algebra, the standard deviation 

of the k
th

 parameter is easily seen to be 

( ) cv

k kks c  V   (4-14) 

where , known as the variance-covariance matrix, is given by 

 
1

2cv s


 T
V xWx  (4-15) 

carries not only the errors in the determined parameters ck but also the correlation of 

errors among the parameters ck so that the variance of any function of the parameters, { }f C , 

can be obtained from 

2

1 1

( { })
m m

cv

ij

i j i j

f f
s f C

C C 

 


 
 V  (4-16) 

4.2.1 Variance and the Chi-Square distribution. 

The confidence levels for reporting uncertainties are strictly valid only if the errors in Yi are 

normally distributed.  Even if this condition is not met, they can provide a guide for 

determining whether a second measurement of an interfacial profile is different from the first. 

The number of degrees of freedom in a least squares analysis, often designated as ν, is equal 

to the number of measurements included in the fit minus the number of parameters varied, 

ν=n-m.  For ν degrees of freedom, the standard deviation of a set of measurements, s, taken 

from a normal population having a standard deviation of σ will follow a chi square 

distribution: 

2

2 2

1

( )
n

k
k i

i i

c
s c s

y

 
  

 


cv
V

cv
V
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 (4-17) 

where  and α is the probability  

  (4-18) 

That is, the variance of the population will have a probability α of falling between  and 

. 

The values of χ
2
 can be found in tables or calculated using readily available algorithms.  In 

determining whether model errors may be dominating the least squares fit of the extended 

logistic function to a measured profile, Equation (4-18) can be quite helpful if we have some 

independent estimate of the standard deviation of the measurement population. 

4.2.2 Third Differences as an estimate of the variance 

A model independent estimate of the variance which has proved useful is that obtained from 

so-called “third differences” of the observed data.  Given a set of measurements Yi, the first 

differences are defined as (1)

1 ,i i iY Y Y  second differences as 
(2) (1) (1)

1 2 12 ,i i i i i iY Y Y Y Y Y       and third differences as 
(3) (2) (2)

1 3 2 13 3 .i i i i i i iY Y Y Y Y Y Y          

If ˆ
i i iY Y    where ˆ

iY  is the arbitrarily accurate value of iY  from the logistic function and 

i  is the random error in iY  and if the variation in ˆ
iY from one value to the next is negligible 

compared to the values of i , so that 3 2 1
ˆ ˆ ˆ ˆ3 3 0i i i iY Y Y Y       and  

(3) (3)

3 2 13 3i i i i i iY             then 

  
23 3

3 2 2 2 2 2 2 2

1 2 3 2 1

1 4

10 19 19 10
n n

i i n n n

i i

Y       
 

 

 

 
       

 
   where all the cross terms 

 for i j i j    have been ignored because they will average will tend to vanish.  Substituting 

the average value 2  for each value of 2

i  gives  

  
23

(3) 2

1

20( 4)
n

i

i

Y n 




   (4-19) 

The third differences, which magnify the point to point random variations but minimize the 

systematic variation in Y, can provide a model-independent measure of the standard 

deviation of the measurements.  (Indeed, if Y were a linear or quadratic function of X and the 

2 2
2, ,2 2 / 2 2 / 2 1 2

/ 20 0

1
( ) ( ) 1

2 ( / 2)
d e d
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values of X were evenly spaced, the contribution from the systematic variation in Y would 

vanish identically.)  If s
2
 is the variance of the values of Y attributable to measurement error, 

then the variance in 
(3)

jY is  

 

2 2
(3) (3)3 3

(3) 2 2 2 2 2( ) (1 9 9 1) 20 20
j i j i

i i
i j

j i j ij j

Y Y
Var Y s s s s

Y Y


   

 

    
                 
   (4-20) 

so that 
3 3

(3) 2 2 2 2 2 2 2

1 2 3 2 1

1 4

( ) 10 19 20 19 10
n n

i i n n n

i i

Var Y s s s s s s s
 

 

 

        .  (4-21) 

Assuming all is  have equal variance s, substituting s for is  in Eq. (4-21) yields 

 
3

2(3) 2

1

20( 4) 20( 3)
n

i

i

Var Y n s n 




     (4-22) 

Comparison of Eq. (4-19) with Eq.(4-22) gives us the estimate of the standard deviation from 

the data scatter: 

 
 

 
23

2 (3) 2 (3)

3
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1
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n

d i

i

s Var Y Y
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The assumption that the systematic contribution to 3

iY can be ignored can be checked once 

we have the least squares fit of the logistic function to the data by calculating  
23

(3)

1

ˆ
n

i

i

Y




 and 

comparing it with the value of 
2s  calculated from Eq. (4-23). 

In the presence of weights, where the weights are proportional to the inverse square of the 

measurement uncertainty, 
2

2

i

i

s
s

W
 , and  

2
2 2 2 2

1 1 1

1 1 1n n n

i i i i

i i i i

s
s W s W s

n n n W


  

       and 

 
2

2

1

1 ˆ
n

i i i

i

s W Y Y
n m 

 

 where m is the number of parameters varied.  If we then define a 

weighted third difference as 

(3 )

3 3 2 2 1 13 3d

i i i i i i i i iY Y W Y W Y W Y W          (4-24)  

and assume the systematic contribution to the weighted third difference (3)

iY is small, i.e., 

3 3 2 2 1 1 3 3 2 2 1 1
ˆ ˆ ˆ ˆ3 3 3 3i i i i i i i i i i i i i i i iY W Y W Y W Y W W W W W                     

then we can let 

 
2

(3) 2 2 2 2

3 3 2 2 1 19 9i i i i i i i i iY W W W W              (4-25) 

where we have ignored cross terms   fori j i jWW i j   because they will tend to vanish 

when summed over all the data.  Then summing over all n-3 values of (3)

iY gives 
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or 
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n
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where we have defined 3d  as the estimate of s from third differences.  By ignoring the cross 

terms in Eq. (4-27), we cannot expect 2

3d  from either weighted or unweighted third 

differences to be distributed as a χ
2
 distribution as in Equation(4-18).   

As already mentioned, a problem 

with the use of third differences to 

estimate the random scatter in the 

data is the influence of systematic 

change from the underlying 

sigmoidal function that we 

approximate with the logistic 

function.  For data following a 

logistic function, the scatter might 

look like that shown in Figure 4-2. 

The large excursions represent the 

functional change of the logistic 

function in the middle of the profile.  In order to remove these contributions and arrive at a 

better measure of the random noise in the data, the values surrounding the third difference 

with the largest magnitude are subtracted one by one from a calculation of the root mean 

square value of all the third differences.  If the third difference of a particular value of (3)

iY is 

more than the confidence level for that value, (assuming it follows approximately a student’s 

t distribution and using the remaining third differences to estimate the variance) that value is 

discarded from the calculation and the process is repeated until no more systematic 

differences are discovered.  When the data scatter is then displayed, (see section  2.6.3) the 

discarded third differences are displayed with red x’s as in Error! Reference source not 

ound.   

As noted earlier, the systematic contribution to 2

3d  can be estimated by calculating 

 3

3 3 2 2 1 1
ˆ ˆ ˆ ˆ ˆ3 3i i i i i i i i iY Y W Y W Y W Y W         once a logistic function has been fit to the 

data.  Prior to having such a logistic function, the systematic contributions are identified 

statistically (assuming sufficient data).  But after we have the values of  3ˆ
iY we can subtract 

the  3ˆ
iY from the  3

iY to give values of 2

3d  that are more free of systematic error than those 

values for which the data statistically demonstrating systematic contributions have been 

subtracted.   

 
  

23
32 2 (3)

2 3

1

1 ˆ
20 3

n

d i i

i

s Y Y
n






  


  (4-28) 

 

Figure 4-2  Data Scatter from Third Differences showing 

values excluded from the calculation of the estimated 

standard deviation. 
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The resulting scatter, based on the 

same data as Figure 4-2,  is shown 

in Figure 4-3 where the logistic 

function itself is drawn 

A comparison between the two can 

be seen, as was done here,  by 

displaying the scatter before and 

after a least squares fit of the data 

have been performed.  At first, it 

might be thought that making this 

subtraction merely reproduces the 

residuals, but it actually it reproduces the third differences of the residuals themselves in 

which any unresolved systematic trends in the residuals have been minimized.  The scatter as 

estimated by 2

3d  from Eq. (4-27) and/or Eq. (4-28) has proven to provide a convenient 

measure against which to compare s
2
 to signal the possible presence of systematic error. 

In the analysis of 1000 sets of synthetic data generated from the logistic functions with added 

random, normal errors and consisting of 100 data in each set (as summarized in Table 3-1), 

the ratio of scatter was, on average, 0.997 ( ± 0.164 at the  95% confidence level) and ranged 

from 0.6921 to 1.2442.  (See Table 3-4 and its accompanying discussion beginning on page 

3-1) 

 If the value of s
2
 from the least squares fit of the extended logistic function is significantly 

larger than 2

3d for a particular class of data, then the extended logistic function may not be a 

good model of the measured data. 

4.2.3 F tests for the comparison of variance 

A common statistical test for comparing sample variances is derived from the ratio of the 

squares of two sample standard deviations.  If two independent samples of data have 1  and 

2  degrees of freedom and standard deviations of 1s  and 2s , then the ratio of the squares of 

1s  and 2s  should follow the so-called F distribution: 

 (4-29) 

 

If the ratio, F, of the variances of two samples with degrees of freedom 1  and 2  has a value 

greater than , i.e., if 

 (4-30) 
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Figure 4-3 Scatter with systematic contribution from the 

extended logistic function removed 
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then the probability that sample 1 arises from a population with a greater standard deviation 

than sample 2 will be 1-α..  Taking 1-α = 0.95, we calculate 2 2

3/ ds   and compare it to 

and if it is greater there will be a greater than 95% probability that we have model 

errors.  The application of the F test here is not strictly appropriate since the test is based on 

the independence of the sample standard deviations and 2

3d  (See Table 3-1 to Table 3-3.) 

However it can serve as a convenient suggestion of systematic, i.e., model errors 

Another comparison is the variance for different regions of the data sensitive to different 

parameters of the logistic function.  Consider the separation of the data into three regions, the 

statistically significant interface and the pre- and post-interface regions.  The region prior to 

the statistically significant interface is dependent almost solely on the parameters A, A′, and 

A″.  Similarly, the region following the statistically significant interface is dependent almost 

solely on the parameters B, B′, and B″.  While the statistically significant interface depends 

on all the parameters, it is most sensitive to X0, D0, and Q.  Since the asymptotic regions are 

virtually model independent, the variance of those regions will not be sensitive to model 

errors whereas the statistically significant interface will be.  The variances of the three 

regions are calculated from: 

2 2 2
2 2 2

1 1 1

( ) ( ) ( )
, ,

A I Bobs calc obs calc obs calcn n n

i i i i i i i i i
A I B

i i iA A I I B B

W Y Y W Y Y W Y Y
s s s

n p n p n p  

  
  

  
    (4-31) 

nA, nI, and nB are the numbers of data in the pre-interface asymptotic region, the interface 

region, and the post-interface asymptotic region respectively and pA, pI, and pB are the 

number of varied parameters on which each of the regions is dependent so that three regions 

have νA, νI, and νB degrees of freedom where νA = nA - pA, etc.  Typically pA and pB will each 

be 1 and pI will be 2 or 3 depending on whether Q is varied.  If sI
2
/sA

2
 > F(νI,νA,α) or sI

2
/sB

2
 > 

F(νI,νB,α)  where α is the confidence level for the F distribution, we may have reason to 

suspect model errors. 

4.2.4 Parameter Confidence Limits 

The parameters obtained from the least squares fit, again assuming a normal distribution of 

measurement errors, will follow the so-called student’s t distribution. 

1
2 2

1

2
( ) 1

1

2 2

t
t
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so that the probability that the value of a parameter Ck determined from the least squares fit 

lies in the range 

, ,
2 2

1cv cv

k kk k k kkP C t C C t 
 


 

      
 

V V  (4-33) 

where the quantities  are  the limits of the integral of the student’s t distribution that 

satisfy 

1 2, ,0.05F 

2s
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for 0 < α < 0.5. (Note some references use single tailed integrals, i.e. from -∞ to tν,α/2 and 

from -tν,α/2 to ∞ so that α/2 values must be used for a probability of 1-α .)  The limits of 

Equation (4-33) are called the 100(1-α)% confidence limits.  

It also follows from Equation (4-33) that for any arbitrary function of the parameters, { }f C , 

, ,
2 2

{ } ( { }) { } { } ( { }) 1P f C t s f C f C f C t s f C 
 


    

          
    

 (4-35) 

where ( { })s f C is obtained from Equation (4-16). 

One particular function { }f C is important and that is the calculated value of  itself, 

namely calc

iY , corresponding to the i
th

 observation, and the difference between the calculated 

and observed value of , namely, obs calc

i iY Y .  The variance of calc

iY  is given by 

Equation (4-16) as 

2

1 1

( )
calc calcm m

calc cvi i
i jk

j k j k

Y Y
s Y

C C 

 


 
 V   (4-36) 

where the derivatives,
calc

i

k

Y

C




 , are those listed collectively as Equations (4-2). The variance 

of  obs calc

i iY Y  is given by  

 2 2 2( ) ( )obs calc calc

i i is Y Y s s Y    (4-37) 

if obs

iY  was not included in the least squares fit and by  

 
2 2 2( ) ( )obs calc calc

i i is Y Y s s Y    (4-38) 

if obs

iY  was included in the fit.   

The minus sign in (4-38) arises because the variance of calc

iY  and the variance of obs

iY  are 

correlated since obs

iY was used, through the least squares fit, to calculate calc

iY .  This can be 

shown using the usual propagation of error formulas and a few pages of algebra. 

That this is significant can be seen from an analysis of 25 synthetic data with a standard 

deviation of unity, a value of |B-A| = 100 and a value of D0 such that on average between 2 

and 4 values fall in the statistically significant interface region (3 values in the 16% to 84% 

region.)  One hundred thousand data sets with different random errors drawn from a normal 

population with σ = 1 were analyzed and the root mean square values of (Yobs – Ycalc)
2
 were 

calculated for each value of X for all 100,000 data sets.  The results are summarized in Table 

Y

Y
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4-1 below.  The values of the root mean squares of (Yobs – Ycalc)
2
  are also displayed in Figure 

4-4 below to the right of the table.  

From the definition of the standard deviation the sum of the squares, (Yobs – Ycalc)
2
 , is equal 

to (n-m)s
2
.  The large dip in the graph of the root mean square deviations represents the fewer 

effective degrees of freedom associated with the interface region where only the few data in 

the interface region are sensitive primarily to the 2 interface parameters (Q was held fixed at 

0) whereas each asymptotic region is sensitive to only one asymptotic parameter each.  The 

statistically significant interface region for this example included the 4 data from X=45 to 

X=57.  The sum (Yobs – Ycalc)
2
/s

2
 for the first 11 data comprising the pre-interface region is 

9.86, approximating 10 degrees of freedom for 11 data and one adjustable parameter. 

Similarly the sum (Yobs – Ycalc)
2
 /s

2
 for the last 10 data comprising the post-interface region is 

8.98, approximating 9 degrees of freedom for 10 data and one  adjustable pararameter.  The 

sum (Yobs – Ycalc)
2
/s

2
 for the 4 data in the interface region is 2.16, approximating 2 degrees of 

freedom for 4 data and 2 adjustable parameters. 

In the column labeled “Adjusted” in Table 4-1, the influence of the uncertainty in Ycalc has 

been taken into account and the column labeled “True” is the root mean square of the 

100,000 deviations added to each point. 

 

4.2.5 Skewness and Kurtosis 

Two other measures of the distribution of the residuals are the skewness and kurtosis.  If  the 

standardized residuals  ( ) ( )i i i ir W Y obs Y calc   and the moments of the standardized 

 

Table 4-1  Distribution of Errors 

X rms(Yo-Yc) Adjusted TRUE 

1 0.949 1.000 1.001 

5 0.946 0.997 0.997 

9 0.948 0.999 0.999 

13 0.950 1.002 1.002 

17 0.949 1.001 1.000 

21 0.949 1.000 1.000 

25 0.951 1.002 1.002 

29 0.948 0.997 0.997 

33 0.953 1.000 0.999 

37 0.955 1.000 1.000 

41 0.920 1.003 1.002 

45 0.735 0.999 1.000 

49 0.686 0.996 0.996 

53 0.660 0.998 0.998 

57 0.844 0.998 0.997 

61 0.944 0.999 1.001 

65 0.957 1.004 1.005 

69 0.953 1.004 1.003 

73 0.948 1.001 1.000 

77 0.948 1.002 1.002 

81 0.946 1.000 0.999 

85 0.943 0.997 0.997 

89 0.947 1.001 1.001 

93 0.947 1.001 1.000 

97 0.945 0.999 0.999 

 

 

Figure 4-4  Graphical representation of the first two 

columns of Table 4-1 
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residuals are defined as
1

/
N

k

k i

i

r N


 
  
 
  then the skewness and kurtosis of the distribution 

are given by 

3/2

3 2/skewness    and 2

4 2/ 3kurtosis     (4-39) 

For a normal distribution the skewness and kurtosis are both vanishing, but convergence to 

zero is very slow as N increases so that they have only limited usefulness for data sets with 

less than, say, 100 data.   

4.3 Algorithm for the Linear Least Squares Fit 
Various programs exist for conducting linear regressions and the one used here is a program 

called ORTHO, originally written in Algol by Walsh (P. J. Walsh, Commun. Assoc. Comput. 

Mach. 5, 511(1962)), which is based on a Gramm-Schmidt orthonormalization of the design 

matrix x , following which the solution of the least squares equations becomes trivially 

simple.  In this procedure, the inversion of the design matrix implicit in Equation (4-11) is 

avoided.  Using double precision arithmetic, and re-orthogonalization after normalization, the 

program has been found to be simple and robust.  

4.4 Poorly Structured Data 
Poorly structured data are those for which the least squares fit becomes unstable because 

some parameter or linear combination of parameters cannot be determined from the data.  

One such example has already been discussed in the section on initial estimates, namely 

where the interface is not complete.  In general, the interface should reach within 5% of 

completion at both ends of the interface to obtain reliable confidence limits for the values of 

the width and asymmetry parameters D0 and Q.  For any value of X, the fractional 

completion of the transition (strictly speaking never exactly 0 nor 1) is calculated from 

Equation (4-3) or Equation (4-4). 

The extended logistic function is a continuous function all of whose derivatives exist which 

makes calculation easy within a Taylor’s Series linearization.  But it does have a singularity, 

namely where 0 0D  .  When this occurs, the number of measurements falling in the 

interface region approaches 0 and it is not possible to determine D0 though an upper limit 

may be placed on its value based on the standard deviation of the data as determined by the 

least squares fit and the separation between neighboring data. 

The idea has been presented earlier in this documentation of a statistically significant 

interface region where a measurement is considered to be in the interface region when it falls 

between the two asymptotes and it’s deviation from each of the asymptotes, A and B, is 

statistically significant.  If  is the variance of the measured data, calculated from 
2

2

1

( )
,

obs calcn
i i i

i

W Y Y
s

n m





  and Y

obs
 - Y

calc
 follows a normal distribution so that follows a 

distribution,  the probability that the true variance is less than is α where 

2s

2s
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0<α<1.  If we have a normal distribution of errors so that  then the 

probability that a single measurement , drawn from a population with a standard deviation 

of s will differ from its true value by more than N s  will be 1- .  Therefore a measurement 

iY will be considered to be statistically different from A or B when  

| | , | |i i i iA Y N s B Y N s and A Y B or B Y A          (4-40) 

Before performing each iteration in the analysis, the number of data falling in the interface 

region with values of Y satisfying Equation (4-40)  is counted.  If one or none falls in the 

statistically significant interval and if the least squares fit appears to be diverging, then the 

value of Q is held fixed at 0, the upper limit of D0 is estimated from the separation between 

the points bordering the interval, and the value of X0 is the average of the two values of X 

bordering the interval.  Exactly which parameter is held fixed at what value depends on the 

manner in which the iterative process is diverging.  This was discussed earlier in the 

beginning of Section 3.2 Difficult Data and Analysis Instabilities.  By varying the value of 

the confidence limit α, the test for significance can be made more or less stringent. 

If one or no point falls in the interval and Xb,Yb is the measurement just before the interface 

region and Xa,Ya is the measurement just after the interface region, then the interface width 

Wts < Xa-Xb and, from Equation (4-5), 

 (4-41) 

Where /f N s A B  . In the course of the subsequent iterations, D0 is held at a value 

between one half of this upper limit and its upper limit.  If the last stable value of D0 is 

between these two limits, D0 will retain that value in subsequent iterations. 

As a check on the reasonableness of setting values of Q and D0, a least squares fit is 

performed varying only Q or D0, holding the remaining parameters fixed at their current 

values.  The thus determined values of Q and D0 should not change significantly from the 

values assigned to them in the full analysis.  That their values sometimes do not change at all 

is a result of the effect that the derivatives of Y with respect to Q or to D0 nearly vanish for 

all but one or two values, as can be seen by displaying their derivatives on a graph of the 

data. 

4.5 Calculation of the interface width and asymmetry 
The width, fW , of an interface is taken to be the range in X in which Y varies from a fraction 

f  of completion to a fraction (1 )f  of completion, where completion is represented by the 

second asymptote, B.   fW  is calculated from Q and D0 using Equation(4-5).  If Q is non-

zero, fW   must be calculated  by successive approximations since fX  appears on both sides 

of Equation (4-5).  Using a Newton-Raphson approach and taking as the value of  

following the i
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where  (4-42) 

The initial value for  is given by 

 

Typically the procedure converges in less than five iterations.  However, this approach does 

not converge and even diverges if |QD0| >> 1.  The LFPF program therefore takes the safe 

and sure route of successive range bisecting to find the value of Xf .  For f < 0.5, Xf will lie 

below X0.  The midpoint between X0 and the lowest value of X, Xtest,  is tested.  If it yields a 

value of  f  less than target value, then the desired value of Xf  lies between Xtest and X0 and a 

new test point Xtest between the two is tested.  The region containing Xf  is again bisected and 

tested and the procedure continues until the desired precision is achieved.  Taking the data 

range times 10
-8

 gives more precision than necessary and takes 27 successive bisections.  The 

value of X1-f  is found in the same way. 

When Q=0, the calculation of the width reduces to Equation  (4-6).  By convention, the 

values selected for f and 1-f are 16% and 84%..  The reason for this choice is that the 16% 

and 84% completion points for an error function correspond to the x = -σ to x = +σ width of 

the normal distribution function, the integrand of the error function which was first used for 

characterizing depth profiles.  The width at half height of the derivative dY/dX of a 

symmetric logistic function is ± 1.762D0 corresponding to the 14.64% and 85.36% 

completion points of the logistic function whereas the width at half height of the Normal 

Distribution function would be 1.1762σ corresponding to the 12% and 88% completion 

points of the error function.  The logistic function has slightly longer tails than the error 

function. 

While the parameter Q describes the asymmetry of the extended logistic function profile, the 

asymmetry η (as distinguished from the asymmetry parameter Q of the extended logistic 

function) of the interface is in practice described by the skewing of Xf and X1-f  about X0. 
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As defined, Q and η will have the same sign.  When both are negative the interface is sharper 

before the midpoint than after.  When both are positive, the interface is sharper after the 

midpoint than before.  The dimensionless quantity, QD0 is similar in magnitude to η but η has 

the advantage of being defined independently of the function being used to fit the data. 

The confidence limits of the width of the interface, Wf,1-f =X1-f –Xf  (f<0.5),  and the 

asymmetry parameter  are calculated from Equations (4-35), (4-16), (4-5), and (4-43).  In 
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calculating the derivative of, for example,  with respect to D0 or Q, one must keep in 

mind the appearance of in the exponential in the denominator of equation (4-5) so that 
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Rearranging gives:
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Similarly, 
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which, on rearrangement, results in 
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Finally 
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Where 
0 ,D Q




represents either 

0D




or 

Q




, etc. 

This completes the description of how interface data can be analyzed by a linearized, least 

squares fit to an extended logistic function.  This approach is the basis for the computer 

program described in this manual. 

One other measure of the width mentioned in the discussion of surface line scans is the width 

at half height of the derivative, /dY dX , of the measured profile.  The derivative, which is 

taken to be the point spread function, can be evaluated once the logistic function defining the 

line spread function has been determined.  While the derivative can be evaluated analytically, 

the location of the maximum of /dY dX  as well as the half-height points of /dY dX must be 

determined numerically.  This is done with a simple brute force method of locating the upper 

and lower bounds of each value and then narrowing the range until the desired level of 

precision is obtained.  For a symmetric profile with 0Q  , the maximum of /dY dX  occurs 

at 0X X  and the half-height values occur at  0 0 0 0ln 3 8 1.7627X X D X D      

fX

fX
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which correspond to the  100 / 4 8 14.64%   and  100 / 4 8 85.36%   points on the 

extended logistic function profile.  For this reason, 14.64% to 85.36% is taken as the default 

width in the LFPF program though this can be set to any value such as the commonly used 

ranges of 12% to 88% (width at half height of a Gaussian function)  16% to 84%, (1  width 

for a Gaussian function) or 25% to 75% (width at half height of a Lorentzian function). 
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