NIST Special Database 20
Scientific and Technical Document Database

Patrick J Grother
Visual Image Processing Group
Advanced Systems Division
National Institute of Standards and Technology

patrick@magi.ncsl.nist.gov

April 17, 1995

1 Introduction

The four CD ROM set, Special Database 20 (SD20), contains the full page binary images of 23468 pages from
104 scientific and technical documents. The images were scanned from copyright-expired books provided by the
NIST Library and a smaller number of technical papers donated by members of the NIST technical staff. This
document details the preparation, organization and use of these images. The final database has been mastered
and replicated onto four ISO-9660 formatted CD-ROM discs for permanent archiving and distribution.

The images were scanned at 15.75 dots per millimeter (400 dots per inch) and are visually of a quality comparable
to the original paper pages. The images contain a very diverse range of graphic entities; halftone images, line
drawings of steam turbines, maps, equations and graphs and arrays of both, multiple sizes of multicolumn machine
printed text, tables, tables of contents, etc. Although the text is predominantly English, three French and German
texts are included. '

The contents of many of these documents were never produced using a modern typesetting package; many
textual and graphic components of these images would be exceedingly difficult to recreate using contemporary
software packages such as I&TEX. Thus it is the author’s belief that this database contains a much richer set of
challenges to document. processing systems than other databases containing images synthesized from computer-
borne typesetting packages. However the corollary of this is that ground truth for these images is not available,
and a complete manual truthing of even a small number of certain images would be problematic and expensive.
Further it is anticipated that because of the advanced technical nature of many of these documents, that complete
truthing would require knowledge of the material contained therein.

Each file is accompanied by a small text file, containing basic structural information obtained from the full binary
image. It includes information on size, the bounding box, the center of mass, an estimate of rotation, and blob
size distribution.

None of the material has previously been published in digital format, to the best of our knowledge, and SD20 is
NIST’s first publication of a Scientific and Technical document database.

This document was obtained from the Postscript file sd20.cd/doc/doc.ps on Special Database 20.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

partition | number of | number of | SD20
documents pages partition

st.1 27 5834 S&T 1/4
st.2 26 5819 S&T 2/4
st.3 26 5819 S&T 3/4
st_4 25 5996 S&T 4/4

|__total 104 23468 '

[st5 25 5957)
total 129 29425

Table 1: Sizes and publication statuses of the various partitions. Each partition contains distinct documents. A
¢ indicates that the partition has not yet been placed on CD ROM and been retained by NIST for future use.

2 Image Files *.pct

Special Database 20 has been split into four approximately equally sized partitions named st.{1,2,3,4}. In
conjunction with this collection, NIST has prepared a similarly sized set named st_5 which has been withheld for

future use.

All documents have a unique identfier of the form docxxx, where the integer xxx runs from 001 to 129. Thus
the document entitled “Integrals of Airy Functions” is termed doc044 and resides in partition st.l1/data on the
first CD ROM labelled as S&T 1/4. That document has 30 pages the rasters of which have names of the form
fxxxx.pct where the integer xxxx runs from 0000 in unit increments. Each . pct file is accompanied by a statistics
file with the .sta extension, the contents of which is described in section 4. An example image and its statistics
file is shown in figure 1.

The image file format is discussed in detail in appendix A.

3 Index Files *.idx

One index file exists for each document. It contains three fields, the first and second identify the document and
the page number while the third gives the image filename. The first field is of the form docxxx and the third field
gives the image filename. Both of these formats are described above. The second field is of the form pppp.nnn
where pppp is the actual page number keyed from the document. The “subpage” identifier nnn is usually 000,
but for pages with fold out inserts or merely subscripted page numbers it is a counter of sequential pages. Thus
a page number sequence 41, 42-1, 42-2, 43 will be reported in the index file as 0041.000, 0042.000, 0042.001,
0043.000. Many of the books start with maybe one entirely unnumbered page and then a Roman numeral run, i,

.....

il iii before the first numbered page. The corresponding .idx head looks like this:

doc006 0000.000 £0000.pct
doc0086 0000.001 £0001.pct
doc006 0000.002 £0002.pct
doc006 0000.003 £0003.pct
doc006 0001.000 £0004.pct
doc006 0002.000 £0005.pct

In cases where the page was blank except for the page numbering there is no corresponding image, nor .idx entry.
Generally the image .pct filenames do not correspond to the page numbers and the second field of the .idx file
does not generally yield the actual page text contained in the image. The problems associated with fold out
inserts, blank page deletions, and subscripted page numbers, make representative filenaming difficult.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

POO0'O T Zv00E => U > r,007
0000'0 ¢ Zv00Z => ¥ > r,0§T
rovo'0 T EvOST => u > r.00T
00000 0 T 00T => U > r,06
0000°0 0 Z.06 => U > g,08
0000°0 0 Z.08 w> U > z,0f
#0000 T TLO0L > ¥ > 2,09
0000°0 0 Zv09 => U > 2,08
80000 Tv0S = U > E.0p
$000'0 T TvoF = U > p.gf
§F00°0 IT Iv5E w> u > p.0f
CEY0"0 Z£ Zv0E = U > p.6F
0000°0 © TST w> U > T BT
LECO'0 € TP w> U > gL
§900°0 91 TET w> US> T Zr
pZI0°0 € 221 S S A 8% ¢ 1
psE0'0 g ZIZ w> U > pLOr
500 T9 ZL0r W B> Z.ET
2090°'0 §¥1 Zv61 = u > p.gy
SZE0°0 08 8T = u> py
0580°'0 soC ZoLT = u > .91
58L0°0C BT E9T = U > Z.5T
9690°0 1LY CST = U > Zpy
1680°0 61Z EvPT w U > g5t
0580°0 602 LLET = u > prr
21L0°0 LT ZLZT = v > pLIT
LZro'0 S01 CvIT ®> &> g,0r
0ZZ0'0 ¥§ TVOT =>4 > F.6
9¥10°0 9% Zvé - u> .9
0900 ¥ .8 > ° > P
£910°0 OF ool - u>p.9
1650°0 96 Zve "> US> FS
6050°0 STT s = 7> F.p
66£0°0 @6 (%4 "> > Ff
#s00°0 €2 v = u> gz
P00 FIT 2% 4 - U>p.X
9£20°0 ¢S {154 = > 2.0
s3unoo rexyd qorq Fo_vwaBoisyy § uorIONIy EqQOrqU sfuwy
urs YUyu xew yuyu qorq # 4 8L
¥qoTq pe3oeuucd.y yo yequnu § (1124
yByeqxoq/Aadme saoxr A3dme xoqpunoq g PEET0 6L9
qapFaxoq/Kydme sroo Xadwe xogpunoq § 1965°0 655
qbrey/K3doe smox Aydre Jeysex ? LIS 0 oot
q3pya/Aydae sroo A3due yejewx § LOTF 0 E65T
SOUSPYICOD 93XJ0X wwrBoIsTy § £91°0 009 T~
XoqpuUNogq Jejued o3 ssem Jo jued Jo erp Q 99168
JOIFWI INJUSD OF EEWNH FO Jues yo IcYP # 88T °SHE
(A'x) sswm yo xejued xejswx § 20070197 EES'ITIT
voxv ebwd / wezw xoqpunoq § 5890
xydu/yayu yupa xydu xoqpunoq § 04900 056695 SFEPOSE
: (£ ’x) aw3ueo xoqpunoq ¢ 1Z8T §SET
do3 axer xoqpunoq § z ser
398rey y3p¥A xoqpunoq § 6595 LE82
xypdu/xuru yuya xpdu Je35¥X § 6550°0 05669S [4204{144
LYY YIPTA e3sex § 1995 F1144
pescwex srexid o uwyy ssey yo sqorq § [4
suwueryy # 3od 08003
T SE6T BI:LIILT 0C Twi¢ nqL 38 0Y00F

{1) sosanpy 1o it-o “dd +a (uopemprotddy puosds) § pt
9t 20
‘ot x puy (aw] jruioy) Kpo o poy ¥ Jupm s3I PRAKIRGO 9YF O 1N YEEI BupUINIG 10 Ty it

ayy Sujuasaxd o0} Jucpeanbo st ‘x 98eans g3 Ik 1330801 ‘6 ‘uoniEIEA JO
ane.ws Y Jo uopye3uasaxd ag) ‘P3O 5} UOHBULIOIHL JO fyuenbse 1)
- 0 pYajSU] TOQEPEA JO JUONIPAC) JO 950 FE
0G—"UORBIAO(PIEPUEIS JO PEAISU] o
Aqeomdei8 usors 81 uosureduwioo 3y, “9uOfE 2 PuE X U0 paseq .§.= $30p 0B
.aomo._u 210Ul TORNQUISIP PaAJesqo ot sajewixodde ¥ puv ‘o Ty U postq
UOPRGLISIP [RINI0IYD 34 187} juaredde s1 3§ pue maxs amb sf nopnqHy
: ORI PINEOE Yol ALY RAIG
*0 pue m“ﬁuﬂ,ﬁu w”_mw 4q pasosdury @ vopemmoaddy 3L—5] ‘01
‘ul'ssausfoy
G810 040 50 0200

~a

L
(=]

[

"~y pung g wey papdiny

b

!
=4
sumwupeds 193] jo efeudniag

ot puo y uy payndue)

== pannsgp

[~
by

P 991, ‘4 PUB ‘0 X Jo SaN[EA pajnduiod Ay} woly uonnquIsip \.ﬂunezwuz
_«%&u% 5« umzveme 03 ;3dwagye we Jo apdurexs ue saa18 X c_ﬁ%m 8“&“«
3u_.m~ u 1 Sumuesand a[qa oM Apiel st pue ‘087 TR 2938 .m_ &o~
-un a.osa £13a djag 70U 830D SUOIIBAINSYO JO 335 9{3urs ® Jof 3 9} 7%5 2““
"303jrwmod sq3 Jo uopndo oY} U] *x A0Pq PUB JACGE paoeds »:mum W‘_:a :
sy ssoqa afue: v uy (uoxe) Apwape ajdures ¥ w) saBwuId PAAI]

I . N P TR PR LR ..::Ag
[] vo} eyl ovi ve] eul e o oon .ee:?a»: uw....wnn:w
. » g '+, v, 4) ol mﬂu-.
o | vol ol wo] o] 1o ve} voy sy 58 Eno mmwwagu.nwﬁ v.ﬁ:mﬁ._&
. . ¢l o)
et rel s vl voyf 8 nhal] o8t
“ ” H S DRERERR.EP. Bﬂﬁg .« IRG0
10 list

° . > » >
#1°0 fis1'® paco | sere | Wit fesio f Lo UK oeT0 L1

ol s “.A..ﬁ.ﬂh«.e.g.awv-eﬂ-.mqwﬂ-b
o | o l(wry prouoy) Aoo ‘s puv oy Funp
13020 13d *fapanbayg vanivp1 pindio
o | zol oo age sod Hodenbasg eanviey

eotl o] o9] sof owf wr] orj vof 1o
en} vl e} s}] vig ol vof o

. ”*0

M I A R R U :] ¥ S
o lieto labo Lt loveo oo iesal) sl

R“m. :«wa c—m- wn“mo —:M_o 11°0 [rei'o [101°0 [0T1°0 [613°0 [833°0 opedpr §17)

Wms SHO—my SN WO)
(£pmg yepadg wosp vivg) —
4 GNY # 'Y NI GANIVINGO ST NOILVITSOSNS HONN MOH ONIAOHS—X

SIVITALV}Y 20 TOLINOD) ALYIVA]) NO TVONVIY WISV 0

tated by

is ro
tes counter-clockwise rotation. Th

f file st_1/data/doc010/f0040.pct, which i

the image o
The negat

18

Example S & T Image. At bottom i

.

Figure 1

1S

ive value indica
file f0040.sta, shown at top.

-1.6 degrees, relative to the horizontal datum line.
value is noted on line 16 of the corresponding s

1C8

tatist

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

4 Statistics Files *.sta

An example statistics file is given alongside its image in figure 1. The entries are followed by ‘#’ delimited
comments. All .sta files were obtained using the imgstats executable whose C source code is found in the
directory st_?/src/bin/imgstats. The first line names the input image file. The second line states an integer four-
way connected component filtering threshold; the statistics contained in the remainder of the file were obtained
from the input image minus any blobs whose size is less than this number of pixels. Lines four and five give the
whole image width, and height, its area, the number of black ink pixels, and a global ink density. The next five
lines contain the top left hand coordinates of the bounding box, its width height and absolute center, its area,
number of black pixels, the (increased) density, and the ratio of bounding box to page areas.

This data is followed by the absolute coordinates of the center of mass i.e. the mean z and y values of the black
pixels, the distances of the center of mass to the centers of the image and the bounding box, and finally an
estimate of the rotation of the text and graphics relative to the coordinate axes. This angle is given in degrees,
and is accompanied by a confidence measure between zero and one. Appendix B gives a full description of the
orientation estimation method.

The next four lines give the numbers of completely blank columns and rows in the raster, then in the bounding
box. These numbers are also expressed as fractions of their widths and heights.

The final section contains the number of distinct blobs and the number of pixels contained in the largest and
smallest blobs. The table follows giving a histogram of blob sizes, where the t*# entry gives the number of
connected components found in the image whose number of pixels n lies between (¢ — 1)2 + 1 and ¢Z.

Note that the bounding box and blob statistics are very sensitive to the value of blob size threshold filtering
parameter supplied optionally to imgstats. The default value, used on all images of this CD ROM, is 1, meaning
that no blobs were removed prior to processing.

5 Data Hierarchy

All CD ROMs of the four disc volume have identical directory hierarchies. Between each partition differences
exist only in the data (image) and misc (auxilliary image information) trees. :

st_1 st_2 st_.3 st_4 (st_5)
|

bin data doc include 1ib makefile.mak misc src

I I I | I I !

The bin and Iib directories are the destinations for executables and libraries whose source is held in the src/bin/*
and src/lib/* trees. The include directory contains C header files pertinent to that code. The file makefile.mak
initiates a recursive compilation of the source and is described further in section 7. The documentation including
the IATgX and Postscript for this report are contained in the doc directory. The misc tree contains full CD
listings, sizes, titles, and other information associated with the preparation of this database. Finally the data
tree contains the images organized by document thus:

st_4

doc001 doc003 doc004 ... doc078 docO77

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

I
$0000.pct £0001.pct ... £0013.pct doc001.idx

£0000.sta £0001.sta ... £0013.sta

The misc tree contains several extra files. The .prt file shows which documents are contained on this partition
and the .ttl file contains the titles of those documents. The .Is file contains a UNIX recursive long listing of the
st_? hierarchy, and the .siz file gives the total integer sum of the byte sizes of the compressed image .pct files.

7

st_4

st_4.ttl st_4.prt st_4.1s st_4.siz

Caveats

. Many operating systems and shells have upper limits on the number of arguments that may be supplied

on the command line to installed programs. Users of the largest documents st_3/doc056 and st_1/doc023
will find wildcard expansions to be time-consuming. The problem is exacerbated by the slow access times

typical of CD ROM’s.

. A very small number of the images were scanned from the dark covers of pamphlet-like documents, and

are very noisy. The files are typically very large and underexposed, and contain a small amount of title
text. Note that the compression actually increases the data size of very noisy images, by up to a theoretical
maximum of a factor of 2.5, and as a result a small number of images exceed a megabyte in size.

. If a user possesses NIST Special Databases published prior to SD19 (March 1995) and employs the supplied

CCITT Group 4 compression code then it should be updated with this SD20 release. This modified code
allows very large image files to be handled. Use of the old compression version on these files will result in
the loss of all the data.

Software Utilities

A number of C coded utilities have been included in this CD firstly to provide tools for handling the provided
image data, and secondly to give examples of how to handle the NIST IHEAD structure. Because the CD ROM
is read-only storage the src and include directories need to be copied to a writable disk prior to compilation.
In addition directories named bin and lib must be created. Given a copy of these trees from say /ed to, for
example, the directory /usr/local/sd20, the executable binaries for various architectures can be produced in the
bin directory by invoking the UNIX commands thus:

mkdir /usr/local/sd20

cd /usr/local/sd20

cp -rp /ed/sre /ed/include /ed/man /cd/makefile.mak .

mkdir bin lib

make -f makefile.mak instarch PROJDIR=/usr/local/sd20 INSTARCH=sgi
make -f makefile.mak depend PROJDIR=/usr/local/sd20

make -f makefile.mak install PROJDIR=/usr/local/sd20

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

where the environment variable PROJDIR is the root path to the src directory, and INSTARCH, which indicates
the desired machine architecture, is one of sun, sgi, aix, hp, sol or osf. A brief description of the software utilities
is given below. The manual pages that follow offer a more complete description.

imgstats

This utility takes a number of IHEAD images producing a statistics file for each.

dumpihdr '
This utility dumps the textual information of the header of a NIST ihead file to standard output.

decomp
Removes IHEAD supported CCITT Group IV compression and overwrites the input image file.

compgrp4
Applies Group IV compression and overwrites the input IHEAD file.

References

[1] Michael D. Garris. Design, Collection, and Analysis of Handwriting Sample Image Databases. The Encyclo-
pedia of Computer Science and Technology, 31:189-213, 1994.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

Appendix A - THEAD Image Format

NIST’s Visual Image Processing Group has developed the IHEAD image header and has incorporated it into
all images of its Special Databases. The IHEAD design and functionality are described extensively in [1]. All
members of the header are ASCII coded with some fields being in ‘C’ string format and other fields being single
ASCII characters. The actual structure definition for an NIST header and a description of the use and purpose
of each member is shown below. The header is of a fixed allocated length, currently 296 bytes, regardless of its
content. The first eight bytes contain the length of the remainder, i.e. 288 bytes all of which can be read into
structure memory with a single “fread” system call.

All the SD20 images have been compressed using an implementation of the CCITT Group 4 algorithm developed
by the CALS Test Network and adapted by NIST for use with files which have compressed images and uncom-
pressed headers. The IHEAD header within each image remains uncompressed with the appropriate members
set to reflect the fact that the following raster data have been compressed before being saved to a file. The file
src/lib/image/readrast.c contains the C routine ReadBinaryRaster that when given an IHEAD image file will
allocate, load, and return the header structure with the decompressed raster data. Although an IHEAD file
may contain uncompressed data, the reading routine will invoke, if necessary, routines to decompress the image
data. The files src/lib/image/grp4{comp,deco}.c contain modified source code for compressing and decompressing
binary rasters.

/* Defines used by the ihead structure */

#define IHDR_SIZE 288 /* len of hdr record (always even bytes) */
#define SHORT_CHARS 8 /* # of ASCII chars to represent a short */
#define BUFSIZE 80 /* default buffer size */

#define DATELEN 28 /* character length of date string */

typedef struct ihead{

char id[BUFSIZE]; /* identification/comment field */
char created [DATELEN]; /* date created */
char width[SEORT_CEARS]; /* pixel width of image */
char height [SHORT _CHARS]; /* pixel height of image */
char depth[SHORT_GHARS]; /* bits per pixel */
char density[SHORT_CHARS]; /* pixels per inch */
char compress[SHEORT_CHARS]; /* compression code */
char complen[SHORT_CHARS]; /* compressed data length */
char align[SHORT_CHARS]; /* scanline multiple: 8]16(32 */
char unitsize[SHORT_CHARS]; /* bit size of image memory units */
char sigbit; /* 0->sigbit first | 1->sigbit last */
char byte_order; /* 0->highlow | 1->lowhigh*/
char pix_offset[SHORT_CHARS]; /* pixel column offset */
char whitepix[SHORT_CHARS]; /* intensity of white pixel */
char issigned; /* 0->unsigned data | 1->signed data */
char rm_cm; /% 0->row maj | 1->column maj */
char tb_bt; /* 0->top2bottom | 1->bottom2top */
char lr_rl; /* 0->left2right | 1~>right2left */
char parent [BUFSIZE]; /* parent image file */
char par_x[SHORT_CHARS]; /% from x pixel in parent */
char par_ y[SHORT_CHARS]; /* from y pixel in parent */

}IHEAD;
1. id — General identification field used to contain the

image file name and any other information useful for
image distinction.
2. created - Date when the image was created.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

o b W

-3

12.

i3.

14.
is8.

16.

17.

i8.

19.

20.

21.

width
height
depth
density
compress

. complen
. align

10.
11.

unitsize
sigbit

byte_order
pix_offset

whitepix
issigned

rm_cm
tb_bt
lr.rl
parent

par_x

par y

Pixel width of the image.

Number of scanlines in the image.

Number of bits representing a single pixel.

Pixels per inch resolution of the image.

ASCII code used to represent the compression
algorithm used on the image.

Length of compressed image in bytes.

Even multiple in bits to which each scanline is padded.

Size in bits of fundamental data units in the image.

Order of most significant to least significant bits
within fundamental data units in the image.

Order of high and low bytes used if fundamental
data units are 2 bytes long in the image.

Pixel offset into the data where the

. image of interest actually begins.

Intensity value of white pixels in the image.

Flag which signifies whether fundamental data units
include a sign bit or are unsigned.

Flag which signifies whether the raster data is
stored row-major or column-major.

Flag which signifies whether the raster data is
stored top-to-bottom or bottom-to-top.

Flag which signifies whether the raster data is
stored left~to-right or right-to-lefst.

File name of the parent image if the image is
a subimage.

X coordinate pixel value in the.parent image where the
subimage was cut.

Y coordinate pixel value in the parent image where the
subimage was cut.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

Appendix B - Rotation Detection

The method employed in SD20 for estimating the angle of rotation given in the .sta files is, in our experience,
quite robust, though, unfortunately, not particularly efficient. Although a theoretical description follows, the user
is directed to the source code in st_?/src/bin/imgstats/deskew.c for the straightforward implementation.

Consider a line in the (z,y) plane. The line from the origin that intersects this line perpendicularly is inclined
at angle § as shown below. Consider a line that is perpendicularly intersected by a line from the origin whose
length is s that makes an angle 8 with the horizontal. Any point (z,y) that lies on the first line obeys

y = —ztan(n/2 - 0) + s/sinf

s=1rsinf 4+ ycosb

where (s,6) is known as the Hough transform of the line. So given an image, I(z,y), and adopting this notation
we define the Radon transform to be the line integral of the image along that line defined by (s,).

R(s,ﬂ)://[(z,y) 6(s — zsinf — ycosb) dzdy
yJz

where —c0 < s < o, 0 < 6 < =, and the § function is unity only if its argument is zero, corresponding to the
point lying on the line. The left hand side, R(s,), is known as the ray sum. For the purposes of orientation
detection we define the angular power as the integral over all displacements of the squared Radon transforms of
parallel rays:

v(8) = / R(s,0)" ds

where we have used 8 = 2 though any value greater than unity would be suitable. Thus it is clear that v(8) will
have a large value if there is significant structure in the image that is directed at that particular angle. For a
sampled discrete image the ray sum is calculated as the sum of the pixel values along the line defined by (s, 8).
In the case of binary images we take I(z, y) to be unity only if there is ink at location (z,y). Otherwise it is zero,
and the power quantity is just the sum of the squares of the number of pixels lying on the inclined ray vectors.
Given an image of width w and height & the quantity becomes

8

h w
v(@) =) | Y Iz, y)

s=1 \j=1

where instead of using the analytic formula, Y; = scscf — z; cot §, the implementation actually constructs ray
vectors using Bresenham’s more efficient line drawing algorithm. Thus for discrete values of § on the range
—6 < 8 < 6 with an increment of 0.2 degrees, the method accumulates, for each vertical displacement (i.e. row
index, s), the squared sum of the number of dark image pixels lying on the line yielding a power measure as a
function of # as shown in figure 2.

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

13 , 1 ; T T
12
v(8) 11
10

(=2 IS B * R -

Figure 2: The sum of the squared vector sums of the image st_1/data/doc010/f0040.pct as a function of angle.
The angle for which v is maximum corresponds to the rotation of the page.

10

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

COMPGRP4 USER COMMANDS COMPGRP4

NAME
compgrp4 - overwrites a file with its data Group IV compressed.

SYNOPSIS
compgrp4 input.pct

DESCRIPTION
compgrp4 is a utility that takes a NIST IHEAD image file, compresses the data using CCITT Group IV
and outputs a typically smaller NIST IHEAD file.

OPTIONS

EXAMPLES
Given the input file /tmp/f0358.pct its data may be compressed thus:
compgrp4 /tmp/f0358.pct

FILES
st.1/include/ihead.h
st_1/include/grpdcomp.h
st.1/src/lib/image/grp4comp.c

SEE ALSO
decomp

BUGS
A feature of the Group IV compression is that noisy decorrelated data streams may actually increase in size
under “compression”. The maximum increase is a factor of 5/2.

Users of NIST Image Recognition Group supplied Group IV compression released before February 1995
should update their installed software. The code has been recently modified to allow very tall files to be
handled correctly; previous releases have severely corrupted such files.

11

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

DECOMP USER COMMANDS DECOMP

NAME
decomp - writes file of decompressed image data

SYNOPSIS
decomp [-o output.pct] input.pct ...

DESCRIPTION
decomp is a utility that takes a NIST IHEAD image file, decompresses the CCITT_IV data and outputs

a typically much larger NIST IHEAD file.

OPTIONS -o output.pct Without this option the file “input.pct” is overwritten. The -o flag allows the user
to specify an alternative output path and filename.

EXAMPLES
Given the st_1 data hierarchy from the CD ROM, the file doc005/0358.pct can be decompressed and output

to /tmp as follows:
decomp -o /tmp/f0358.pct /sd20/st.1/data/doc005/f0358.pct

FILES
st-1/include/ihead.h
st.1/include/grp4deco.h
st.1/src/lib/image/grp4deco.c

SEE ALSO
compgrp4

BUGS

12

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

DUMPIHDR USER COMMANDS DUMPIHDR

NAME
dumpihdr - prints one or more image file’s IHEAD header information.

SYNOPSIS
dumpihdr input.pct ...

DESCRIPTION
dumpihdr is a utility that dumps image header information to standard output for multiple NIST IHEAD

format image files.
OPTIONS

EXAMPLES
Given the SD20 data hierarchy, the [HEAD structures of the first writer’s completed HSF and digit seg-

mentations are written to standard output using:
dumpihdr st_1/data/doc010/f0040.pct

FILES
st-1/include/ihead.h
st-1/include/mis.h

SEE ALSO
BUGS

13

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

IMGSTATS USER COMMANDS IMGSTATS

NAME
imgstats - produce statistics from an image

SYNOPSIS
imgstats [-rb blobsize] inputl.pct ...

DESCRIPTION
imgstats is a utility that takes IHEAD .pct files, produces a statistics .sta file for each input image.

OPTIONS
-r do not estimate the text rotations, with consderable time savings.
-b blobsize before obtaining statistics remove any blobs smaller than this integer number of pixels. The
input image files are not corrrupted.

EXAMPLES
Given the first SD20 data hierarchy, st_1, the statistics of the file shown in figure 1 are computed thus:

imgstats st_1/data/doc010/f0040.pct
The .sta file will be overwritten if we decide to recompute the statistics while ignoring single pixel blobs
thus:

imgstats -rb2 st.1/data/doc010,/f0040.pct

FILES
st_1/include/ihead.h
st.1/include/image.h
st_1/src/bin/imgstats/imgstats.h

SEE ALSO

BUGS
The output file is overwritten if the executable is rerun on the same input image.

The rotation estimate is too expensive. It is more economical to reduce the i image size (zoom down) and
run imgstats on the smaller result.

14

decker

decker

decker

decker

decker

decker

decker

decker

decker

decker

