0 What: Standard DR Signals (6.2.1)

0.1 Abstract:

Develop or adopt standard DR and DER signals – NIST shall organize a meeting with IEC TC57, OASIS, NAESB, and AMI-ENT to specify a process for developing a common semantic model for standard DR signals. The effort shall ensure DR signal standards support load control, supply control, and environmental signals.

0.2 Description:

The semantics of Demand Response are generally well understood, but the information that is conveyed varies. Signals range from price, optionally with time of effectiveness, grid integrity, to proposed environmental signals (e.g. air quality).

Defining consistent signals for Demand Response will make the information conveyed more consistent as a signal flows from grid management through aggregators to customers and within premises networks. Some of the standards define business processes, while others define XML or other data models with a variety of delivery mechanisms.

The semantics for Distributed Energy Resources should fit into the same sort of signaling framework. This group will also develop a plan for DER signal definition.

0.3 Objectives:

Define a framework and common terminology for:

- Price communication,
- Grid safety or integrity signals,
- DER support, and
- Other signals and/or an extensibility mechanism.

0.4 Why:

Demand Response has evolved over the years; previous mechanisms included phone calls, pagers, and other messaging to plant managers; current mechanisms support varying levels of automation.

As technologies, such as Open Automated Demand Response, allow rapid and un-attended automation of curtailment based on price or grid integrity, consistent signals across the entire Demand Response signaling and validation chain have raised in importance. Consistent signals will allow further automation of the Demand Response chain, and improve the responsiveness as well as the value to all stakeholders.

Renewable and other intermittent resource integration increases the need for balancing reserve, spinning reserve, and other techniques for successful integration to take advantage of lower operating cost for renewables. However, the responsiveness of the entire power generation and delivery system needs to improve in correspondence with the extent and degree of intermittency.

Distributed Energy Resource integration raises interoperation issues related to distribution automation, signals and information exchanges, and profiles; some of these (e.g. storage) are being addressed specifically in other action plans.

Markets, Operations, Distribution, distribution-related capital costs, and the Customer domain are the primary areas affected, though all are affected to some extent.

0.5 Where:

This is primarily levels 4 (Semantic Understanding), 5 (Business Context) and 6 (Business Procedures) of the GWAC stack, though it involves most of the cross-cutting issues.

Security and privacy can be composed in; the focus of this activity is consistent semantics that work with business processes of today and those we cannot specify that may develop in the future.

0.6 How:

A broad range of stakeholders need to be involved, broadly from the distribution management and markets area, building automation, industrial automation, home automation and energy management, and vehicles.¹

There are several formalized or standardized specifications in these areas that need to share common semantics where they overlap; we should aim at a high level rather than details that may not be relevant in cross-domain interactions and interoperation.

Since there are a number of existing bodies of work, a survey of relevant efforts and their overlap and gaps relative to DR/DER signaling would seem to be a good starting point.

Other issues:

- Should requirements analysis—what information needs to be exchanged for which use cases—be done as part of this process?
- When do we need a high-level light interface, versus deep integration?
- What are differences between ISO/RTO Demand Response and Distributed Energy Resource integration and the local utility counterparts?
- Can we incorporate ancillary (fast-DR) services in the signaling approach? Or is fast DR only applicable to deep integration that will support the short time scales?
- Measurement and verification need to be addressed for both curtailment and DER. How should we address in this process?

¹ Vehicles may interact with DR and DER signals primarily through their charging stations, but the characteristics will likely need to be expressed in profiles that include decision information for the vehicle owner, e.g., amortized cost of battery use to sell energy to the grid or a microgrid.

0.6.1 Task Descriptions

Developed along with project team and summarized in the following table. Dates are at the end of the indicated month.

Task	Responsible	Date	Notes
Define proper DER Interaction, Scope	Lunch table discussion; later readout to Action Team List	Input before 2009-10	x2G DEWGs, IEC TC57. Storage Models IEEE1547.3, NAESB PAP07 Outcome, PAP11 Elec Trans
Collect, Analyze, and Consolidate Use Cases and deliver UML (inc DER)	UCAlug, NAESB	2009-10	Incorporating OpenADR (Starting point for OASIS EITC). No Magic.
Message Semantics Work DR	OASIS EITC	Underway	Starting from OpenADR. Review by UNClug, 1377, NAESB, BAE, SEP, TC57 CIM, Multispeak, others
Message Semantics Work DER	OASIS EITC	Convene by 2009-10	Input expected by 2009-10- 31
Message Semantics Calendar, Price	OASIS EITC	2010-04	Output from PAP03, PAP04
Delver Semantics, Interactions for Initial review	OASIS EITC	2010-01	Leave hole for Price, Calendar
Downstream user requirements/engagement	LonMark, BACnet, ZigBee SEP2	2009-10	BACnet, LonMark, HES, x2G, UpnP, OpenHAN, ZigBee, SEP, oBIX, AHAM, UCAIug, NEMA
Additional message requirements for Distribution	MultiSpeak	2009-10	
Resale and process for safety and interconnection and resale	NAESB	2009-10	UL
Vocabulary	NAESB, UCAig, BACnet, LonMark	TWIKI ASAP 2009-09 to [UML]	Normalize OpenADR, NAESB, UCAIG, Place on TWIKI Deliver to OASIS EITC

0.6.2 Deliverables

Developed along with project team and summarized in the previous table.

0.7 Who

The Task Leads (in alphabetical order by organization) are

Organization	Contact	Email
BACnet/ASHRAE	Sharon Dinges	sdinges@trane.com
LonMark	Ron Bernstein	ron@lonmark.org
MultiSpeak	Bob Saint	robert.saint@nreca.coop
NAESB	Jonathan Booe	jbooe@naesb.org
OASIS	Laurent Liscia	Laurent.Liscia@oasis-open.org
UCAIug	Wayne Longcore	wrlongcore@cmsenergy.com
ZigBee SEP2	Robby Simpson	robby.simpson@ge.com

Other organizations identified, members of which suggested or committed to participation in the Action Plan:

AHAM	HES	NEMA	OpenHAN
B2G DEWG	I2G DEWG	No Magic, Inc	PAPs 3, 4, 7, 11
BAE Systems	IEC TC57	oBIX	Underwriters Laboratory
H2G DEWG	IEEE 1547.3, 1377	OpenADR/LBL	UpnP/WS-DD/DP

Invitees to the workshop breakout session included the following:

	Project Team	Ĭ
Role	Organization	Name
NIST Lead	David Holmberg	David Holmberg David.Holmberg@NIST.gov
EPRI Support	Cox Software Architects	William Cox wtcox@CoxSoftwareArchitects.com
	TC9 Inc	Toby Considine <u>Toby.Considine@gmail.com</u>
SDOs	ASHRAE	Sharon Dingus <u>sdingus@trane.com</u>
	ASHRAE	Steven Bushby steven.bushby@nist.gov
	IEC TC57 WG14 Distr Mgt	Greg Robinson grobinson@xtensible.net
	IEC TC57 WG16 Dereg Mkt C	Jean Goulet goulet.jean@ireq.ca
	ISO/IEC JTC 1 WG15	Tim Schoeckle <u>schoechl@colorado.edu</u>
	LonMark	Ron Bernstein ron@lonmark.org
	NAESB	Rae McQuade rmcquade@naesb.org
	NAESB	Jonathan Booe jbooe@naesb.org
	OASIS	James Bryce Clark jamie.clark@oasis-open.org
Ť.	OASIS WS-Device Profile	Toby Nixon Toby.Nixon@microsoft.com
	SAE	Rich Scholer <u>rscholer@ford.com</u>
Other	Users Group Lead	Wayne Longcore <u>wrlongcore@cmsenergy.com</u>
Stakeholders	UCAlug Smart Grid SC	Jeff Gooding <u>Jeff.Gooding@SCE.COM</u>
	UCAlug AMI-ENT TF	Joe Zhou jzhou@xtensible.net
	UCAlug OpenADR TF	Albert Chiu akc6@pge.com
	АНАМ	Matt Williams mwilliams@aham.org
	AHAM	Charles Smith CHARLESR.SMITH@ge.com
	EPRI (appliances)	Gale Horst <u>ghorst@epri.com</u>
Additional	ISO/RTU+GWAC	Robert Burke <u>rburke@iso-ne.com</u>

Invitees	GWAC	Ron Ambrosio <u>rfa@us.ibm.com</u>
	GWAC	Lynne Kiesling lynne@knowledgeproblem.com
	LBNL OpenADR	Mary Ann Piette MAPiette@lbl.gov
	LBNL OpenADR	Girish Ghatikar GGhatikar@lbl.gov
	LBNL OpenADR	Ed Koch ed@akuacom.com
	Microsoft Energy	Larry Cochrane larrcoch@microsoft.com
	ZigBee/HomePlug SEP2	Robby Simpson robby.simpson@ge.com
	Other Experts	Ed Cazalet ed@cazalet.com
	I2G, GWAC	Dave Hardin david.hardin@ips.invensys.com
	FIATECH	Robert Wible wible@fiatech.org
	CABA	David Katz dkatz@sustainable.on.ca
	CABA (alt)	Ron Zimmer <u>zimmer@caba.org</u> (alt)
	Building Smart	Deke Smith deke@dksic.net
	Home Automation	Kenneth Wacks kenn@alum.mit.edu
	Emergency Mgt	Michelle Raymond michellearaymond@gmail.com
	ASHRAE BACnet	Jim Lee <u>Jim.Lee@cimetrics.com</u>

0.8 When:

Schedules are indicated in the previous table. Most deliverables are input to the responsible organizations by the end of October 2009; others are as indicated.