NIST logo

Tech Beat - July 6, 2011

Tech Beat Archives

Submit an email address to receive news from NIST:

Editor: Michael Baum
Date created: July 6, 2011
Date Modified: July 6, 2011 
Contact: inquiries@nist.gov

A Cool Beat: NIST Micro-Drum Chilled to Quantum Ground State

Showcasing new tools for developing quantum circuits made of mechanical parts, scientists from the National Institute of Standards and Technology (NIST) have demonstrated a flexible, broadly applicable technique for steadily damping the vibrations of a mechanical object down to the quantum “ground state,” the lowest possible energy level.

quantum drum
Multiple versions of NIST’s superconducting circuit containing a “micro drum” were fabricated on this sapphire chip, shown next to a penny for scale. NIST scientists cooled one such drum to the lowest possible energy level, the quantum ground state.
Credit: Teufel/NIST
View hi-resolution image

Described in a Nature paper posted online July 6,* the NIST experiments nearly stop the beating motion of a microscopic aluminum drum made of about 1 trillion atoms, damping its motion below a single quantum, or unit of energy, and so placing the drum in a realm governed by quantum mechanics. Like a plucked guitar string that plays the same tone while the sound dissipates, the drum continues to beat 11 million times per second, but its range of motion approaches zero. The cooling technique and drum device together promise new machinery for quantum computing and tests of quantum theory, and could help advance the field of quantum acoustics exploring the quantum nature of mechanical vibrations.

NIST scientists used the pressure of microwave radiation to calm the motion of the drum, which is embedded in a superconducting circuit.** The circuit is designed so that the drum motion can influence the microwaves inside an electromagnetic cavity. The cooling method takes advantage of the microwave light’s tendency to change frequency, if necessary, to match the frequency, or tone, at which the cavity naturally resonates.

“I put in the light at the wrong frequency, and it comes out at the right frequency, and it does that by stealing energy from the drum motion,” says John Teufel, a NIST research affiliate who designed the drum. Teufel led the cooling experiments in NIST physicist and co-author Konrad Lehnert’s lab at JILA, a joint institute of NIST and the University of Colorado Boulder.

The NIST drum can store individual packets of energy, or quanta, for about 100 microseconds without change, much longer than conventional superconducting quantum bits can maintain information. The drum, thus, might serve as a short-term memory device for a quantum computer as well as a platform for exploring complex mechanical and quantum states for tests of theories such as quantum gravity. The NIST apparatus also allows researchers to measure the position of the drum directly, which is useful for force detection, with a precision closer than ever to the ultimate limit allowed by quantum mechanics.

To make engineered bulk objects obey the rules of quantum mechanics, typically observed only in atoms and smaller particles, scientists must lower an object’s temperature beyond the reach of conventional refrigeration. The NIST drum experiments used a technique analogous to the way lasers are used to cool individual atoms to near absolute zero, lowering the drum temperature to below 400 microKelvin (millionths of a degree above absolute zero), or just one-third of 1 quantum.

The research was supported in part by the Defense Advanced Research Projects Agency. For more details, see the NIST news announcement at www.nist.gov/pml/quantum/drum-070611.cfm.

* J.D. Teufel, T. Donner, Dale Li, J.W. Harlow, M.S. Allman, K. Cicak, A.J. Sirois, J.D. Whittaker, K.W. Lehnert and R.W. Simmonds. 2011. Sideband cooling of micromechanical motion to the quantum ground state. Nature. Posted online July 6, 2011.
** See NIST news announcement, “NIST Electromechanical Circuit Sets Record Beating Microscopic ‘Drum’,” March 9, 2011, at www.nist.gov/pml/quantum/drum-030911.cfm.

Media Contact: Laura Ost, laura.ost@nist.gov, 303-497-4880

Comment  Comment on this article.back to top

NIST Prototype 'Optics Table on a Chip' Places Microwave Photon in Two Colors at Once

Researchers at the National Institute of Standards and Technology (NIST) have created a tunable superconducting circuit on a chip that can place a single microwave photon (particle of light) in two frequencies, or colors, at the same time.

optic table chip
NIST's "optics table on a chip" is a superconducting circuit on a square sapphire chip about 6 millimeters wide. Scientists use the chip to place a single microwave photon in two frequencies, or colors, at the same time. The photon is prepared by an "artificial atom" (small yellow square) in the middle of the chip. The arrow shape at the lower left connects to a transmission line used to tune the SQUID (small black area near the point of the arrow). The SQUID couples together two resonant frequencies of the cavity (meandering line), and the photon oscillates between different superpositions of those frequencies.
Credit: D. Schmidt/NIST
View hi-resolution image

This curious "superposition," a hallmark of the quantum world, is a chip-scale, microwave version of a common optics experiment in which a device called a beam-splitter sends a photon into either of two possible paths across a table of lasers, lenses and mirrors. The new NIST circuit can be used to create and manipulate different quantum states, and is thus a prototype of the scientific community's long-sought "optics table on a chip."

Described in Nature Physics,* the NIST experiments also created the first microwave-based bit for linear optical quantum computing. This type of quantum computer is typically envisioned as storing information in either the path of a light beam or the polarization (orientation) of single photons. In contrast, a microwave version would store information in a photon's frequency. Quantum computers, if they can be built, could solve certain problems that are intractable today.

The new NIST circuit combines components used in superconducting quantum computing experiments—a single photon source, a cavity that naturally resonates or vibrates at particular frequencies, and a coupling device called a SQUID (superconducting quantum interference device). Scientists tuned the SQUID properties to couple together two resonant frequencies of the cavity and then manipulated a photon to make it oscillate between different superpositions of the two frequencies. For instance, the photon could switch back and forth from equal 50/50 proportions of both frequencies to an uneven 75/25 split. This experimental setup traps photons in a "box" (the cavity) instead of sending them flying across an optical table.

"This is a new way to manipulate microwave quantum states trapped in a box," says NIST physicist José Aumentado, a co-author of the new paper. "The reason this is exciting is it's already technically feasible to produce interesting quantum states in chip-scale devices such as superconducting resonators, and now we can manipulate these states just as in traditional optics setups."

NIST researchers can control how the new circuit couples different quantum states of the resonator over time. As a result, they can create sequences of interactions to make simple optical circuits and reproduce traditional optics experiments. For example, they can make a measurement tool called an interferometer based on the frequency/color of a single photon, or produce special quantum states of light such as "squeezed" light.

* E. Zakka-Bajjani, F. Nguyen, M. Lee, L.R. Vale, R.W. Simmonds and J. Aumentado. Quantum superposition of a single microwave photon in two different 'colour' states. Nature Physics. Posted online July 3, 2011.

Media Contact: Laura Ost, laura.ost@nist.gov, 303-497-4880

Comment  Comment on this article.back to top

Graphene: What Can Go Wrong? New Studies Point to Wrinkles, Process Contaminants

Using a combination of sophisticated computer modeling and advanced materials analysis techniques at synchrotron laboratories, a research team led by the University at Buffalo (UB) and including the National Institute of Standards and Technology (NIST), the Molecular Foundry at Lawrence Berkeley National Laboratory and SEMATECH* has demonstrated how some relatively simple processing flaws can seriously degrade the otherwise near-magical electronic properties of graphene.

Their new paper** demonstrates how both wrinkles in the graphene sheet and/or chance contaminants from processing—possibly hiding in those folds—disrupt and slow electron flow across the sheet. The results could be important for the design of commercial manufacturing processes that exploit the unique electrical properties of graphene. In the case of contaminant molecules at least, the paper also suggests that heating the graphene may be a simple solution.

Graphene, a nanostructured material that is essentially a one-atom thick sheet of carbon atoms arranged in a hexagonal pattern, is under intense study because of a combination of outstanding properties. It's extremely strong, conducts heat very well, and has high electrical conductivity while being flexible and transparent. Graphene's electrical properties, however, apparently depend a lot on flatness and purity.

Using X-rays, the UB team produced images that show the electron "cloud" lining the surface of graphene samples—the structure responsible for the high-speed transit of electrons across the sheet—and how wrinkles in the sheet distort the cloud and create bottlenecks. Spectrographic data showed anomalous "peaks" in some regions that also corresponded to distortions of the cloud. NIST researchers, using their dedicated materials science "beam line" at the National Synchrotron Light Source (NSLS),*** contributed a sensitive analysis of spectroscopic data confirming that these peaks were caused by chemical contaminants that adhered to the graphene during processing.

Significantly, the NIST synchrotron methods group was able to make detailed spectroscopic measurements of the graphene samples while heating them, and found that the mysterious peaks disappeared by the time the sample reached 150 degrees Celsius. This, according to Dan Fischer, leader of the NIST group, showed both that those particular disturbances in the electron cloud were due to contaminants, and that there is a way to get rid of them. "They're not chemically bound, they're just physically absorbed on the surface, and that's an important thing. You have a prescription for getting rid of them," Fischer said.

"When graphene was discovered, people were just so excited that it was such a good material that people really wanted to go with it and run as fast as possible," said Brian Schultz, one of three UB graduate students who were lead authors on the paper, "but what we're showing is that you really have to do some fundamental research before you understand how to process it and how to get it into electronics."

"This is the practical side of using graphene," agrees Fischer, "It has all these remarkable properties, but when you go to actually try to make something, maybe they stop working, and the question is: why and what do you do about it? These kinds of extremely sensitive, specialized techniques are part of that answer."

For more on the study, see the UB June 28, 2011, news announcement "Researchers Image Electron Clouds on the Surface of Graphene, Revealing How Folds in the Remarkable Material Can Harm Conductivity" at www.buffalo.edu/news/12673.

* SEMATECH is a nonprofit research consortium that advances the U.S. semiconductor industry.
** B.J. Schultz, C. J. Patridge, V. Lee, C. Jaye, P.S. Lysaght, C. Smith, J. Barnett, D.A. Fischer, D. Prendergast and S. Banerjee. Imaging local electronic corrugations and doped regions in graphene. Nature Communications. V2, 372. Published on-line June 28, 2011. doi:10.1038/ncomms1376.
*** The NSLS is located at the Brookhaven National Laboratory.

Media Contact: Michael Baum, baum@nist.gov, 301-975-2763

Comment  Comment on this article.back to top

Promising Fire Retardant Results When Clay Nanofiller Has Space

If materials scientists accompanied their research with theme songs, a team from the National Institute of Standards and Technology (NIST) and the University of Maryland (UMD) might be tempted to choose the garage punk song "Don't Crowd Me"* as the anthem for the promising, but still experimental nanocomposite fire retardants they are studying.

That's because the collaborators have demonstrated that the more widely and uniformly dispersed nanoscale plates of clay are in a polymer, the more fire protection the nanocomposite material provides.

Writing in the journal Polymer,** the team reports that in tests of five specimens—each with the same amount of the nanoscale filler (5 percent by weight)—the sample with the most widely dispersed clay plates was far more resistant to igniting and burning than the specimen in which the plates mostly clustered in crowds. In fact, when the two were exposed to the same amount of heat for the same length of time, the sample with the best clay dispersion degraded far more slowly. Additionally, its reduction in mass was about a third less.

In the NIST/UMD experiments, the material of interest was a polymer—a type of polystyrene, used in packaging, insulation, plastic cutlery and many other products—imbued with nanometer scale plates of montmorillonite, a type of clay with a sandwich-like molecular structure. The combination can create a material with unique properties or properties superior to those achievable by each component—clay or polymer—on its own.

Polymer-montmorillonite nanocomposites have attracted much research and commercial interest over the last decade or so. Studies have suggested that how the clay plates disperse, stack or clump in polymers dictates the properties of the resultant material. However, the evidence—especially when it comes to the flammability properties of the nanocomposites—has been somewhat muddy.

Led by NIST guest researcher Takashi Kashiwagi, the NIST-UMD team subjected their clay-dispersion-varying samples to an exhaustive battery of characterization methods and flammability tests. Affording views from the nanoscopic to the microscopic, the array of measurements and flammability tests yielded a complete picture of how the nanoscale clay plates dispersed in the polymer and how the resultant material responded when exposed to an influx of heat.

The researchers found that with better dispersion, clay plates entangle more easily when exposed to heat, thereby forming a network structure that is less likely to crack and leading to fewer gaps in the material. The result, they say, is a heat shield that slows the rate of degradation and reduces flammability. The NIST team, led by Rick Davis, is now exploring other approaches to reduce flammability, including the use of advanced materials and novel coating techniques.

* Keith Kessler, "Don't Crowd Me."
** M. Liu, X. Zhang, M. Zammarano, J.W. Gilman, R.D. Davis and T. Kashiwagi. Effect of Montmorillonite dispersion on flammability properties of poly(styrene-co-acrylonitrile) nanocomposites. Polymer. Vol. 52, Issue 14, June 22, 2011.

Media Contact: Mark Bello, mark.bello@nist.gov, 301-975-3776

Comment  Comment on this article.back to top

A Quiet Phase: NIST Optical Tools Produce Ultra-low-noise Microwave Signals

By combining advanced laser technologies in a new way, physicists at the National Institute of Standards and Technology (NIST) have generated microwave signals that are more pure and stable than those from conventional electronic sources. The apparatus could improve signal stability and resolution in radar, communications and navigation systems, and certain types of atomic clocks.

Matt Kirchner
Matt Kirchner, a University of Colorado graduate student, fine-tunes an ultra-stable microwave generator that he helps operate at NIST.
Credit: Burrus/NIST
View hi-resolution image

"This is the quietest, most stable microwave generator that's ever been made at room temperature," said project leader Scott Diddams.

Described in Nature Photonics,* NIST's low-noise apparatus is a new application of optical frequency combs, tools based on ultrafast lasers for precisely measuring optical frequencies, or colors, of light. Frequency combs are best known as the "gears" for experimental next-generation atomic clocks, where they convert optical signals to lower microwave frequencies, which can be counted electronically.

The new low-noise system is so good that NIST scientists actually had to make two copies of the apparatus just to have a separate tool precise enough to measure the system's performance. Each system is based on a continuous-wave laser with its frequency locked to the extremely stable length of an optical cavity with a high "quality factor," assuring a steady and persistent signal. This laser, which emitted yellow light in the demonstration but could be another color, is connected to a frequency comb that transfers the high level of stability to microwaves. The transfer process greatly reduces—to one-thousandth of the previous level—random fluctuations in the peaks and valleys, or phase, of the electromagnetic waves over time scales of a second or less. This results in a stronger, purer signal at the exact desired frequency. 

The base microwave signal is 1 gigahertz (GHz, or 1 billion cycles per second), which is the repetition rate of the ultrafast laser pulses that generate the frequency comb. The signal can also be a harmonic, or multiple, of that frequency. The laser illuminates a photodiode that produces a signal at 1 GHz or any multiple up to about 15 GHz. For example, many common radar systems use signals near 10 GHz.

NIST's low-noise oscillator might be useful in radar systems for detecting faint or slow-moving objects. The system might also be used to make atomic clocks operating at microwave frequencies, such as the current international standard cesium atom clocks, more stable. Other applications could include high-resolution analog-to-digital conversion of very fast signals, such as for communications or navigation, and radio astronomy that couples signals from space with arrival times at multiple antennas.

* T.M. Fortier, M.S. Kirchner, F. Quinlan, J. Taylor, J.C. Bergquist, T. Rosenband, N. Lemke, A. Ludlow, Y. Jiang, C.W. Oates and S.A. Diddams. Generation of ultrastable microwaves via optical frequency division. Nature Photonics.  Published online June 26, 2011.

Media Contact: Laura Ost, laura.ost@nist.gov, 303-497-4880

Comment  Comment on this article.back to top

Key Ingredient: Change in Material Boosts Prospects of Ultrafast Single-photon Detector

By swapping one superconducting material for another, researchers at the National Institute of Standards and Technology (NIST) have found a practical way to boost the efficiency of the world's fastest single-photon detector, while also extending light sensitivity to longer wavelengths. The new tungsten-silicon alloy could make the ultrafast detectors more practical for use in quantum communications and computing systems, experiments testing the nature of reality, and emerging applications such as remote sensing.

photon detector
Colorized micrograph of an ultrafast single-photon detector made of superconducting nanowires. NIST researchers use electron beam lithography to pattern the nanowires (vertical lines) on a thin film of tungsten-silicon alloy, which produces more reliable signals than the niobium nitride material used previously.
Credit: Baek/NIST
View hi-resolution image

The detector, made of superconducting nanowires, is one of several sensor designs developed or used at NIST to register individual photons (particles of light). The original nanowire detector, invented in Russia, uses wires made of niobium nitride and has a detection or quantum efficiency—ability to generate an electrical signal for each arriving photon—of less than 10 percent in its simplest, most compact model. NIST's tungsten-silicon alloy version has an efficiency of 19 to 40 percent over a broad wavelength range of 1280 to 1650 nanometers, including bands used in telecommunications.* The limitations are due mainly to imperfect photon absorption, suggesting that, with further design improvements, detector efficiency could approach 100 percent reliably, researchers say.     

Superconducting nanowire detectors have many advantages. They are very fast, able to count nearly a billion photons per second, and they operate over a large range of wavelengths, have low dark (false) counts, and produce strong signals, especially at telecom wavelengths. The detectors produce a signal when a photon breaks apart some of the electron pairs that carry current in the superconducting state, where the material has zero resistance. If the nanowires are narrow enough and the DC current across the device is very close to the transition between ordinary and super conductance, a resistive band temporarily forms across each wire, resulting in a measurable voltage pulse.

Niobium nitride is difficult to make into nanowires that are narrow, long, and sensitive enough to work well. NIST researchers selected the tungsten-silicon alloy mainly because it has higher energy sensitivity, resulting in more reliable signals. A photon breaks more electron pairs in the tungsten-silicon alloy than in niobium nitride. The tungsten alloy also has a more uniform and less granular internal structure, making the nanowires more reliably sensitive throughout. As a result of the higher energy sensitivity, tungsten-silicon nanowires can have larger dimensions (150 nanometers wide versus 100 nanometers or less for niobium nitride), which enlarges the detectors' functional areas to more easily capture all photons.

The NIST team now hopes to raise the efficiency of tungsten alloy detectors by embedding them in optical cavities, which trap light for extremely high absorption. High efficiency may enable the use of nanowire detectors in demanding applications such as linear optical quantum computing, which encodes information in single photons. An equally intriguing application may be an experiment to test quantum mechanics—the so-called "loophole-free Bell test." This test of what Einstein called "spooky action at a distance" depends critically on having a nearly 100-percent efficient photon detector. Tungsten-silicon detectors also are sensitive to longer wavelengths of light, in the mid-infrared range, which could be useful for applications such as laser-based remote sensing of trace gases.

* B. Baek, A.E. Lita, V. Verma and S.W. Nam. Superconducting a-WxSi1-x nanowire single-photon detector with saturated internal quantum efficiency from visible to 1850 nm. Applied Physics Letters 98, 251105. Published online June 21, 2011.

Media Contact: Laura Ost, laura.ost@nist.gov, 303-497-4880

Comment  Comment on this article.back to top

Compact High-Temperature Superconducting Cable Wins 'R&D 100' Award

A method developed by researchers at the National Institute of Standards and Technology (NIST) and the University of Colorado at Boulder for making thin, flexible, high-temperature superconducting (HTS) cables* has won a 2011 R&D 100 Award from R&D Magazine. The prestigious annual awards salute the 100 most technologically significant products introduced into the marketplace over the past year.

cross-section of high-temperature superconducting cable
Cross-section of a high-temperature superconducting cable design invented at NIST. In the center are copper wires bundled with nylon and plastic insulation. The outer rings are a series of superconducting tapes wrapped in spirals around the copper. The cable is 7.5 millimeters in outer diameter.
Credit: van der Laan/NIST
View hi-resolution image

Designed to operate at -196° C (-353° F), the new superconducting cable has a diameter of less than 1 centimeter and is able to carry 2,800 amperes of current—three times as much as thicker, conventional copper or aluminum electrical transmission lines.

The cables are constructed by winding multiple HTS-coated conductors around a multi-strand copper core. The superconducting layers are wound in spirals in alternating directions.

According to developer Danko van der Laan, a University of Colorado scientist working at NIST, the main innovation in the compact cables is the tolerance of newer HTS conductors to compressive strain that allows use of the unusually slender copper core.

Besides power transmission, cables constructed using this invention could be used for superconducting transformers, generators and magnetic energy storage devices that require high-current windings. The compact cables also could be used in high-field magnets for fusion and high-energy physics research and for medical applications such as proton-accelerator cancer treatment systems and magnetic resonance imaging.

Winners of the R&D 100 Awards are selected by an independent panel and the editors of R&D Magazine. The winners represent a cross-section of industry, academia, private research firms and government labs. Winning technologies are used in medical, industrial, research, consumer and manufacturing applications.

To read more about the technology, see the Feb. 10, 2011 announcement, "Compact High-Temperature Superconducting Cables Demonstrated at NIST" at  www.nist.gov/pml/electromagnetics/htc-021011.cfm.

Read the R&D 100 Award citation at www.rdmag.com/News/2011/06/R-D-100-2011-Winners-Announced/.

* D.C. van der Laan, X.F. Lu and L.F. Goodrich, "Compact GdBa2Cu3O7-δ coated conductor cables for electric power transmission and magnet applications," Superconductor Science & Technology, vol. 24, 042001, April 2011. doi: 10.1088/0953-2048/24/4/042001. http://iopscience.iop.org/0953-2048/24/4/042001.

Media Contact: Laura Ost, laura.ost@nist.gov, 303-497-4880

Comment  Comment on this article.back to top

John Cahn to Receive 2011 Kyoto Prize for Fundamental Contributions to Materials Science

John Cahn, an emeritus senior fellow and materials scientist at the U.S. Commerce Department’s National Institute of Standards and Technology (NIST), has been named to receive the prestigious Kyoto Prize in Advanced Technology. Cahn's numerous major contributions to materials science include developing a fundamental theory that describes the behavior of mixtures of different materials and how they tend to separate at the microscale. The theory established an entire branch of materials research and is particularly important to the rational design of new alloys.

John Cahn
John Cahn
Credit: Inamori Foundation
View hi-resolution image

Awarded annually since 1985 by the nonprofit Inamori Foundation, the Kyoto Prize is Japan's highest private award for global achievement and honors significant contributions to the betterment of society. The focus of this year's award for advanced technology is materials science and engineering. The prize includes a diploma, the Kyoto Prize medal and a cash gift totaling 50 million yen (~$625,000), awarded during a week of ceremonies beginning Nov. 9, 2011, in Kyoto, Japan.

"John's developments in the theory and models of materials have given scientists tools to understand and make new materials ranging from metals to plastics to ceramics and glass," said NIST metallurgist Frank Gayle. "For instance, your smart phone or laptop computer might contain 100 different materials, and John's work has probably influenced the understanding and development of half of those."

Practically all metals in use today are alloys, mixtures of two or more pure metals that, combined, have superior properties to either alone. Alloys are not always uniform, homogeneous mixtures. At the microscopic scale in some alloys, the different elements tend spontaneously to separate slightly in twisty, random clumps, a phenomenon called "phase separation.” Unlike crystallization, in which one component of a solution separates out to solidify at discrete starting points (think of making rock candy), this separation happens simultaneously throughout the mixture.

The phase separation and related changes in microstructure play a key role in determining the physical engineering properties of the bulk composite alloy—things like strength, toughness, ductility, magnetic strength and thermal conductance—but before the work of Cahn and his collaborator John Hilliard, then at General Electric, there was no good mathematical description of how this separation occurred. Developing a new alloy to meet specific material requirements was a painfully long and expensive process of trial and error.

The Cahn-Hilliard equation supplied that basic framework. The equation describes, quantitatively, how the components of a binary mixture that becomes unstable when cooled will separate. Cahn proceeded to elaborate the theory, showing how basic thermodynamic principles could be used to design alloys that would form desired microstructures. His work laid the foundation for the rational design and manufacture of new materials based on the Cahn-Hilliard equation.

Like many other fundamental theories, the work has proven relevant to a broad range of seemingly disparate fields. The Cahn-Hilliard equation, among other things, describes how galaxies began forming out of the primal material of the Big Bang in the early stages of the universe.

For more information, see the NIST June 24, 2011, news announcement at www.nist.gov/public_affairs/releases/kyoto-prize-062411.cfm.

Media Contact: Michael Baum, baum@nist.gov, 301-975-2763

Comment  Comment on this article.back to top

New Study Examines Methods for Technology Transfer from Government Labs to Industry

A new report* sponsored by the U.S. Commerce Department (DOC)—the results of the first independent study of its kind in almost 10 years—describes both barriers and effective strategies for the transfer of technology developed in federal laboratories to industry for commercialization.

Metal Stamping Project
Working with Industry: With new, one-of-a-kind test equipment, National Institute of Standards and Technology (NIST) researchers aim to stamp out costly, delay-causing errors in the design of dies used to make sheet-metal parts ranging from car hoods to airplane wings to pots, pans and cans.
Credit: Gardner/NIST
View hi-resolution image

The study found that the distinctive missions of federal laboratories, management strategies and resources, statutory requirements and incentives for researchers were key factors determining an agency's particular approach to commercialization of federal laboratory results.

Based on a literature review and interviews with technology transfer experts at 26 different federal research laboratories as well as 33 additional organizations, the study was released on June 14, 2011, at a meeting of the department's National Advisory Committee on Innovation and Entrepreneurship, held at Howard University.

The IDA Science and Technology Policy Institute conducted the research, with funding from the Economic Development Administration (EDA), in conjunction with the National Institute of Standards and Technology (NIST).

Agencies interviewed as part of the study also suggested a range of strategies for increasing the speed and extent of dissemination of federal technologies. Strategies included streamlining licensing; increasing cash, royalties, awards or other incentives that reward researchers for excellent technology transfer efforts; and raising the visibility of available technologies through showcase events, intellectual property databases, and networking at conferences and workshops.

The full report is available from the EDA's Office of Innovation & Entrepreneurship at http://www.eda.gov/commrfi. For more details, see the NIST June 30, 2011, news announcement, “Study Highlights Diversity in Agency Technology Transfer Approaches” at www.nist.gov/director/tech-transfer-063011.cfm.

*M.E. Hughes, S.V. Howieson, G. Walejko, N. Gupta, S. Jonas, A.T. Brenner, D. Holmes, E. Shyu, S. Shipp. Technology Transfer and Commercialization Landscape of the Federal Laboratories. IDA Science and Technology Policy Institute, 174 pp. Published June 2011.

Media Contact: Gail Porter, porter@nist.gov, 301-975-3392

Comment  Comment on this article.back to top

Help Wanted: NIST Conducting Nationwide Search for New Director of Technology Innovation Program

The National Institute of Standards and Technology (NIST) is seeking qualified candidates to lead the Technology Innovation Program (TIP).

Established in 2007 as part of the America COMPETES Act (P.L. 110-69), TIP supports, promotes, and accelerates innovation in the United States by making targeted investments in high-risk, high-reward research in areas of critical national need.

The TIP director serves as the executive responsible for managing and leading this critical program for NIST. TIP is headquartered at NIST’s Gaithersburg, Md., campus.

For full details on required qualifications and the evaluation process and to apply, see the full announcement on USAJobs at http://go.usa.gov/Znt. Applications for this position will not be accepted after August 15, 2011. NIST is an equal opportunity employer.

See “NIST Announces $22 Million in Funding for Advanced Manufacturing Research in Electronics, Biotechnology and Nanotechnology” at www.nist.gov/tip/tip_121510.cfm for details on the most recent projects chosen to receive funding from TIP.

Media Contact: Michael Baum, baum@nist.gov, 301-975-2763

Comment  Comment on this article.back to top

NIST and Researcher Butler Recognized for Forensic Science Citations

When ScienceWatch.com, a Thomson Reuters web resource for measuring and analyzing science trends, recently listed the most influential institutions and researchers in forensic science based on journal citations, the National Institute of Standards and Technology (NIST) and one of its researchers, John Butler, were among the leaders.

According to a ScienceWatch.com survey of legal medicine and forensic science journal papers published and cited between 2001 and early 2011, NIST was cited 1,123 times, good for seventh place worldwide and second in the United States, trailing only the 1,309 count attributed to the Federal Bureau of Investigation (FBI). In terms of impact—the average annual number of citations in high-impact journals—NIST was tops among U.S. institutions and third globally with a ranking of 17.83. Ahead of NIST in this category were the University of Magdeburg (Germany) at 18.54 and the University of Vienna (Austria) at 18.03.

NIST chemist and DNA forensics expert John Butler was ranked as the number one “high-impact author in legal medicine and forensic science, 2001 to 2011” among authors who published 20 or more papers during the decade. Butler’s 36 published papers were each cited an average of 27.8 times, slightly ahead of another U.S. scientist, Mechthild (Mecki) Prinz of New York City’s Office of Chief Medical Examiner (26.0 average citations per paper). When authors were ranked by their H-index (a measure of both the productivity and impact of one’s published work), Butler led all U.S. scientists and tied for fourth worldwide with a score of 17.

The complete ScienceWatch.com rankings may be accessed at http://sciencewatch.com/ana/fea/11julaugFea/.

Media Contact: Michael E. Newman, michael.newman@nist.gov, 301-975-3025

Comment  Comment on this article.back to top

New Video Showcases NIST-Hosted Robotics Competitions in China

still from microrobotics video
Virtual robots move pallets while maneuvering around each other in a simulation of a busy warehouse.
Credit: Laboratory for Robotics and Intelligent Control Systems (LARICS), University of Zagreb, Croatia
View video (.mov file)

If you enjoyed reading recently about the National Institute of Standards and Technology (NIST)-hosted robotics challenges in China,* then you'll love actually seeing the robots in action. A new video highlights the best of two of the competitions: the Mobile Microrobotics Challenge (MMC), where microscopic automatons navigate a maze about the size of a sesame seed and perform miniature manufacturing tasks; and the Virtual Manufacturing Automation Competition (VMAC), in which virtual robots pick up pallets, navigate around each other and load trucks in a simulated warehouse environment.

The contests are designed to prove the viability of advanced robotics and microrobotics technologies.

To learn more about the MMC and VMAC, go to www.nist.gov/pml/semiconductor/mmc and www.vma-competition.com, respectively.

* See "NIST Contests in China Put Next-Gen Robot Technologies to the Test" in NIST Tech Beat, June 7, 2011, at www.nist.gov/public_affairs/tech-beat/tb20110607.cfm#robots.

Media Contact: Michael E. Newman, michael.newman@nist.gov, 301-975-3025

Comment  Comment on this article.back to top