
 

  
Abstract—We describe the in-phase/quadrature covariance-

matrix representation of the uncertainty in complex vectors, and 
transformations between this representation and the 
magnitude/phase and real/imaginary uncertainty representations. 
 

Index Terms—Complex numbers, in-phase, magnitude, phase, 
quadrature, translation, uncertainty, vectors. 
 

I. INTRODUCTION 
E describe the magnitude/phase, real/imaginary, and in-
phase/quadrature representation for describing 

uncertainties in complex numbers and vectors, as well as 
transformations between them. 

Uncertainties in microwave engineering are most commonly 
expressed in a polar or magnitude/phase representation. 
However, the phase uncertainty in this representation has a 
singularity at small magnitudes that complicates its use. 

Recently Ridler and Salter [1;2] suggested replacing the 
magnitude/phase uncertainty representation with a covariance-
matrix-based real/imaginary representation. This representation 
avoids the problems of the magnitude/phase representation at 
small magnitudes, is complete, and captures all correlations. 
While uncertainties can be represented rigorously in terms of 
uncertainty regions in the complex plane, it is difficult to plot 
these regions as a function of frequency and relate them to the 
more commonly used magnitude/phase uncertainty 
representation. 

Here we describe an in-phase/quadrature covariance-matrix 
representation based upon a straightforward coordinate rotation 
of the real/imaginary covariance matrix into an in-
phase/quadrature coordinate system, as described in [3;4].  The 
in-phase/quadrature covariance-matrix uncertainty 
representation is an alternate way of expressing the same 
information captured in the real/imaginary representation. Yet 
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the in-phase/quadrature covariance matrix representation 
maintains much of the convenience and intuitive nature of the 
magnitude/phase uncertainty representation in common use in 
the microwave community.  

II. MAGNITUDE/PHASE UNCERTAINTY REPRESENTATION 
Frequency-domain electrical quantities are usually 

represented by complex numbers in terms of a magnitude and a 
phase. In addition, many error mechanisms in electrical 
instrumentation lead to uncertainties that are independent of 
the phase of the vector, and are thus more easily represented in 
a magnitude/phase uncertainty representation than in 
real/imaginary representation. For example, consider 
uncertainty in the phase of a vector caused by additional delay 
due to cable bending. This uncertainty is independent of the 
phase of the vector describing the signal, and can be described 
by a single number (the variance of the phase of the vector) in 
the magnitude/phase uncertainty representation. As a 
consequence, the uncertainties in frequency-domain electrical 
quantities are usually represented in terms of the uncertainty in 
the magnitude and the phase of a vector. 

On the other hand, representing uncertainties in the 
magnitude and phase of a vector when the size of the errors 
approach the magnitude of the base vector to which the 
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 Fig. 1. The standard uncertainty of the phase of a vector subject to 
uncorrelated additive noise in its real and imaginary parts of 
Gaussian distribution with standard deviation of 0.01. 



 

uncertainties correspond can be problematic, as illustrated in 
Fig. 1. Figure 1 plots the uncertainty in the phase of a vector in 
the presence of additive noise as a function of the magnitude of 
the base vector. The figure shows that the uncertainty in phase 
rises sharply as the magnitude of the vector decreases. This 
sharp rise in uncertainty is accompanied by a change in the 
distribution of the uncertainty in phase, and becomes especially 
difficult to interpret when the magnitude of the phase 
uncertainty approaches 180 degrees. In addition, because the 
magnitude of a vector is always positive, the distribution of 
uncertainty in the magnitude of the vector changes as well. For 
example, if the uncertainties in the real and imaginary parts of 
the underlying vector have Gaussian distributions, the 
uncertainty in the magnitude will be described by a Rayleigh 
distribution. 

III. REAL/IMAGINARY COVARIANCE-MATRIX 
REPRESENTATION 

The variance of a single scalar measurand quantifies the 
uncertainty in its measured value. Likewise, a covariance 
matrix can be used to express the uncertainty of a vector 
quantity [1;2;5;6]. We can write a complex number x = x1 + i x2 
as a vector X = [x1, x2]

T, where i is the square root of -1, the 
superscript T represents the transpose, x1 is the real part of x, 
and x2 is the imaginary part of x. Thus we can treat complex 
numbers, such as reflection coefficients or signal amplitudes, 
as vectors, and express their uncertainties in the form of 
covariance matrices as well. 

The covariance matrix ∑X of X = [x1, x2]
T is defined by 

[1;2;5;6] 
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where E(y) is the “expected value” of y, and is defined by 
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where p(y) is the probability density function of y [5;6]. Here 
we call ∑X the real/imaginary covariance matrix of X because 
its elements correspond to the real and imaginary parts of 
x = x1 + i x2.  

The two diagonal elements ( )( )2)( kk xExE −  of ∑X are the 
variances of x1 and x2. The square root of these variances are 
the standard deviations σ1 of x1 and σ2 of x2. The sample 
estimate of σk is the standard uncertainty sk. 

The covariance matrix ∑X is symmetric, and the two off-
diagonal elements of ∑X are equal to the covariance 

( ) ( )( )( ))()(cov 221121 xExxExE,xx −−=  of x1 and x2. The 
covariance of x1 and x2 is equal to σ1σ2ρ, where ρ is the 
correlation coefficient of x1 and x2, and satisfies -1 ≤ ρ ≤ 1. The 
sample estimate of σ1σ2ρ is s1s2r. 

Figure 2 plots the elements of the covariance matrix 
describing the uncertainty of a vector subject to a random delay 
error, as might be introduced by cable bending. This 
uncertainty is described by a single number, the variance of the 
phase of the vector. However, the figure shows that, while the 
real/imaginary covariance matrix ∑X offers a complete 
description of the uncertainty of X, the elements of ∑X depend 
greatly on the phase of X. Thus, while this representation is 
rigorous and complete, it lacks the intuitive nature of the 
magnitude/phase representation. Furthermore, while it is 
certainly possible to plot uncertainty regions for complex 
vectors, as suggested in [1;2], and is difficult to do this as a 
function of frequency. 

IV. IN-PHASE/QUADRATURE UNCERTAINTY REPRESENTATION 
The matrix transform 
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Fig. 3. The base vector x, the conventional real/imaginary 
coordinate system used to define the uncertainties of x, and the in-
phase/quadrature coordinate system. 
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Fig. 2. The elements of the covariance matrix ∑X of a vector x 
subject to a random delay error, as a function of this vector's phase. 
The thin dashed line corresponds to the standard deviation of the 
real part of x, and the thin solid line to the standard deviation of the 
imaginary part of x. The thick solid line corresponds to the 
correlation coefficient of the two diagonal elements of ∑X. 
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rotates a vector by θ radians. The transform Θ is unitary, and 
Θ(θ) Θ(θ)T = I. We also have Θ(θ)T = Θ(θ)-1 = Θ(-θ). 

Applying Θ to X is equivalent to multiplying x by eiθ. Thus 
the vector Θ(-θ0)X is the vector x after it has been rotated so 
that its mean lies on the real axis. However, other than this 
rotation of coordinate system, the uncertainties and uncertainty 
regions associated with x are left unchanged by this 
transformation.  

We define the in-phase/quadrature covariance matrix ∑X
IQ of 

x as the covariance matrix of Θ(-θ0)X. In general, the 
covariance matrix ∑Y of Y=AX, where A is a linear matrix 
transformation, is given by ∑Y = A ∑X AT [5;6]. Thus    
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where θ0 is the angle of x0 when |x0| is nonzero, and θ0 = 0 
when |x0| is equal to zero. Equation (4) can be inverted to 
obtain    
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The in-phase/quadrature covariance matrix ∑X

IQ is also the 
covariance matrix of x in the in-phase/quadrature coordinate 
system shown in dashed lines in Fig. 3. This is the coordinate 
system that has been aligned to x, as illustrated in the figure.  

Earlier we alluded to the problems of singularities in 
magnitude/phase uncertainty representations, and the non-
intuitive nature of the real/imaginary representation. The in-
phase/quadrature uncertainty representation discussed here 
maintains some of the best features of each: it does not suffer 
from singularities at low frequencies and the diagonal elements 
of ∑X

IQ are easily and intuitively related to the magnitude/phase 
uncertainty representations. Of course, either the real/imaginary 
or the in-phase/quadrature covariance matrices can be used to 
determine and plot the uncertainty regions for the data, when 
that is appropriate. Furthermore, ∑X and ∑X

IQ can be easily 
related with (5). 

V. TRANSFORMATION BETWEEN IN-PHASE/QUADRATURE 
AND MAGNITUDE/PHASE UNCERTAINTY REPRESENTATIONS 
The in-phase/quadrature covariance-matrix offers a 

convenient way of transforming between the real/imaginary 
covariance-matrix and the commonly used magnitude/phase 
uncertainty representation when the magnitude of the vector is 
large compared with its uncertainties. This is because the first 
diagonal element σI

2 of ∑X
IQ corresponds to the variance of x in 

the direction of (in phase with) x0, and thus is related to the 
uncertainty σm in the magnitude |x0| of x0. Likewise, the second 
diagonal element σQ

2 of ∑X
IQ corresponds to the variance of x 

in the direction perpendicular to (in quadrature with) x0, and is 
related to the uncertainty σθ in the phase θ0 of x0 in radians. 

Thus, when the magnitude of x0 is large compared to σI and σQ, 
we can write ∑X

IQ as 
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where ρmθ is the correlation coefficient of |x| and θ. 

We can use (5) and (6) to find ∑X from σm, σθ, and ρmθ. We 
can also determine σm, σθ, and ρmθ from  ∑X by using (4) and 
then inverting (6). 

VI. EXTENSION TO A COLLECTION OF VECTORS 
We can extend the rules captured in (3), (4), and (5) to a 

collection of (possibly) correlated complex numbers as follows. 
Let X = [X1, X2, …, XN]T be a vector containing the 2N real and 
imaginary parts of N complex numbers. If θk is the phase of the 
sub-vector X0k of X0, where X0 is the mean of X, then    
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Likewise,    
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VII. CONCLUSION 
We have described transformations between the 

real/imaginary, in-phase/quadrature, and magnitude/phase 
uncertainty representations. The in-phase/quadrature 
representation maintains the rigor of the real/imaginary 
covariance matrix uncertainty representation, preserves much 
of the simplicity of the magnitude and phase uncertainty 
representations when errors do not depend on the phase of the 
vector, and offers a straightforward way of transforming 
between the two.  
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