Simulation of non-Adiabaticity in Surface Electrode Traps
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Abstract:;

Radio frequency (RF) surface electrode traps where all the RF and static control
electrodes lie in a single plane are being developed for scaling ion trap quantum
Information processing to larger numbers of ions [1]. In such traps, ions are
confined a small distance above the electrode surface. The RF ponderomotive
potential is anharmonic, rising steeply for ion excursions towards the electrode
surface but much more gradually for excursions away from the surface. Multipole
RF traps can exhibit a significant reduction in the effective trapping depth from the
calculated psuedo-potential well depth due to non-adiabatic ion motion in the
anharmonic potential [2]. We simulate whether anharmonic contributions to
surface electrode trap potentials can reduce the effective well depth of surface
electrode traps. Specifically we simulate the motion of a charged particle in a 4-
wire surface electrode trap. By starting the particle in the center of the trap with
different energies we determine a safe or effective well depth as a function of the
g parameter of the trap. We find significant reduction in the effective well depth
for g > 0.3, resulting in a maximum well depth for g < 0.3.
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Linear quadrupole vs linear multipole traps
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Definition of adiabaticity

Dieter Gerlich, Advances in Chemical Physics: State-Selected and State-to-
State lon-Molecule reaction Dynamics, Part 1, Experiment, Volume 82, 1992

defines adiabaticity as validity of expansion:

E.; (R, —acos(Q)) = E; (Ry) - (@ V)E, (R,) cos(€2t)
where ion motion F(t) = R, (t) — &(t) cos(Qt)
eE’rf

at) = ~ (the micro - motion)
mQ

term in expansion is small when adiabaticity parameter n <<1
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for quadrupole trap n = q; for higher order multipoles, n = n(r)
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Adiabaticity requirement in multipole traps:
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adiabaticity can limit effective well depth of high order multipole traps
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FIG. 3. Effective trap depths for multipoles of different order n
as derived from the analyvtical model assuming a maximum
adiabaticity parameter 7, = 0.4 (calculation for Cl™ ions,
Fo =3 mm, @ = 27 * 5 MHz).

four-wire trap:
(D4w = CI)s(_d !0) + ch(d ) OO)

Can adiabaticity limit the effective well depth of surface electrode traps?
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maximum trap q for full well depth with n,,,, =0.3: 0.16

maximum trap g for full well depth with ., =0.4: 0.21

Similar results for 5-wire traps:
maximum trap g for full well depth with n,, =0.3: 0.17

maximum trap g for full well depth with n,,, =0.4: 0.23

Simulation of reduced well depth in a 4-wire trap

(preliminary results)

Procedure for determining E
«Set an initial guess for the energy E,

safe

-Set the initial positions (X ;) at the center of the trap

«Calculate the magnitude of initial velocity Vo = J2E /m

*Vary the angle ¥ of the velocity from 0 to 157/16 with an interval of 7/16: v, =v,cosy; v,; = V,siny
» Choose the initial phase for the electric field ¢ from 0 to15z/16 with an interval of /16

sUpdate the position, velocity and energy at each time step by solving the equations of motion

oIf the energy is larger than full well depth, the particle is unbounded, go back to the very beginning with
a slightly lower E; , (i.e.10° eV)

oIf the ion trajectory is trapped for a sufficiently long time (10° rf cycles, i.e. more than 1 ms), we assume
this initial condition gives a trapped orbit

*Repeat the above steps for all the initial conditions (16 velocity angles ¥ and 16 electric field phases ¢)
*For each initial condition, record the boundary energy to safely confine the trap
*From these boundary energies, choose the minimal value as E

safe

Numerical Simulation
*Equation of motion: mr = eE,; cos(Qt)
*Numerical integration using the 4t order Runge-Kutta method

*Time step: At =0.01(27/Q) . The time step was reduced by a factor of 10 and then 100
with no change in the results to less than 1%.
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E.. as a function of g =7(0,d): (a) vary V, ; (b) vary 1/md?Q? . The simulation clearly shows
the reduction in effective well depth as expected from adiabaticity theory, but also at a fine
level of detail a "periodic” dependence which we currently do not have a theory for.

Conclusion
However, no matter what parameter is varied, we find E /E,, has as a direct relationship with g:
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These simulations involving a single ion show the importance of non-adiabatic effects is surface electrode
traps. Simulations with two ions can investigate whether the Coulomb interaction can amplify non-adiabatic
effects. For example, experiments have observed significantly shorter lifetimes with two ions than a single
lon. Simulations can investigate whether this is due to non-adiabatic effects and whether these effects can
be minimized with particular trap operating parameters.
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