

Faster quantum operations and control for trapped ions

John Chiaverini

Workshop on Trapped-ion Technology

16 February 2011

MIT Lincoln Laboratory

WITT talk-1 jc 2/23/2011 This work was sponsored by the Department of the Air Force under contract number FA8721-05-C-0002. Opinions, interpretations, conclusions, and recommendations are those of the authors and are not necessarily endorsed by the United States Government.

Or: How I learned to stop worrying and love small traps

- Reflective optics integrated with surface-electrode traps for rapid ion state measurement
 - Reflector avoids insulator near ion
 - Fresnel geometry allows straightforward integration
- Excess micromotion scaling
 - As traps shrink, micromotion due to stray fields will drop
 - Control requirements on arrays of small traps can be significantly reduced
- Reconfigurable trap array architecture
 - Provides complete ion movement within array without junctions
 - Limits exposure of ions to noise on the RF potential

- High fidelity measurement is slow
 - An order of magnitude slower than other basic operations
- Measurement time may limit processing which includes quantum error correction
 - Operations dependent on measurement outcome are required
 - Coherence must be maintained during this time
- Ion movement also of same order, though this could scale with decreasing trap size
 - Also, not needed for some apps (emulation, comm.)

Operation	Time demonstrated for high-fidelity
Preparation	~2 us
Single-qubit op.	1 us
Two-qubit op.	10 us
Measurement	150 us (avg)

Some work to enhance collection

- Large reflectors
- Fresnel lenses
- Fibers in substrate
- Concavities in substrates
- Traps on flat mirrors
- How well do these integrate with the trap for large scale QIP?
- Is charging an issue?

Shu et al. PRA 81, 042321 (2010)

Streed et al. PRL 106, 010502 (2011)

Noek et al. Opt. Lett. 35, 2460 (2010)

WITT talk-4 jc 2/23/2011

Reflective Fresnel optics

- Best collection would be with parabolic reflector
 - Drawbacks include optical access, integrating trap
- Try breaking it up
 - Makes if (sort of) flat
 - Can be placed on surface that also contains trap electrodes

- Surface electrode "ring" trap
 - Like a 5-wire in cross-section, then revolved (Pearson et al. PRA 73, 032307 [2006]; Wesenberg PRA 78, 063410 [2008])
- Subsets of Fresnel zones can be identified with concentric rf and rf-ground electrodes
- Ion sees only metal surfaces
- Parabolic focus is separate parameter from trap height
 - Control former with curvature of gray-tone lithography/etch
 - Control latter with lateral rf electrode spacing
 - Can split up rf electrode to vary height (cf. recent work at NIST and MIT-campus)
- Should be able to collect from ~1/3 of the solid angle (assuming localized structure); 2π str theoretically possible
- Surface Penning traps, too

Applications and considerations

- Large-scale QC
 - Measurement zones with SET traps
- Quantum simulations in 2D arrays
 - Fresnel ref. under each ion
- Quantum communications
- Fresnel optics considerations
 - For imaging, dilution will affect image quality
 - For focusing light onto ion, blocking will limit mode quality
- For simple collection, these are not concerns

Shrinking traps to ease the control burden

- Excess micromotion
 - Due to stray fields pushing ion from rf null
 - Leads to reduced flourescence, rf heating, etc.
- Leads to control problem on large scale in an array
 - DC fields from nearby traps can be a stray field In a surface-trap, not much shielding from this
 - "Real" stray fields are still there

Do we need a million knobs (i.e. a large overhead in control electrodes)?!?

- Excess micromotion amplitude A
 - Proportional to how far off rf null external field pushes ion
- Pick displacement along x dir.
- Assume stability parameter q>>a for this analysis
- Now requiring q constant as R goes down (JC et al. QIC 5, 419 [2005]):
 - With rf amplitude going as R to prevent breakdown,
 - We get scaling for rf frequency

R is trap size

$$A = \frac{1}{2}u_{0i}q_i$$

$$A = \frac{1}{2} \frac{Q\vec{E}_{dc} \cdot \hat{u}_i}{m\omega_i^2} \frac{2QV_0}{mR^2\Omega^2}$$

$$A = \frac{Q^2 E_{dc} V_0}{m^2 R^2 \omega_x^2 \Omega^2}$$

for
$$q >> a$$
, $A = \frac{4QE_{dc}}{mq\Omega^2}$
 $V_0 \propto R$
 $\Omega \propto R^{-1/2}$

- This leads to EMM amplitude that scales as *R*
- Now look at this in relation to ground state wave function spread:
 - Use same scalings for trap parameters
 - Spread will go as R^{1/4}
- Therefore, normalized EMM amplitude still scales reasonably to small scales
- This also assumes stray field is constant as a function of *R*
 - This will be true for a random stray field
 - Should also be true for stray dc field from array electrodes since V_{dc} will go as R
- NB: weak scaling on *m*

$$A \propto \frac{Q}{mq} E_{dc} R$$

$$\Delta x = \sqrt{\frac{\hbar}{2m\omega}} \propto m^{-1/2} \omega^{-1/2}$$

$$\Delta x \propto m^{-1/2} q \Omega^{-1/2}$$

 $\propto m^{-1/2} q (R^{-1/2})^{-1/2}$
 $\propto m^{-1/2} q R^{1/4}$

$$\frac{A}{\Delta x} \propto \frac{Q}{m^{1/2} q^2} E_{dc} R^{3/4}$$

Reconfigurable ion array architecture

Reconfigurable trap arrays

In conjunction with W. Lybarger, Jr. at LANL

• Analytical results:

J. Wesenberg PRA 79, 013416 (2009)

- Lowest order for ideal X junction is 6-pole
- Even w/6-pole, X cannot be close to 90 degrees
- Lowest order for right angle is 8-pole
- Ideal straight-leg Y's and T's are ruled out

Field-programmable trap array

 Regular array of switchable RF or DC electrodes

- Arbitrary layout
- Plaquette of ~25 per ion
- For sims, array can be static
- For QC, traps change each step of calc.
- Switch between ring and linear traps
 - Dynamic (within experiment)
 - Smooth deformation
 - Static potential takes over in Z direction
 - Bring ions closer together for interaction

See poster by W. Lybarger, Jr.

JC IAS 2009 talk (2009); Lybarger PhD thesis UCLA (2010)

Black = rf

No junctions; always 0- or 1-D

- Move any ion next to any other
- lons move around in 1D racetracks
 - Tracks dynamically variable
 - Still small RF bumps if paths not circular
- Alternatively: have gaps and move ions a few at a time
 - Like sliding block puzzle
 - No heating from RF bumps
 - Maybe slower (compare with SWAPs)

0

0

0

0

0

0

•

0

MIT Lincoln Laboratory

Recent work along these lines

- Varying rf potential
 - Multiple rf electrodes for varying height of ion above surface (NIST group and MITcampus group)
 - Subset of electrode have variable rf amplitude for transport (Berkeley group)
- Pixelated trapping electrodes
 - Penning trap for transport of ions (UIm group)

Hellwig et al. NJP 2, 065019 (2010) MIT Lincoln Laboratory

lons (almost) at LL

Highly efficient, pure qubit loading

Working at LL with J. Sage and A. J. Kerman

- Concept for loading ions into trap arrays:
 - Start with cold neutral atoms in a MOT
 - Use pushing laser beam to accelerate atoms
 - Photoionize atoms at trap location, cold ions remain in trap
- Enables high loading rates
 - Several orders of magnitude faster than typical ~Hz rate
 - No contamination from atom beam in vicinity of trap
 - Isotope-selective
 - Can enable atom-ion experiments

MIT Lincoln Laboratory

Current status

- Main chamber includes cryocooler to attain low temperature trap electrodes
- Lasers installed
- Design of first ion traps ongoing
- Near term goals:
 - MOT production optimization
 - Push atoms to ion region
 - lon trapping
- Will investigate:
 - Integrating trap technologies
 - Trap electrodes/heating
 - Arrays of microtraps

Main chamber with cryocooler

MOT coils, field coils, and rf resonator cooled and in-vacuum

MIT Lincoln Laboratory

Latest news: MOT achieved

- Sr MOT produced
 - ~ 3 x 10⁵ atoms (no repumpers or Zeeman slower)
 - Lifetime and temperature consistent with expected
 - Can empty MOT with resonant beam (will use this to push atoms to ion trap region)

END

Collaborators:

MIT LL

Jeremy Sage Andrew "Jamie" Kerman

LANL

Warren E. Lybarger, Jr.

- Atom-chip/surface-ion-trap combination
 - Same electrodes used for DC currents needed for atom traps can be used for ion RF
 - Alternatively, larger magnetic trap wires can be on back of chip (or top of bottom chip) with ion electrodes on front

