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PREFACE 

This is the initial publication of a new series of Technical Notes (910) entitled 
“Self-Study Manual on Optical Radiation Measurements.” It contains the first three chap- 
ters of this Manual. 
pleted. The Manual is being written by the Optical Radiation Section of NBS. In addition 
to writing some of the chapters, themselves, Fred E. Nicodemus is the Editor of the Manual 
and Henry J. Kostkowski, Chief of the Section, heads the overall project. 

Additional chapters will be published, similarly, as they are com- 

In recent years, the economic and social impact of radiometric measurements (including 
photometric measurements) has increased significantly. Such measurements are required in 
the manufacture of cameras, color TV‘s, copying machines, and solid-state lamps (LED’s). 
Ultraviolet radiation is being used extensively for the polymerization of industrial coat- 
ings, and regulatory agencies are concerned with its effects on the eyes and skin of 
workers. On the other hand, phototherapy is usually the preferred method for the treatment 
of jaundice in the newborn. Considerable attention is being given to the widespread utili- 
zation of solar energy. These are just a few examples of present day applications of opti- 
cal radiation. Most of these applications.would benefit from simple measurements of one to 
a few per cent uncertainty and, in some cases, such accuracies are almost essential. But 
this is rarely possible. Measurements by different instruments or techniques commonly dis- 
agree by 10% to 50%, and resolving these discrepancies is time-consuming and costly. 

There are two major reasons for the large discrepancies that occur. One is that opti- 
cal radiation is one of the most difficult physical quantities to measure accurately. 
Radiant power varies with the radiation parameters of position, direction, wavelength, time, 
and polarization. The responsivity of most radiometers also varies with these same radia- 
tion parameters and with a number of environmental and instrumental parameters, as well. 
Thus, the accurate measurement of optical radiation is a difficult multi-dimensional prob- 
lem. The second reason is that, in addition to this inherent difficulty, there are few 
measurement experts available. 
measurements have not been trained to do so. Few schools have had programs in this area 
and tutorial and reference material that can be used for self-study is only partially avail- 
able, is scattered throughout the literature, and is generally inadequate. Our purpose in 
preparing this Self-study Manual is to make that information readily accessible in one place 
and in systematic, understandable form. 

Most of the people wanting to make optical radiation 

The idea of producing such a manual at NBS was developed by one of us (HJK) in the 
latter part of 1973. Detailed planning got under way in the summer of 1974 when a full- 
time editor (FEN) was appointed. The two of us worked together for about one year devel- 
oping an approach and format while writing and rewriting several drafts of the first few 
chapters. 
of the Manual. During this period, a draft text for the first four chapters was distrib- 
uted, along with a questionnaire, for comment and criticism to some 200 individuals repre- 
senting virtually every technical area interested in the Manual. About 50 replies were 
received, varying widely in the reactions and suggestions expressed. Detailed discussions 
were also held with key individuals, including most of the Section staff, particularly 
those that will be writing some of the later chapters. In spite of the very wide range of 
opinions encountered, all of this feedback has provided valuable guidance for the final 
decisions about objectives, content, style, level of presentation, etc. 

These are particularly important because they will serve as a model for the rest 

In particular, we have been able to arrive at a clear solutdon to difficult questions 
about the level of presentation. Both of us started out with the firm conviction that, 
with enough time and effort, we should be able to present the subject so that readers with 
the equivalent of just elementary college mathematics and science could easily follow it. 
That conviction was based on our experience of success in explaining the subtleties of 
radiometric measurements to technicians at that level. What we failed to consider, how- 
ever, was that, in making such explanations to individuals we always were able to relate 
what we said to the particular background and immediate problem of the individual. 
just not possible in a text intended for broad use by workers in astronomy, mechanical 
heat-transfer engineering, illumination engineering, photometry, meteorology, photo-biology 
and photo-chemistry, optical pyrometry, remote sensing, military infrared applications, etc. 
To deal directly and explicitly with each individual’s problems in a cook-book approach 

That’s 
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would require an impossibly large and unwieldy text. 
principles which immediately and unavoidably require more knowledge and familiarity with 
science and mathematics, at the level of a bachelor's degree in some branch of science or 
engineering, or the equivalent in other training and experience. 

So we must fall back on general 

In its present form, the Manual is a definitive tutorial treatment of the subject that 
is complete enough for self instruction. 
in the title. The Manual does not contain explicitly programmed learning steps as that 
phrase sometimes denotes. In addition, through detailed, yet concise, chapter summaries, 
the Manual is designed to serve also as a convenient and authoritative reference source. 
Those already familiar with a topic should turn immediately to the summary at the end of 
the appropriate chapter. They can determine from that summary what, if any, of the body 
of the chapter they want to read for more details. 

This is what is meant by the phrase "self-study" 

The basic approach and focal point of the treatment in this Manual is the measurement 
equation. We believe that every measurement problem should be addressed with an equation 
relating the quantity desired to the data obtained through a detailed characterization of 
the instruments used and the radiation field observed, in terms of all of the relevant 
parameters. The latter always include the radiation parameters, as well as environmental 
and instrumental parameters, as previously pointed out. The objective of the Manual is to 
develop the basic concepts and characterizations required so that the reader will be able 
to use this measurement-equation approach. It is our belief that this is the only way that 
uncertainties in the measurement of optical radiation can generally be limited to one, or 
at most a few, per cent. 

Currently, the Manual deals only with the classical radiometry of incoherent radiation. 
The basic quantitative relations for the propagation of energy by coherent radiation (e.g., 
laser beams) are just being worked out [1,2,3,4].' Without that basic theory, a completely 
satisfactory general treatment of the measurement of coherent (including partially coherent) 
optical radiation is not possible. 
measurements of laser radiation, we won't attempt to deal with it now. 
uation will be changed before the current effort has been completed and a supplement on 
laser measurements can be added. 

Accordingly, in spite of the urgent need for improved 
Possibly this sit- 

As stated above, we first hoped to prepare this Manual on a more elementary level but 
found that it was impossible to avoid making use of both differential and integral calculus 
of more than one variable. 
mathematics, we go back to first principles each time a mathematical concept or procedure 
beyond those of simple algebra or trigonometry is introduced. 
tional light on the physical and geometrical relationships involved. Where it seems inap- 
propriate to do this in the text, we cover such mathematical considerations in appendices. 
It is also assumed that the reader Has had an introductory college course in physics, or 
the equivalent. 

However, to help those that might be a bit "rusty" with such 

This should also throw addi- 

The Manual is being organized into three Parts, as follows: 

Part I. Concepts 

Step by step build up of the measurement equation in terms of the radiation parame- 
ters, the properties and characteristics of sources, optical paths, and receivers, and the 
environmental and instrumental parameters. Useful quantities are defined and discussed 
and their relevance to various applications in many different fields (photometry, heat- 
transfer engineering, astronomy, photo-biology, etc.) is indicated. However, discussions of 
actual devices and measurement situations in this Part are mainly for purposes of illustra- 
ting concepts and basic principles. 

Part 11. Instrumentation 

Descriptions, properties, and other pertinent data concerning typical instruments, 
devices, and components involved in common measurement situations. 

'Figures in brackets indicate literature references listed at the end of the Technical Note. 

Included is material 
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dealing with sources, detectors, filters, atmospheric paths, choppers (and other types of 
optical modulators), prisms, gratings, polarizers, radiometers, photometers, spectro- 
radiometers, spectrophotometers, etc. 

Part 111. Applications 

Measurement techniques for achieving a desired level of, or improving, the accuracy 
Included will be a very wide variety of examples of environmental and of a measurement. 

instrumental parameters with discussion of their effects and how to deal with them. 
is where we deal with real measurements in the real world. 
drawn from the widest possible variety of areas of application in illumination engineering, 
radiative heat transfer, military infrared devices, remote sensing, meteorology, astronomy, 
photo-chemistry and photo-biology, etc. 

This 
The examples will also be 

Individual chapter headings have been assigned only to the first five chapters: 

Chapter 1. Introduction 

Chapter 2. Distribution of Optical Radiation with respect to Position and 
Direction -- Radiance 

Chapter 3 .  

Chapter 4. 

Chapter 5. 

Spectral Distribution of Optical Radiation 

Optical Radiation Measurements -- a Measurement Equation 
More on the Distribution of Optical Radiation with respect to 
Position and Direction 

Other subjects definitely planned for Part I are thermal radiation, photometry, distribu- 
tion with respect to time, polarization, diffraction, and detector concepts. It is not our 
intention, however, to try to complete all of Part I before going on to Parts 11 and 111. 
In fact, because we realize that a great many readers are probably most interested in the 
material on applications to appear in Part 111, we will try to complete and publish some 
chapters in Parts I1 and 111 just as soon as adequate preparation has been made in the 
earlier chapters of Part I. However, because our approach to radiometry differs so much 
from the traditional treatment, we feel that unnecessary confusion and misunderstanding 
can be avoided if at least the first nine chapters of Part I are published first and so 
are available to readers of later chapters. 

Finally, we invite the reader to submit comments, criticisms, and suggestions for 
improving future chapters in this Manual. 
and problems from as widely different areas of application as possible. 

In particular, we welcome illustrative examples 

As previously stated, we are indebted to a great many individuals for invaluable 
"feedback" that has helped us to put this text together more effectively. Notable are the 
inputs and encouragement from the Council on Optical Radiation Measurements (CORM), 
especially the CORM Coordinators, Richard J. Becherer, John Eby, Franc Grum, Alton R. 
Karoli, Edward S. Steeb, and Robert B. Watson, and the Editor of Electro-Optical Systems 
Design, Robert D. Compton. In addition, for editorial assistance, we are grateful to 
Donald A. McSparron, Joseph C. Richmond, and John B. Shumaker, and particularly t o  
Albert T. Hattenburg. 

We are especially grateful to Mrs. Betty Castle for the skillful and conscientious 
effort that produced the excellent typing of this difficult text. 
Henry J. Zoranski for his capable help with the figures. 

We also want to thank 

Fred E. Nicodemus, Editor 

Henry J. Kostkowski, Chief, 
Optical Radiation Section. 
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SELF-STCTDY MANUAL on OPTICAL RADIATION MEASUREMENTS 

This is the initial publication of a new series of Technical Notes 
(910) entitled "Self-Study Manual on Optical Radiation Measurements.'' 
It contains the first three chapters of this Manual. Additional chapters 
will be published, similarly, as they are completed. The Manual is a 
definitive tutorial treatment of the measurement of incoherent optical 
radiation that is complete enough for self instruction. Detailed chap- 
ter summaries make it also a convenient authoritative reference source. 

The first chapter is an introduction that includes a description 
of optical radiation and the ray approach to its treatment in this Man- 
ual (based on geometrical optics), a discussion of relevant parameters 
and their use in a measurement equation as a systematic technique for 
analyzing measurement problems, and a presentation of the system of 
units and nomenclature used. 

The second chapter, on the distribution of optical radiation with 
respect to position and direction, introduces the basic radiometric 
quantity, radiance, and its important invariance properties. It is 
shown how to determine the total power in a beam from the radiance 
distribution and to determine the distribution of radiance at any 
surface, through which the beam passes, in terms of the distribution 
at any other surface that also intersects the entire beam. 

The third chapter, on the spectral distribution of optical radia- 
tion, develops the concept of spectral radiance. Its invariance 
properties and the evaluation of flux in a beam from a known distribu- 
tion of spectral radiance are developed in a treatment parallelling 
that for radiance in Chapter 2. 

These are the first chapters of Part I, in which are developed 
the basic concepts, essential for the subsequent discussions of 
instrumentation in Part 11, and of applications in Part 111. 

Key Words: Optical radiation measurement; photometry; radiometry; 
spectroradiometry. 

Part I. Concepts 

Chapter 1. Introduction 

by Fred E. Nicodemus, Henry J. Kostkowski, and 
Albert T. Hattenburg 

In this CHAPTER. We describe optical radiation and the ray approach to its treatment in 

this Manual (based on geometrical optics). 

in a measurement equation as a systematic technique for analyzing measurement problems. 

also present the system of units and nomenclature used herein. 

OPTICAL RADIATION. 

(photons), which can be reflected, imaged, or dispersed by optical elements, such as 

mirrors, lenses, or prisms, is referred to here as optical radiation. In the spectrum of 

electromagnetic waves, shown in figure 1.1,'optical radiation lies between x-rays and 

microwaves, i.e., in the interval from about one nanometer to about one millimeter.' 

We discuss relevant parameters and their use 

We 

Energy propagated in the form of electromagnetic waves or particles 

lCommonly used physical units and symbols are listed in Appendix 1. 
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The most familiar portion is visible light, which lies between about 400 and 700 nano- 

meters, the approximate limits of the human-eye response in full daylight. None of these 

limits is very sharp; only approximate boundaries exist between the wavelength regions of 

figure 1.1. 

Physical theories and models of physical phenomena are abstractions or idealizations 

that approximate, more or less, what actually takes place in the "real" world. For exam- 

ple, Newton's laws of motion are quite adequate for dealing with most ordinary mechanical 

devices of everyday experience. 

bodies moving at very high velocities, the more sophisticated relations of Einstein's theory 

of relativity are needed. 

approximately true and will need to be supplemented, for certain applications, by still more 

sophisticated treatments. 

optical phenomena, each with its region of useful validity. 

(ray optics), phys ica t  optics (wave optics), and quantum optics (particle optics). 

But in cases involving atomic particles or astronomical 

Quite possibly that theory, in turn, will be found to be only 

Similarly, there are three approaches or models for dealing with 

They are: g e m e t r i c a z  optics 

The simplest approach to optics, and the one used in this Manual almost exclusively, is 
It accounts very well for the way in which opti- that of geometrical optics or ray optics. 

cal radiation is propagated from most common sources, such as incandescent lamps (light 

bulbs), fluorescent lamps, arcs, discharges, light-emitting diodes (LED's), and laboratory 

blackbodies. However, geometrical or ray optics can't account for the patterns (diffrac- 

tion or interference) which are produced at the edges of certain shadows, in focal regions 

where rays sharply converge, or by devices called interferometers. 

treatment of what is usually called physical optics or wave optics. 

with interactions with matter in microscopic detail, it is necessary to recognize that 

energy exchanges take place in discrete amounts. 

cal radiation as being propagated in discrete "packets" or. photons, whose distribution in 

large numbers produces average energy distributions in time and space corresponding to the 

waves of physical optics. 

radiation measurements or, radiometry in terms of geometrical optics, with occasional rec- 

ognition of wave-optics or quantum-optics phenomena as perturbations of the ray-optics 

relations. 

although they can also be reconciled with corpuscular theories. 

them involves mainly the phenomenon of coherence. 

Then we require the 

Finally, when we deal 

Then we find it useful to consider opti- 

For our purposes, it is adequate to treat "classical" optical 

Both geometrical and physical optics are based on the wave theory of light, 

The distinction between 

Electromagnetic waves consist of periodic variations in interrelated electric and mag- 

netic fields, variations that are periodic in space along the direction of propagation and 

in time at any single point along the path. 

considered as involving oscillations of individual charged particles in the atoms or mole- 

cules of the material of the radiation source. If these are random oscillations, such as 

those produced by thermal excitation in heated matter, the resulting waves will be similar- 

ly random in phase. 

obeys the laws of geometrical optics, where waves passing through the same point in dif- 

ferent directions seem to be completely independent of each other and do not interfere. 

Emission of electromagnetic radiation can be 

Then they will combine and propagate as incoherent radiation that 
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However, if the particles are somehow made to oscillate together, "in step'' with each 

other, the resulting waves will be coherent. 

so that they reinforce or cancel each other over many periods of oscillation, producing the 

interference patterns that deviate from the laws of geometrical optics. 

based on geometrical optics do not apply, in many instances, to strongly coherent radiation 

such as that produced by lasers. 

They will have consistent phase relatione 

The relations 

However, as previously stated, we can use geometrical 

.optics almost entirely in connection with measurements of common sources, such as those 

listed, treating the wave- and quantum-optics phenomena as occasional perturbations. 

This Manual will deal principally with incoherent optical radiation from about 200 nan- 
ometers to about 20 micrometers. We will exclude, at least initially, all laser radiation 

(see Preface) and the vacuum ultraviolet and far infrared spectral regions. 

we'll refer to this reduced region of incoherent radiation as just "optical radiation." 

The MEASUREMENT EQUATION. 

ation originating at a source, propagating along an optical path, and impinging upon a 

radiometric instrument. 

that reflects or scatters radiation incident upon it from another source. The propagation 

path may traverse a vacuum, or it may pass through a number of different media and involve 

a variety of interactions with matter, such as reflection, refraction, scattering, absorp- 

tion, and even emission (by fluorescence). Finally, the radiometric instrument can take 

many forms, e.g., a bare photocell or a sophisticated spectroradiometer. Two measurement 
configurations illustrating different combinations of some of these possibilitiee are shown 

in figures 1.2 and 1.3. They are not intended for detailed comprehension at this point but 

only to emphasize the wide range of complexity that can be encountered. 

such complexity only through an orderly, systematic approach, and our approach is based on 

a measurement equation. 

For brevity, 

Every measurement of optical radiation involves a beam of radi- 

The source may emit radiation or it may be an irradiated object 

We can cope with 

The measurement equation is the mathematical expression that quantitatively relates the 

output of a measuring instrument to the radiometric quantity that is being measured, taking 

into account all of the pertinent factors contributing to the measurement result. The main 

part of that measurement equation relates the radiation input at the receiving aperture of 

the instrument to the resulting output in terms of the instrument responsivity (output 

"signal" per unit incident radiation input). 

needed, for the effects of interactions between matter and radiation at the source and 

The complete equation also accounts, as 

along the optical path of the radiation beam as well as at the instrument. 

this down systematically in a quantitative equation helps to insure that all pertinent 

factors will be appropriately considered and will not be inadvertently overlooked. It 
also facilitates the evaluation or estimation of the effects of individual parameters by 

the investigator in order to achieve needed simplifications. 

usually unmanageably complex until simplifying data or assumptions are introduced to make 

it tractable. Fortunately, the effects of a number of parameters or variables will often 

be negligible; the effects of others will be small and easily evaluated. The basic prob- 

lem is to identify and accurately assess the effects of all significant factors, making 

Setting all of 

The complete equation is 
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Figure 1.3. Lunar radiation measurement configuration. 

The moon M is imaged on a photocell detector 
D by astronomical telescope T at surface of 
earth E. The moon shines by reflection of 
radiation from sun S. The propagation path 
from M to D includes the earth's atmosphere 
A and the optics of T. Proportions greatly 
distorted to bring out significant details. 
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simplifications wherever possible in order to obtain tractable expressions. 

ment equation provides a mechanism for approaching this systematically, thereby minimizing 

the chance that any significant factor will be inadvertently overlooked. 

The measure- 

The quantities used in the measurement equation are expressed in terms of the radiation 

parameters and pertinent instrumental and environmental parameters. The distribution of 

radiant power (radiant energy flow) or flux in a beam of incoherent optical radiation is 

completely described or specified in terms of five radiation parameters: position, direc- 

tion, wavelength, time, and polarization. The measurement of optical radiation is a multi- 

dimensional problem that always involves rhese five variables and, possibly, others ae 

well. 

ent directions from any one point, for different wavelengths, and for different polariza- 

tions, and it can vary greatly with time. In addition, the interactions between radiation 

and matter -- absorption, emission, scattering or reflection, and refraction -- may also 
depend upon these same five radiation parameters. Instrumental and environmental param- 

eters may also affect a measurement (e.g., temperature, humidity, magnetic fields). Al- 
though they can't be so conveniently and exhaustively listed, we'll try to provide syitem- 

atic approaches for identifying and dealing with all those of significance in a wide 

variety of situations, particularly when we reach Part 111, Applications (see Preface). 

UNITS and NOMENCLATURE, A mechanical engineer, c0nceme.d with dissipating frictional 

heat, wants to know how much energy flows away from an exposed hot surface as optical 

(heat) radiation. 

radiation beam, usually expressed in watts. An atomic physicist, concerned with the light 

emitted by individual particle interactions, wants to know the number of photons flowing 

in a beam, the number of quanta per second. An illumination engineer, trying to provide 

The strength of radiation can be different at different points in space, in differ- 

He is concerned with the rate of energy flow -- the power -- in the 

adequate lighting on a desk for comfortable and efficient reading and writing, measures 

light in terms of its effect upon the average human eye, using lumens1 for units. 

there are different ways of stating the amount of optical radiation determined by a meas- 

urement; we can use different units of flux, the general term for the quantity of radia- 
tion per unit time flowing in a beam. 

Thus, 

This Manual will be mainly concerned with radiant power measured in watts. Lumens and 

related units are used when discussing photometry, and photon flux is utilized when we are 

concerned with the quantum aspects of interactions between radiation and matter. It can- 

not be too strongly emphasized, however, that everything said here about the fundamentals 

of radiometry, even though stated in terms of watts, applies equally to aZt forms of opti- 
cal radiation measurements. For example, the measurement of illumination for application 

to vision needs involves all of the fundamentals, not just those discussed in the chapter 

on photometry. And, conversely, there is much that is pertinent to, say, military appli- 

cations of infrared radiation in that chapter on photometry. After all, photometry is 

just the measurement of optical radiation with detectors having a specified spectral 

lThe lumen is defined and discussed in a later chapter on "Photometry." 
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responsivity that is related to that of the human eye. 

etry are, many of them, equally pertinent to measurements with other spectrally-selective 

sensors, many of which are used extensively in the infrared. Also, many military infrared 

devices, e.g., night-vision devices, have visual displays where the photometric considera- 

tions, as such, are directly applicable. 

in terminology and units. 

As a matter of fact, the great diversity of nomenclature that has grown from the use of 
optical radiation measurements in so many different fields of application is a perennial 

problem. Different terms are used for the same concept and, conversely, the same term is 

often used for different concepts. We will employ, as much as possible, the nomenclature 

of the CIE International Lighting Vocabulary [511 as the most comprehensive and least con- 

troversial authority available. 

add to the CIE nomenclature at times when we find it inadequate. We will also mention 

alternative terms and practices that are widely used in the literature where, at least for 

a long time to come, complete standardization in so many different areas of application 

just isn't going to take place. 

astronomers stop using star magnitudes.* 

star radiation data must learn to convert them to the equivalent values of point brilliance 

or of illuminance or irradiance. 

Accordingly, the problems of photom- 

It's all optical radiation in spite of differences 

Exceptions will be clearly noted when we do depart from or 

For example, it will be a long time, if ever, before 

Accordingly, others who need to use published 

One of the most useful techniques for coping with this unavoidable diversity of nomen- 

clature is the regular use of unit-dimensions and routine unit-dimension-consistency checks 

for all radiometric quantities and their mathematical relationships [61. 
follow the practice of associating the proper units and their dimensions with each physical 

quantity that enters into an important equation. 

consistency of the unit-dimensions of the final result. All unit symbols are enclosed in 

square brackets to emphasize their dimensionality in this connection. 

and symbols are used wherever possible and exceptions are noted.3 

SUMMARY of CHAPTER 1. 

netic waves or photons which can be manipulated and studied by optical elements (e.g., 

mirrors and prisms). This Manual treats incoherent optical radiation in the wavelength 

region between approximately 200 nanometers and 20 micrometers. 

employs geometrical optics or ray optics. 

This Manual will 

This will facilitate verification of the 

Standard SI units 

Optical radiation is defined as energy propagated as electromag- 

The method of treatment 

Incoherent optical radiation is completely specified in terms of the five radiation 

parameters: position, direction, wavelength, time, and polarization. Its interaction with 

matter, as it traverses an optical path and is directed and measured by an instrument, is 

also governed by these radiation parameters, as well as by environmental and instrumental 

lFigures in brackets indicate literature references listed at the end of the Technical Note. 

2A star magnitude is a logarithmic unit of incident flux per unit area. 

3See Appendix 1. 
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parameters that cannot be exhaustively listed. 
the incident radiation and the measured result in a measurement equation, in terms of all 

relevant parameters, is the basic approach in this Manual. 

tion, usually too complex for a complete general solution, facilitates the evaluation of 

the effects of simplifying data and assumptions used to obtain more tractable expressions 

for particular applications. 

chance that any significant factor may be inadvertently overlooked. 

The quantitative interrelationship between 

The complete measurement equa- 

It provides a systematic approach that helps to minimize the 

Radiometric relations are usually given in this Manual in terms of flux in watts, with 

photometric and photon-flux quantities also employed, when appropriate. 

follows the CIE system, with exceptions and additions noted and with alternate terw also 

supplied, if they are widely used. 

nomenclature confusion and diversity. 

exceptions are noted. 

Nomenclature 

Unit-dimension checks are recommended for dealing with 

SI units and symbols are used wherever possible and 
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Chapter 2. Distribution of Optical Radiation with respect to Position 
and Direction -- Radiance. 

by Fred E. Nicodemus and Henry J .  Kostkowski 

In this CHAPTER. We introduce the basic radiometric quantity radiance. 

allows us to explicitly characterize the distribution of radiant power from point to point 

and direction to direction throughout a beam of optical radiation. 

important when both the power distribution, and the sensitivity (responsivity) of a radi- 

ometer used to measure this power, are non-uniform or non-isotropic. We also show how the 

total power in the beam can be obtained from the radiance distribution. 

how to determine the distribution of radiance at any surface, through which the beam passes, 

in terms of the distribution at any other surface that also intersects the entire beam. 

The OPTICAL-RAY APPROACH. 

tungsten-ribbon filament, and a detector-receiver that is irradiated by the lamp. A ray 
drawn from a point on the lamp filament to a point on the receiver surface represents the 

optical radiation originating at a small area element around this point, propagating along 

the line drawn, and impinging on the receiver area element. 

tion along which optical radiation flows. In terms of waves, it is the direction in which 

that particular part of the light wave is traveling. 

This quantity 

This is particularly 

Finally, we show 

In figure 2.1 we see a side view of a lamp with a flat, glowing, 

Thus a ray is a line or direc- 

From experience, we know that different parts of the glowing tungsten surface will not 

appear equally bright to the eye. The ends of the ribbon filament are cooler than the rest 

so point 1 in figure 2.1 will typically be brighter than point 2. Moreover, though to a 

lesser degree, the brightness of any point, such as point 2, will also change with direc- 

tion. It will be different when viewed from directions a, b, and c. Thus, the positional 

and directional distribution of optical radiation can be associated with rays if we can 

find a way of associating a definite quantity or concentration of radiant power or flux with 

each ray. 

develop. 

This can be done through the quantity called radiance, a concept which we now 

'The purely geometrical aspects of radiance are identical to those of the photometric quan- 

tity luminance and are approximately the same as those of the familiar psychophysical quan- 

tity brightness. Radiance pertains to flux (amount of radiation flowing) measured in watts 

or other power units, and luminance to flux measured in lumens, units that are related to 

standardized eye response (defined and discussed in the chapter on Photometry). 

is related to luminance in that incandescent sources of equal luminance usually appear 

equally bright. However, a common "optical illusion" shows that the apparent brightness of 

an area can be strongly affected by a background or "surround" of a different brightness. 

Also, the familiar photographic "gray scales," with steps of apparently equal brightness 

difference, actually have luminance or radiance steps of approximately equal ratio, i.e., 

a logarithmic scale of luminance or radiance. Introduction of color makes things even more 

complicated. A completely satisfactory theory still eludes the experts in colorimetry and 

vision research. 

Brightness 
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TUNGSTEN RIBBON 
LAMP 

Figure 2.1. Rays from lamp source to detector-receiver. 
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RADIANCE (through two apertures). 
visible-wavelength source that appears uniformly bright from all directions, two black 

screens each having a small aperture, and a photocell next to the second screen. 

tocell responds to all the radiant power reaching it from the source through both apertures. 

The beam from source to photocell consists of all rays in the shaded region between the 

extreme rays through both apertures, as shown in the figure. It is assumed that the medium 

(air) is perfectly transparent, with a negligible loss of radiant power from the beam by 

scattering or absorption. If the power A0 in the beam is measured for different aperture 

areas AA1 and AA2 (perpendicular to the plane of figure 2.2), and for different dis- 

tances D between the apertures, it is found, over a wide range of values, to be propor- 

tional to the quantity 

Consider an experiment (figure 2.2) with a large-area 

The pho- 

AA1 'AA2 

D2 
(2.1) 

The measured power or flux A# also changes when the brightness of the source changes. We 

denote the radiometric quantity that corresponds to that brightness by the letter L. Then 

we can write 

AAl AAp 
A0 = L a -  

D2 
(2.2) 

Also, if the apertures aren't kept perpendicular to the central ray through both of them, 

we find that the measured flux also varies with the cosines of the angles of tilt, shown in 

figure 2.3. This makes our final expression 

Next we note that, holding the apertures fixed, the measured flux doesn't change when the 

source is moved farther away from, or closer to, the apertures or tilted, just as long as 

all rays in the beam through both apertures come from the uniformly bright emitting surface. 

Only if we change the source so that it is no longer uniform and isotropic does the meas- 

ured flux vary with the position and orientation of the source. 

measured flux less sensitive to source position and orientation, at least to small shifts, 

by making the apertures AA1 and AA2 small compared to their separation distance D and 

small compared to the distances on the source surface between points of significantly dif- 

ferent brightness. 

We can again make the 

The experiments show that the quantity L is not only related to the source brightness 

but also to the small bundle of rays leaving the source in a region of uniform brightness. 

In fact, it appears to have the same value anywhere along such a bundle of rays. Its value 

can be obtained for our sample situation by solving eq. (2 .3)  for L, thus: 

'[W] denotes unit-dimensions of watts (see Appendix 1). 
12 
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Figure 2 . 3 .  Tilted apertures 
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Actually, careful measureinents, and measurements with sources of more uneven brightness, 

show that these equations yield only average values of 

evaluate L 
the apertures smaller and the distance D 

er enough power in the beam reaching the photocell to make a measurement at all. 
before that happens, we may encounter diffraction effects where our geometrical-optics model 

of propagation along rays no longer adequately describes the situation. Nevertheless, if we 

are careful to observe the limitations of geometrical optics, not applying our equations, 

without corrections, to situations involving significant diffraction or interference effects, 

we can obtain relations having a very wide useful range of application by the mathematical- 

analysis methods of calculus. To do this, we assume an underlying continuous distribution 

of flux among the rays of the radiation beam, even when the apertures are made arbitrarily 

small [ 7 ] .  

L. On the other hand, if we try to 
for a smaller beam, representing just a portion of the larger beam, by making 

larger, we reach a point where there is no long- 

Even 

We define the quantity L, then, as the limit of the quotient of flux A@, passing 

through both AA1 and AA2, by the geometrical quantity (AA1 *cosB1*AAAp*cos02)/D2 as 

AA1 and M 2  are made smaller and smaller. This is written 

But this is just the defining equation for a second derivative, so that 

In the limit, as the apertures become vanishingly small, there remains only a single ray 

through both of them, so radiance, so defined, is associated with an elementary beam col- 

lapsed to just a single ray. This doesn't mean however, that it's ever possible to actu- 

ally measure the radiance of just a single ray. 

and beams of finite dimensions, as in eq. (2.4), which then yield only average values of 

radiance. 

uniform and isotropic with all rays having exactly the same value of radiance. 

Real measurements always involve apertures 

Such an average value equals the actual radiance only when the beam is completely 

There is now no limit to how large the apertures may be. By using integral calculus, 

we can relate the ray-radiance distribution to the total flux or power flowing in a beam of 

any size. We begin by imagining that each large aperture is divided into many small areas, 

each small enough so that, through any pair of these small areas (one in each aperture), 

all rays have the same radiance. The flux through each such pair of small areas can be 
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calculated by eq. (2.3) and the results added up, for all such pairs to account for the full 

area of each aperture, to obtain the total flux in the entire beaa. 

just three small areas in one aperture and four in the other i s  illustrated in figure 2.4. 

Then if, for example, the flux in the portion of the beam between area 2 of the first aper- 

ture and area 3 of the second aperture is designated as 

for the total flux in the beam through both apertures as 

A simple example of 

ACp23, we can write the expression 

The flux in the beam through each pair, in turn, is evaluated by eq. (2.3). This is illus- 
trated for the pair AA1 in the first aperture and AA4 in the second aperture, in fig- 

ure 2.5 and the following expression: 

More generally, if each aperture 

the first into i areas and the 

be written as 

Again using calculus, we let the 

is divided into an arbitrarily large number of small areas, 

second into j areas, the total flux in the beam can then 

areas Mi and. AAl become arbitrarily small so the num- - 
bers i and j become, at the same time, arbitrarily large. This is written as 

(2.10) 

i + -  
j + -  

where 1 AQij can be expanded as in eq. (2.9). This is simply the defining equation for 
the double integral over the two apertures: 

i j  

(2.11) 

In practice, if we know both the radiance L and the slant distance D along the ray 

between the area elements dA1 and dA2 as functions of the position coordinates of those 

elements over the full areas of both apertures, the integral for the flux 8 can be eval- 

uated, at least on a computer. Usually, however, we try to make measurements under condi- 

tions where the radiance L 

apertures. Then, as a constant, it can come outside the integrals, leaving 

is the same, or approximately so, for every ray through both 
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Figure 2.4.  Notation for subdivided apertures. 

17 



**I4 

Figure 2.5. Computation of flux A@14. 
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(2.12) 

Evaluation of these double integrals can become 'quite complicated. However, integrals of 

this type have been evaluated and tabulated for many different geometrical configurations, 

with different sizes, shapes, orientations, and separations of A1 and A2, as we'll see 

in more detail in Chapter 4 and the accompanying Appendix 3.  

RAY RADIANCE (at a point in a direction). The defining equation for radiance, eq. (2.5),  
can be written in a different way by recognizing that is the solid 

angle1 in steradians [sr] subtended at MI by AA2, as shown in figure 2.6.  Accord- 

ingly, radiance can also be defined as 

(AA2*cosB2)/D2 - Awl2 
Lim 

L = A A - t O  A@ 
Aw + 0 M-cosB-Aw 

(2.13) 

In this form, it is easier to recognize that the units of radiance are watts per square 

meter and steradian, as shown. This form is also more general, since it defines L at a 

point in the direction of a ray through that point, rather than between two points. With 

this approach we need not assume a perfectly transparent medium with no attenuation between 

the two points. However, we have presented both approaches because this concept, involving 

simultaneous variation and distribution of flux in both position and direction, is a diffi- 

cult one. Many find the first approach easier to understand while others prefer the second 

approach which, in any event, has definite advantages for many applications. 

Radiance is a ray-associated field quantity. What this means is that its value depends 

on the point in space where it is evaluated and on the ray direction through that point. 

It is the concentration of propagated optical flux or power, with respect to both position 

and direction, as a function of both position and direction. We'll define it more explic- 

itly in mathematical terms and use the definition to relate the radiance along an emitted 

ray at the surface of a source to its value at subsequent points along that ray, particular- 

ly at the point of incidence on the surface of a receiver. At the same time, we develop 

the concept of the element of propagated flux associated with each ray as the product of 

(1) the radiance and (2) the associated element of throughput, which is also defined. The 

distribution of these quantities, as functions of position and direction, incident on the 

receiving aperture of a radiometer or radiometric device can then be combined with the flux 

responsivity of the instrument, which may also be a function of position and direction of 

the incident flux element, to obtain the instrument output in terms of the incident radia- 

tion input and the spatial parameters. However, we won't take that step until Chapter 4. 

The precise, explicit definition of radiance [ 8 ]  is given first in words and then 

lSee Appendix 2 for definition and discussion of the concept of solid angle. 
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Figure 2.6. The solid angle Aw12 

subtended at h A 1  by 4. 

PIN1 is normal to AAl 
P2N2 is normal to AA2 
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mathematically (refer to figure 2.7). 

tion of a ray through that point is defined as the radiant flux or power per unit projected- 

area-perpendicular-to-the-ray-at-the-point and unit solid-angle-in-the-direction-of-the- 

ray-at-the-point. 

The radiance at a point on a surface in the direc- 

(2.14) 

where 

L(x,y,B,$) [W-m'2-sr'1] is the radiance at the point x,y in the direction e,$; 

x and y [m] are the position coordinates, on the surface, of the point of 

intersection with the ray (usually, but not necessarily, it is convenient 

to have a plane reference surface, in which case x and y are Cartesian 

coordinates) ; 

8 and $ [rad] are spherical coordinates;l 8 is the polar angle between the 

ray and the normal (perpendicular) to the surface at the point x,y and 

$ is the azimuth angle about the point x,y in the plane tangent to the 

surface at the point x,y; 

d2@(x,y,0,+) [W] is the element of radiant flux through the surface element 

dA ='dx.dy [m2] about the point x,y and within the element of solid 

angle' dw = sine*de.dt$ [sr] in the direction e,$; and 

dA*cose [m2] is the element of projected area perpendicular to the ray direc- 

tion e,$. 
As we saw in eq. (2.13), radiance as defined here is the' limit, as AA and Au both 

approach zero, of the quotient in the first line of that equation, where A@ is the 

radiant flux or power flowing through the area AA within the solid angle Aw. In order 

for this quotient to converge (approach a definite limiting value) at the point x,y in 

the direction e,$, the flux A@ mu,st also become vanishingly small as AA and Aw 

both approach zero. 

quotient at a point and in a given direction; all we can ever measure in reality is its 

average value over small intervals of area and solid angle through which enough flux can 

pass to produce a measurable output "signal" in a radiometer. 

has the same value throughout a beam, the average value will equal the value along any 

single ray, so this is the way we try to make the most accurate measurements.) It is very 
important to understand this limitation clearly; but it certainly doesn't destroy the use- 

fulness of the concept of radiance. 

Thus, as we've already pointed out;we can never exactly measure this 

(Of course, if the radiance 

Actually, there are many such "point functions" that can't be exactly measured. Some 

are so familiar as part of our everyday experience that we never stop to think about this 

lspherical coordinates, solid angles, etc., are discussed in Appendix 2 for those who may 

with to refresh their memories on these topics. 
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Figure 2.7. Geometry of ray-surface intersection 
(for the definition of radiance). 
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limitation. 

It's obviously impossible to measure density exactly at a point in a region of changing 

density, as in a flowing gas or liquid where the density varies rapidly from point to point. 

Nevertheless, most of us have no difficulty with the idea that there is a definite value 

associated with each point along a path through such a region of (continuously) changing 

density. 

ume, not the exact value at a point. In the same way, a radiometer gives an average 

response to inputs spread over intervals of area and solid angle or intervals of position 

and direction. 

point and in a single direction through that point as the basis for analysis. Furthermore, 

as already suggested, we are usually able to detect or indirectly control the uniformity 

of such a quantity with much greater precision than we can measure its absolute value. 

Accordingly, by arranging to have the beam for a measurement as uniform and isotropic 

(constant radiance) as possible, we can make the measured average correspond very closely 

to the actual value of that constant radiance for all points and directions within the beam. 

The ELEMENT of J?LUX and the GEOMETRICAL INVARIANCE of RADIANCE. Now let's see how we can 

use our definition of radiance to express the element of radiant flux associated with a sin- 

gle ray. In.figure 2.8 we show first (a) a single ray between two points PI and P2 and 

second (b) the elementary beam, made up of all the rays between two area elements dA1 and 

dAp about the points P1 and Pp, respectively. As we've seen, an element of area dA 

is just a small area 

a limit, the limiting value of a quotient for a derivative or the limiting value of a summa- 

tion for an integral. It may be helpful, at first, to think of dA1 as being part of the 

emitting surface of a source, such as a tungsten ribbon filament, and, similarly, of dA2 

as being part of the surface of a receiver on which the ray P1P2 is incident. However, 

they can just as well be apertures in real or imaginary screens through which the elementary 

beam passes. Everything we say now, in the following discussion, is equally applicable to 

any pair of two (imaginary) surface elements intersecting any two points P1 and P2 along 

the path of a single ray. 

A good example would be the concept of density, i.e., of mass per unit volume. 

But any measurement we make can give us only the average value over a finite vol- 

But it's still very useful to think in terms of the radiance at a single 

M that can be made arbitrarily small in the process of approaching 

These points may be arbitrarily chosen anywhere along the ray. 

In figure 2.8(b), we have also drawn the.normals PIN1 and P2N2, perpendicular to 

the surface elements dA1 and dA2, respectively. The ray and normal that intersect at 

PI form an angle e l ;  g2 is the angle between the ray and normal intersecting at P2. In 

many cases, when the surfaces of interest are parallel to each other, 8 1  = 92. However, we 

don't want formulas that are too restricted in their application, so we've chosen the more 

general case where these angles of tilt may (or may not) be unequal. On the other hand, we 
do want to restrict ourselves, at first, to a medium in which the index of refraction is 

everywhere the same, that is, where radiation flows at the same velocity everywhere and in 

all directions (uniform and isotropic), so that all rays are straight lines. Later, we'll 

see how to deal with the still more general case where the refractive index is found to vary. 

The elementary beam of radiation between dA1 and dAp, the beam defined by those 

two surface elements, consists of all of the rays along which radiation flows or is 
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(Source) (Rece iver )  

Figure 2 .8  (a) A s ingle  ray 

Figure 2.8 (b) An elementary beam of radiation 

PIN1 is normal to  dA1 

P2N2 i s  normal to dA2 
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propagated between the two surface elements. 

points on dAl to points on dA2, taken as a whole, constitute the beam. If we were to 
try to draw them all, we'd just have a solid black band that wouldn't show the detail in 

which we're interested. 

rays for only three points on each surface element, one at PI or Pp, respectively, near 

the center, and the other two at the edge on opposite sides in each case. 

up as a fairly "busy" figure, with nine rays altogether, three from each point on one sur- 

face element to each of the three points on the other surface element. 

In other words, all of the rays joining 

Instead, we've just suggested what's involved by drawing in these 

Even this ends 

Rays that all intersect at a common point are said to form a pencil of rays. If we 

consider the radiation in figure 2.8(b) to be flowing from dAl to dA2, the diverging 

rays from any one point on dA1 to all points on dA2 form an exitentl pencil, while 

those converging at any one point on dA2 from all points on dAl form an incident pencil. 

The extreme rays between a point on either area element and the entire edge of the other 

area element form a c~ne bounding the solid angle subtended at the point by that area ele- 
ment.2 The element of solid angle subtended by dA2 at P1 is given by 

dw12 - cos02*dA2/D2 [sr], where D [m] is the distance between P I  and P2. Similarly, 

the element of solid angle subtended at Pp by dAl is given by dw21 - cos01*dA1/D2 [sr]. 
When the area elements are small enough, the solid angle subtended by either one of them at 

a point on the other is  the same for all such points. 

With these geometrical relations established, we can turn our attention to the flow of 

radiant energy in the beam of figure 2.8(b). 

will be no significant differences in radiance between the rays through different points 

across a surface element or in different directions within the pencil of rays to the other 

surface element through any single point of the first element. 

all of the rays leaving dAl toward dA2 are of radiance L1 and that those same rays 

all arrive at dA2 with radiance L2. Of course, we've already seen that experiments show 

that L1 = L2. But we ignore that, for the moment, so that we can also show, by analysis, 

that L1 - L2 
the element of radiant flux or power in the elementary beam through each area element. 

When the area elements are small enough, there 

Accordingly, we assume that 

follows just from our definition of radiance. We next write expressions for 

If all rays leaving dA1 are of radiance L1 watts per square meter of projected 

area and steradian of solid angle, and they emerge through a projected area (perpendicular 

to the ray PIP2) of cosO1-dA1 square meters and within a solid angle of dw12 steradi- 

ans, the flw or power in the exitent elementary beam is the product of these quantities, 

or 

(2.15) 

l"Exitent" was coined as an antonym of "incident" by Richmond [9]. 

2Spherical coordinates, solid angles, etc., are discussed in Appendix 2 for those who may 

wish to refresh their memories on these topics. 
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which looks very much like eq. (2.3) or eq. (2.8). Similarly, the element of flux or power 

reaching dAp in this same elementary beam is 

(2.16) 

If there is no loss of radiant power or flux in the intervening medium, so that all of the 
flux leaving dA1 in the elementary beam toward dA2 arrives at dA2, we can get 

d@1 = d@2. Then 

which reduces to 

L1 = Lp. (2.17) 

Since no restriction was placed on the choice of the points P1 and P2 along the 

ray, eq. (2.17) must apply to any pair of points, i.e. to all pairs of points, along that 
ray. This means that the radiance in the direction of a ray is the same at every point 

along that ray in the absence of any energy losses or new sources of energy. 

geometricaZZy invariant along a ray in a paasive, losaleas,  uniform, isotropic medium. 
Accordingly, if we know the value of exitent radiance at the surface of a source for a 

particular ray, this also means that we know its value at any subsequent point of that 

ray, including the point where it is finally incident on a receiver, providing there are 

no losses of energy (or new sources of energy) along the intervening path. yoreover, if 

such losses exist, they can be accounted for by an appropriate factor, the propagance of 

the path, which we'll define and discuss in detail 1ater.l 

APPLICATIONS of RADIANCE INVARIANCE. 

of applications until Part 111, we want to look at some of the useful applications of the 

invariance property of radiance now because it will help to clarify the significance of 

this important quantity. First, however, we need to examine what happens when a ray trav- 

erses different media with different refractive indices. 

often reasonably uniform and isotropic, especially for measurements in the laboratory, rays 

frequently pass also through lenses, prisms, or other optical elements with quite different 

refractive indices. 

Radiance is 

Although we won't get into a thorough discussion 

Even though the atmosphere is 

We need to know how this affects the value of radiance along a ray. 

Most of the optical elements with which we are concerned have relatively smooth sur- 

faces so we'll analyze the situation for regular (specular) transmission, with refraction, 

at a smooth boundary surface between two media of different refractive indices, as 

depicted in figure 2.9. We define a "smooth" surface as any surface where it is possible 

to construct a tangent plane, i.e. where every surface element dA can be treated as 

common to the surface and to a plane tangent to the surface at that point. This figure 

lSee eq. (2.37) (on p. 38.)  
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Figure 2 .9 .  Invariance of basic radiance 
along a refracted ray. 
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shows a vertical plane (plane of the paper) containing the normal (perpendicular) to a sur- 

face element dA of the smooth surface and an incident ray, inclined at an angle 81 to 

the normal, within an element of solid angle nl 
above the surface. The incident radiance is L1 [W.m-2.sr-1], and the element of radiant 

flux or power in the elementary beam incident on dA through dwl is d@l [W]. 

dwl, in the medium of refractive index 

Below the surface, in the second medium of refractive index n2, the refracted ray 

is inclined at an angle and the refracted elementary beam fills an element of solid 

angle dwp. This solid-angle element dw2 differs slightly from dwl because the rays 

bounding dwl are refracted by slightly different amounts. The radiance here is Lp and 

the element of refracted radiant flux or power is 

ments of flux in terms of the radiance and the geometrical quantities as 

02 

d#2. As before, we can write the ele- 

Also, as before, we are interested only in the effects connected with ray and beam geometry 

so, again, we assume there are no losses in either medium. However, we know that, even 

with so-called anti-reflection coatings, there will always he some of the incident flux 

reflected at a smooth surface so that only part of it will be transmitted and refracted. 

If the total incident element of flux is d@l' with a radiance Ll' and the reflected 

portion is p*dQl' with radiance p*Ll', then the remainder that is transmitted and 

refracted without loss i s  del = (l-p)*d#l' with L1 = (l-p)*Ll'. Accordingly, setting 

dal = dag, since it is transmitted'and refracted without loss, we have, from eqs. (2.181, 

(2.19) 

a relation involving only radiance and beam geometry and ignoring the portion of the inci- 

dent flux that is reflected. 

The angle of incidence 81 for every incident ray is  related to the angle of refrac- 

tion e2 
stated mathematically as 

for the corresponding refracted ray by Snell's law of refraction, which can be 

nl'sin81 = n2-sine2. (2.20) 

By differentiating with respect to angle, we also have 

nl'cos81*del = n2-cos82*de2. (2.21) 

Rearranging eqs. (2.20) and (2.21), we can write 

(2.22) 
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Finally, combining eqs. (2.19) and (2.22), we have 

(2.23) 

Accordingly, in going from one medium to another, the invariant quantity is not radiance L. 

Instead, it is the basic radiance L/n2 (where n is the index of refraction of the 

medium) that has the same value in the direction of a ray at all points along that ray. 

In fact, more sophisticated proofs [lo] show that the invariance of basic radiance is  a 
completely general geometric property, even along a ray traversing a non-uniform, non- 

isotropic medium in which the index of refraction varies continuously from point to point. 

It must be reemphasized that this is a purely geometric property and that the actual radi- 

ance or basic radiance is usually further modified by interactions with matter, being 

attenuated (reduced) by absorption, reflection, or scattering out of the beam, and also 

possibly augmented (increased) by emission or scattering into the beam. 

of attenuation will be treated briefly at the end of this chapter. 

interactions will come later. 

The simplest case 

&re details on such 

For the moment, the important point is that, from eq. (2.23), we can see that radiance 

L 

(same refractive index), regardless of intervening passage through an optical element (with 

smooth surfaces) of a different material (different index). The radiance within the 

material of the optical element changes, keeping the basic radiance constant, but it 

returns to the original value upon reemerging into the same medium (usually air) again. 

The only effect, then, is possible attenuation by the optical element, which will be dis- 

cussed briefly at the end of this chapter and later in more detail. 

is geometrically invariant along all parts of the same ray that lie in the same medium 

This is such an important point that it may be helpful to restate it explicitly in 

mathematical terms. Given a ray of radiance L1 in a medium of index n1 that passes 

through an optical element with smooth surfaces of a material with index n2 

a third medium of index "3, the radiance Lp internal to the optical element and the 

final radiance L3 in the third medium satisfy the following (based on eq. (2.23)): 

and out into 

(2.23a) 

Furthermore, if the ray emerges, without attenuation losses, again into the same medium, 

e.g., into air, so that n3 - n1, this means that L3 - L1 and we can ignore the fact 

that the ray traversed a different medium; As will be shown later, if there are attenua- 

tion losses, this will reduce the final value of propagated radiance by the fractional 

amount of loss. 

An EXAMPLE of RADIANCE INVARIANCE. 

reflected light from a scene or object (not the incident light on the object or scene) 

consist of a photocell mounted behind a baffle, grid, andfor lenses that define the 

receiving aperture area and solid angle through which rays from the scene or object can 

Many photographic exposure meters for measuring 
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reach the photocell, just as the apertures in the two screens of figure 2.2 define the beam 

from the source to that photocell. The solid angle of acceptance or field angle of such an 

exposure meter is typically about to each side or a cone with a total vertex angle of 

about 

diameter. 

lishes the invariance of radiance along any ray. 

from a distance that is clearly less than the height or width of the wall, whichever is the 

smaller. Note that, over fairly wide limits, the "reading" of the meter doesn't change as 

you move it in or out or tilt it t o  "view" different parts of the wall. Only when you get 

so close that you shade part of the wall in the field of view, or so far away or tilted so 

far that some of the radiation from the surroundings beyond the uniform wall reaches the 

photocell, do you see any change. Accordingly, since the rearrangement or substitution of 

rays within the field of view makes no difference, they must all be of the same radiance 

as they reach the instrument, regardless of distance or angle, as long as they originate 

from the uniformly bright wall surface. 

30" 

60°, roughly the cone subtended by a circular object at a distance equal to its 
You can use such a meter to verify the part of the earlier experiment that estab- 

Point the meter at a uniformly bright wall 

The invariance of radiance along a ray enables us to immediately write down a very 

general rule that is often obtained through a fairly involved mathematical derivation. The 

rule is that the flux per unit area reaching a point (e.g., on the surface of a receiver) 

from a distant extended (source) surface of uniform, isotropic (constant) radiance depends 

only on the value of that radiance and on the solid angle subtended by the (source) surface 

at that point, the solid angle enclosed by the rays from the extremities of the surface as 

"seen" from the point. 

uration. For example, in figure 2.10 the heavy lines at A, B, and C, represent three 

possible configurations for such an extended source with, in each case, the same uniform, 

isotropic (constant) radiance. It is clear from the figure that, since radiance is 

invariant along every ray, the configuration of incident ray radiance converging at P will 

be exactly the same, and so will produce the same flux per unit area, regardless of which 

of the three sources, A, B, or C, is present, as long as that surface has the same 

radiance L [W-m-2*sr-1]. 

GEOMETRICAL INVARIANCE of THROUGHPUT. Although radiance is the complete distribution 

function describing or specifying the spatial distribution of optical radiation in both 

position and direction, the physical quantity that flows in a beam of optical radiation is 

energy, and the flux is the energy-per-unit-time or power flowing, e.g., through some 

reference surface that intersects the beam. It is to energy or power that radiation de- 

tectors usually respond. We said earlier that we need to be able to associate an amount 

or concentration of propagated flux or power with a ray. 

this in the expressions for the elements of flux or power d8 [W] in eqs. (2.15), (2.16), 

and (2.18). 

quantity and its significance. 

It is otherwise completely independent of the geometrical config- 

Actually, we've already done 

However, we want to go back foF another look to get a clearer idea of this 

From our defining equation for radiance, eq. (2.14), we can directly write the 

expression for the element of flux dQ(x,y,O,$) along a ray of radiance L(X,Y,e,4) 
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through an element of surface dA = dx-dy at its point of intersection x,y with the ray 

and within an element of solid angle d w  = sine.de-d$ about the ray in the direction e,$, 
as1 

dO(x,y,8,+) = L(x,y,B,$)-cose*dw dA [W]. (2.24) 

Furthermore, if we know the distribution of radiance L(x,y,~,$) across any reference sur- 

face over an area A that includs all points of intersection x,y between rays of a given 

beam and that reference'surface, and over a solid angle w at each point x,y, that con- 

tains all directions e,+ for rays of the beam that pass through that point, then by sum- 

ming up all elements of flux dO we can obtain the total flux 0 in the beam. This can 

be done by using integral calculus where 

O = I 1 L(x,y,B,~)*cosO*dw*dA [W].2 
A U  

(2.25) 

Note that this is just eq. (2.11) in slightly different form. 

In a uniform, isotropic beam, where the radiance has the same constant value L for 

all rays of the beam, as with eq. (2.12), this simplifies to 

where 

0 cose*dw*dA [m2*sr] 
A U  

(2.26) 

(2.27) 

is the throughput_ of the beam [ll]. 

It is clear from eq. (2.27) that the element of throughput is 

do I cosO-dw-dA [m2.sr]. (2.28) 

Consequently, the element of flux, given in eq. (2.24), can be written simply as 

dO - Led0 [W]. (2.29) 

It is the product of the radiance of a ray and the associated element of throughput. 

In a lossless, uniform, isotropic medium, flux or power is conserved and dO remains 

lSome would prefer that the left side of eq. (2.24) be shown as a second-order differential 

d20, but this raises mathematical questions that we don't want to get involved with. 

event, the order of the differential is somewhat arbitrary, since 

dx-dy-cos8.dw = L*dx.dy*cose*sinB.dB*d+. 

2This is expanded as O = 1 1 1 L(x,y,B,$)*cosB*sinB*de*d$.dx*dy [W]. (see also Appen- 

dix 2 ) .  

In any 

dO = L*dO = L*dA*dR = Le 

Y x e e  
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unchanged along an elementary beam (associated with a ray). We equated d01 of eq. (2.15) 

and de, of eq. (2.16) when the points P1 and P p  of figure 2.8(b) were arbitrarily 

chosen as any two points along the same ray in such a medium. 

that radiance L is invariant along such a ray. Consequently, if both d@ and L are 

invariant along a ray and they satisfy eq. (2.29), then the element of throughput do must 

also be similarly invariant along the elementary beam associated with that ray. 

more, since ray geometry is not altered in any way by attenuation of the flux propagated 

along those rays, the fact that do is invariant along a ray in a lossless medium with no 

attenuation means that it must always be so, even in the presence of attenuati0n.l 

We then found, in eq. (2.17). 

Further- 

If dQ is thus invariant along every elementary beam or ray that makes up a given beam 

of radiation, then its integral for the throughput of the entire beam in eq. (2.27) must be 
similarly invariant. What this means is that, at any reference surface that intersects the 

entire beam, the integral of eq. (2.27) will have the same value as long as no rays have 

been added to or taken away from the beam--as long as it is still made up of exactly the 

same rays. Thus throughput, a purely geometrical quantity, is the geometrical invariant 

characterizing any given beam of optical radiation. 

the flux propagated through an optical system. In fact, when the radiance is everywhere 

the same throughout the beam, eq. (2.27) shows that the propagated flux is directly pro- 

portional to the throughput. Accordingly, the throughput has been found useful as a figure 

of merit in making comparisons between different optical systems on the basis of their abil- 

ity to propagate or transm1.t radiant flux or power [12]. 

The larger the throughput the larger 

Another aspect of the geometrical invariance of throughput is seen more readily if we 

further simplify eq. (2.27) by assuming that the solid angle w filled by rays of the 

beam is exactly the same at every point x,y, where rays of the beam intersect the refer- 

ence surface, over the entire area A. Then the 

two integrals comprising the double integral on the right-hand side of the equation are 

independent of each other, making them separable, so that we can write 

In other words, there is no vignetting.2 

0 = (lAdA)-( cose-dw) = A-Q [m2-sr], 
w 

(2.30) 

where 

Z I case-dw [sr] (2.31) 
w 

is called a projected solid angle (or, sometimes, a weighted solid angle; for more discus- 

sion, see Appendix 2). Here the throughput is exactly equal to the product of the area A 

'As a purely geometrical property, it is possible to establish the invariance of through- 

put, independently of the invariance of radiance, by purely geometrical reasoning. 

ever, the logic used here is quite correct and a great deal simpler. 

2See any standard text on geometrical optics [14,15] for definitions and discussions of 

apertures. beams, stops, vignetting, etc. 

How- 
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of intersection between the beam and the reference surface and the projected solid angle 

corresponding to (and, for small solid angles, approximately equal to) the solid angle w 

filled by the rays of the beam at its intersection with the reference surface. 

when there is vignetting and the solid angle w varies with position at different inter- 

section points x,y across the area A, it is still true that each element of throughput 

d(3 
solid angle dQ E cosO*dw: 

n 

And even 

can be written as the product of the area element dA and the element of projected 

d(3 1 dA*cosO*dw f dA-dQ. [m2*sr]. (2.32) 

In fact, Jones [13] has proposed the term "area-solid-angle product" for the quantity we 

call througtiput. 

The foregoing is not just an exercise in terminology and notation. What eqs. (2.30) 

and (2.32) tell us is that, since throughput is invariant for a given beam and is also 

roughly equal to the product of cross-sectional area and solid angle filled by the beam at 

its intersection with a reference'surface, if the area is reduced at the intersection with 

another reference surface, the solid angle must be correspondingly increased to keep the 

throughput the same, and vice versa., For example, as illustrated in figure 2.11, the solid 

angle as, subtended at the slide in a slide projector by the projection optics 0 is 

much larger than the solid angle 

tion screen. If the area of the slide is A and that of the projected image is 

the approximate relationships are given by 

wI subtended by those same optics at the distant projec- 

AI * S' 

where the projected solid angle Q : cos6*dw % w [sr]. Rays leave each point of the 

small-area slide surface through a fairly large solid angle and arrive at each point of the 

large-area projected image through a correspondingly small solid angle, so that the through- 

put or "area-solid-angle product" at each reference surface is the same. 

w 

A good illustration, with still a different reference surface, other than that at the 

source or its image, is provided by a simple lens used as a "burning glass" to focus the 

sun's rays into a very small, hot image of the sun (see figure 2.12). 

lens is very much larger than the area As 
jected solid angle (they are practically the same for small angles where cos6 % 1) 

wLs 2 RLS 
very much smaller than the projected solid angle 

converging rays subtended at the sun's image by the lens. 

same, the A-Q products at both reference surfaces, i.e., at L and s ,  must be approxi- 

mately equal: 

The area pt of the 

of the sun's image, but the solid angle or pro- 

subtended by the sun at the lens near the earth's surface is correspondingly 

RsL corresponding to the solid angle of 

For the throughputs to be the 

(2.34) 

The exact relationship, which is not so easily evaluated, is 
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Figure 2.11. Slide-projector throughput. 

S = s l i d e  
0 = projection optics 
I = image on projection screen 

Throughput 0 S AS*QS S AI=QI [m2*srl, where 

projected so l id  angle SI, case-dw S w [ sr ] .  
w 
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Figure 2.12. Burning-glass throughput. 
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I j cosOLS-duLS*dq. = I cos0 -dw -dAs [m2.sr], SL SL 
pt uLs As usL 

(2.35) 

where the quantities on the left-hand side are evaluated over a reference surface at the 
lens L and those on the right-hand side are evaluated over a reference surface at the 

sun's image s ,  and where the subscript L refers to the lens, S to the sun, and F t o  
the sun's image. 

As with radiance, we've considered throughput first for uniform, isotropic media where 

the velocity of propagation (hence, the refractive index) is the same everywhere and in all 

directions so that rays are all straight lines. In the more general case, where the index 

of refraction changes from point to point along a ray, it is the element of basic through- 

put n2-d0, rather than the element of throughput de, that is invariant. This follows1 

immediately from the invariance of flux 

of basic radiance L/n2, 

that may produce attenuation or augmentation are ignored. 

throughput, however, It is mentioned here primarily for completeness. It is bask radi- 

ance that is usually more useful. Its geometrical invariance along each ray, together with 

functions taking into account any interactlons with matter along the ray, provide the basis 

for transforming from the distribution of radiance across the intersection of a beam with 

one reference surface to the distribution at a second intersecting reference surface. Once 

the second distribution is known, the total flux in the beam at the second reference sur- 
face is correctly given by eq. (2 .25) ,  in terms of radiance (not basic radiance), even when 

the index of refraction n 

OPTICAL PROPAGATION -- INTERACTIONS with MATTER. 
especially the interactions with matter along the propagation path that can either atten- 

uate (reduce) or augment (increase) the flux in a radiation beam, or do both simultaneously, 
could take up a separate chapter, or more. In fact, the complete, highly sophisticated 

treatment of radiative energy transfer, or just radiative transfer as it is usually termed, 

is beyond the scope of this Manual, but we will give it some attention later. Right now, 

we'll limit our treatment to the attenuation of radiance by absorption and/or by scattering 

or reflection into other directions. 

measurement situations which do not involve optical paths through emitting or strongly 

scattering material nor the observation of weak sources that are close, at least in direc- 

tion, to very much stronger ones. For example, amateur photographers are always cau- 

tioned, at least as beginners, to take pictures out of doors on clear days and not to point 

the camera near the sun. These restrictions still leave them with plenty of opportunities 

d@ = LadB [= (L/n2).(n2*dO)] and the invariance 

when only ray geometry is considered and interactions with matter 

We won't make much use of basic 

also varies from point to point over that reference surface. 

The propagation of optical radiation, 

This will be adequate for a large majority of common 

lAs pointed out in an earlier footnote concerning throughput, it is similarly possible to 

establish the invariance of basic throughput along a ray by purely geometrical reasoning, 

independently of the Invariance of basic radiance. However, again, the logic used here is 

quite correct and much simpler. 
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for taking satisfactory pictures. 

radiation measurement. An ordinary photograph can be, and sometimes is, used as a measure- 

ment of the directional distribution of the radiance of the rays converging on the camera 

lens (the receiving aperture) from different parts of the angular field (the scene). How- 

ever, reproducibility and calibration accuracy are not as good as with most other tech- 

niques. Nevertheless, it is frequently helpful to think of radiometric problems in terms 

of parallel situations in photography, with which many people have at least some familiar- 

ity. 

Incidentally, photography is a rough form of optical 

To further simplify things in considering attenuation, we'll also confine our attention 

to optical paths that begin and end in the same medium. Then we can treat radiance L as 

the geometrical invariant. 

basic radiance as long as we are only interested in the initial and final values and not in 

the radiance within intermediate optical elements of different index. 

We need not concern ourselves with the refractive index and 

Since an element of throughput dO is always invariant and is a purely geometrical 

quantity, unaffected by attenuation, any attenuation of the element of flux dO - L-dO, as 
a ray propagates along an optical path, requires corresponding attenuation of the radiance 

L. For example, consider an element of flux dQ1 reduced to dQ2 = r*dOl in traversing 

the path shown from surface 1 to surface 2 in figure 2.13. At each location, the flux 

element is the product of the radiance and the element of throughput: dQ1 = Ll-dOl and 
de2 = L2.dO2. But do1 = do2 dO, SO 

In this instance, 

the fraction of the initial radiance that i s  (successfully) transmitted, is the transmit- 

tance of the particular ray path. More generally, a complicated ray path may also include 

one or more points of regular (specular) reflectance where attenuation also takes place. 

A similar quantitative relation describes that situation, with reflectance 

Lr/Li, the ratio of reflected to incident radiance or the fraction of incident radiance 

that is (successfully) reflected, in place of transmittance. The corresponding ratio of 

final to initial radiances, as a measure of the attenuation due to all transmittances and 

reflectances over an extended path, the fraction of incident radiance that is (successfully) 

propagated over the entire path, is the propagance 

T 2 d#p/dOl = L2/Ll , the ratio of final radiance to initial radiance or 

p 5 dQ /dQi - 

T* Z dQ P /dei = Lp/Li, (2.37) 

where dO and L are the propagated quantities reaching the end of the ray path and 

dQi and Li are the initial quantities at the beginning of the ray path. 
P P 

If the propagance is the same over all ray paths that make up a larger beam, it will 

have that same value for the entire beam. If not, the overall propagance for the entire 

beam, as the fraction of the total incident flux that is propagated to reach the end of 

the path, will be an average of the individual ray or elementary-beam propagances. It will 
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Figure 2.13. Transmittance of ray path 

from dA1 to dA2 is 

T 5 d@p/d@l Lz/Ll, 

where dQi * LidAi*cosO *dw i i  

A 2  

= Li*dO; i = 1 or 2 
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be a simple average if the incident beam is uniform and isotropic, with all rays starting 
out with the same ;initial value of radiance Li. 
average, with the spatial (position and direction) distribution of radiance L (x ,y ,0 ,$ ) 

as the weighting function. 

If they do not, it will be a weighted 

i i i i i  

Again, since we can't measure the radiance of a single ray or elementary beam, but 

only the average value for a beam of rays, we can't measure the ray or elementary-beam 

propagance, only the average value for a beam. However, the individual-ray or elementary- 

beam concept is regarded as the more basic for analysis. It is only in terms of individual 

rays that we can completely analyze and account for the behavior of non-uniform distribu- 

tions interacting with non-uniform media and, finally, with radiometric instruments whose 

responsivities may'also vary with the position and direction of each incident elerneqtary 

beam at their receiving apertures. 

TRANSFORMATION from KNOWN RADIANCE DISTRIBUTION to FLUX at ANOTHER LOCATION. 

encountered problem in making optical radiation measurements is to transform from a known 

distribution of radiance across the intersection of a beam with one reference surface to the 

corresponding distribution and its integral, the flux, across the intersection of the same 

beam with another reference surface. For example, given the distribution of radiance from 

a known source, e.g., a standard for which a certificate has been issued by NBS, what is 

the distribution of incident radiance at the surface of a receiver after the beam has 

passed through an atmosphere and optical elements for which the overall path propagance is 

known for each ray of the beam? 

a function of position and direction over a reference surface, measured by a scanning or 

imaging radiometer, and the measured values of path propagance to a reference surface at 

the source, what is the corresponding radiance distribution and its integral, the emitted 

flux, at the source? 

A frequently 

Or, conversely, given the measured values of radiance as 

The first step, in either case, is to establish corresponding coordinates for ray 

position (point of intersection) and direction, between reference surfaces intersecting the 

beam at the two locations. We need to know, for all rays of the beam, the value of the 

coordinates of the point ~ 2 . ~ 2  and direction e2,$2 where a ray intersects the second 

reference surface when given the coordinates of the point xl,y1 and direction 01,41 

for the same ray where it intersects the first reference surface, or vice versa. While 

not trivial, a table or formula for providing these corresponding coordinates for the same 

ray is often not a very difficult problem. 

which adequate treatments should be readily available in texts and references on geometri- 

cal optics, so we won't go into it any further at this point. Particular situations will 

be covered in Part 111, when we go more thoroughly into applications. What concerns us 

now is that either set of coordinates, x1,y1,01,$1 or x2,y2,02,+2, unambiguously iden- 

tifies the same ray. Hence we may express any property of that ray in terms of either set 

of coordinates, or, even another set, as convenient. For example, we can express the 

radiance of a given ray at the second location as a function of the coordinates of that ray 

at the first location, L2(x1,y1,81,$1), and vice versa, L1(x2,y2,02,$2). Accordingly, 

In any event, it is a ray-tracing problem for 
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we’ll drop the subscripts from the coordinates and show them j.ust as 

the coordinates at any convenient reference surface that intersects the beam. 
the same set must be used consistently for all quantities relating to the same rays in a 

given expression in order to establish meaningful relationships. 

On this basis, we can write the propagance for a given ray, as a function of its 

x,y,O,$. They can be 

Of course, 

coordinates, from eq. (2.37), as 

(2.38) 

Then, if we know the exitent propagated radiance L (x,y,O,$) and the ray-path propagance 

7*(1,y,O,$), the incident initial radiance is 
P 

Conversely, when the incident radiance Li(x,y,O,+) and propagance T*(x,Y,~,$) are known, 

the exitent propagated radiance is found as 

Often the quantity that is finally desired is not the detailed distribution of radi- 

ance but the integrated total flux in the beam at the desired location. The corresponding 

expressions are the integrals of the quantities in eqs. (2.39) and (2.40), respectively. 

The integration is carried out over the area A containing all points of intersection x,y 
on the selected reference surface and over the solid angle w at each point x,y that 

includes the directions O,$ 

intersection. 

for all rays of the beam that pass through that point of 

Q Li(x,y,B,$)*T*(x,y,O,$).cosO*dw.dA [W]. (2.42) 
p a A w  

It should be reemphasized that these equations are based on the assumption that each pair of 

values of the radiances Li and L for the same ray (same value of x,y,9,+) exist at 

points of that ray where the refractive index is the same (in the same medium). If this is 

not the case, the transformations must be modified to take into account the different 

refractive indices at the two locations. ’ 

P 

’If n is the refractive index at the beginning of the propagation path, n the index 

at the end of the path, and n the index at the location of the intersecting reference 

surface for the coordinates x,y,8,$, these‘ relations become: 

i P 
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(2.37a) 

since, by the invariance of basic throughput, n 2*d0 = n 2-d0 Then 
P P i i '  

Qi = I [L (x,y,e,$)/T*(x,y,8,$)]*(n2/n 2)-cos8*dw-dA [W], and (2.41a) 

8 = j Li(x,y,B,$)*r*(x,y,B,$)-(n2/ni2)-cos8-dw*dA [Wl. (2.42a) 

A w  P P 

P A w  

SUMMARY of CHAPTER 2. In order to obtain an expression for the amount of radiant (luminous 

or photon) flux propagated along a ray, we first introduce radiance (luminance) as the com- 

plete distribution of optical radiation with respect to the spatial parameters of position 

and direction. 

through that point as (see figure 2.7) 

It is defined at a point on a reference surface in the direction of a ray 

(2.14) 

This quantity, radiance, is geometrically invariant along any ray, in the direction of the 

ray, in a uniform, isotropic, passive, lossless medium. Across smooth boundaries between 

different media, or in media with varying refractive index, it is the basic radiance 

(where n is the index of refraction at the point where the radiance is  L) that is 

similarly invariant along any ray. However, in the same medium (same refractive index), 

even after propagation through another, e.g., through an optical element of different index, 

just the radiance L is invariant (neglecting attenuation), with the same value in the 

direction of a ray at all points of the ray in that medium (e.g., air). 

L/n2 

The element of flux associated with a ray is given by 

(2.24) 

(2.29) 

where dO Z cos8.dw.dA [m2*sr] (2.28) 

is the element of throughput associated with the ray through the point x,y in the direc- 

tion e,$. The throughput element dO is also geometrically invariant along the ray at 

all points in the same medium (same index n). 

In order to evaluate the total flux 0 in a beam of radiation where it intersects 

some convenient reference surface, it is necessary to know the distribution of radiance 

over both the full area A,  and the solid angle w at each point of that area, that 
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include all of the rays that make up the beam. 

then, 

The total 

d = / / L(x,y,B,~).cosB*dw*dA [W]. 
A w  

flux in the intersecting beam is, 

(2.25) 

If that radiance distribution is known only at another reference surface, it can be trans- 
formed t o  the desired values through the invariance of (basic) radiance along each ray of 

the beam, taking into account also interactions with matter over the intervening propaga- 

tion paths that may attenuate or augment the radiance of each ray. Usually, the points of 

interest will both lie in the same medium (same refractive index; e.g., in air) where radi- 

ance is invariant, with no need to resort to basic radiance and refractive indices. Also, 

most radiation measurement situations involve direct paths through passive media where the 

only interactions are those that produce attenuation. For our purposes, the most conven- 

ient measure of the result of that attenuation is the propagance 

over the ray path from the point 

intersects a reference.surface in the direction eis$i, to the point x ,y , where the same 
ray intersects a second reference surface in the direction 

L (x ,y ,e ,$ ). Either set of coordinates x ,y ,e ,$ or x ,y ,e ,$ or even those at 

a third reference surface (also in the same medium--same index) that intersects the entire 

beam, may be used in eq. (2.36), so the subscripts have been dropped there. It is only 

necessary to use, consistently, for all quantities in the same equation, such coordinates 

that uniquely identify each ray by its point of intersection and its direction with respect 

to the same reference surface. 

xipyip where an incident ray, of radiance L (x ,y ,e ,$ ), i i i i i  

P P  
with propagated radiance 

ePp4P 

P P P P P  i i i i  P P P P )  

Given (1) the incident radiance distribution Li(xpy,~,$) at a reference surface, e.g., 

the surface of a source, and (2) the propagance 7*(x,y9e,$) of each ray over the path from 

its intersection with' the first reference surface to its intersection with a second refer- 

ence surface, e.g., the surface of a receiver, the transformation to the distribution of 
propagated radiance L (x,y,B,$) across the second reference surface is 

P 

(2 .40 )  

Conversely, if the propagated radiance distribution has been measured and the trans- 

formation back to the incident radiance distribution at the first reference surface is 

desired, it is 

(2 .39 )  

Finally, the corresponding transformations to obtain the integrated total flux in the 

beam at the second location, in each case, are, respectively, 
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and 

Oi = I I [L (x,y,B,$)/r*(x,y,B,$)];co~B*dw~dA [W]. A w  P 

(2.42) 

(2.41) 

It is assumed t h a t  both reference surfaces  are i n  t h e  same medium (same r e f r a c t i v e  index) as 
w e l l  as any t h i r d  reference surface t h a t  might be used f o r  the  ray coordinates i n  an unusual 

s i tua t ion .  I f  t h i s  is not the  case,  see eqs. (2.41a) and (2.42a) i n  the  footnote at  t h e  end 
of the  las t  paragraph preceding t h i s  Summary. 
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Chapter 3. Spectral Distribution of Optical Radiation 

by Fred E. Nicodemus and Henry J. Kostkowski 

In this CHAPTER. 

for specifying the distribution of radiation relative to wavelength and, at the same time, 

relative t o  position and direction. 
radiance and radiance, particularly in relation to geometrical invariance along a ray. 

Finally, we look at the way in which the total flux in a beam is evaluated from the distri- 

bution of spectral radiance. In the main, this is almost a duplication of the treatment in 

Chapter 2 except for the addition of the new variable. 

in much the same detail again for those who want it. 

directly to the summary at the end of the Chapter and use it to decide what, if any, details 

they need to review more fully in the body of the Chapter. 

SPECTRAL RADIANCE. In general, the optical radiation emitted by most sources, the propaga- 

tion over many paths, and the responsivity of many detectors, all can vary greatly with the 

spectral parameter, wavelength. 

(spectral) variations involved in a measurement is usually substantially greater than the 

effects of geometrical variations (variations in ray position and direction). An example 
of the degree of variation that can occur is seen in figure 3.1 which shows the spectral 

distribution of the radiation emitted by the central, uniform portion of a 2750-K tungsten 

strip lamp and the spectral responsivity of a frequently used photomultiplier detector. 

The radiance of the lamp increases by a factor of 7.5 from 450 to 800 [nm] while the 

photomultiplier responsivity decreases by a factor of 30 over that same interval. 

We develop the concept of spectral radiance. This is the basic quantity 

We examine the interrelationships between spectral 

However, we've spelled it all out 

Those who prefer to do so can skip 

The combined result of all such effects of wavelength 

In order to extend the concept of radiance SO that it also covers distribution with 

respect to wavelength, consider again the experiment illustrated in figures 2.2 and 2.3, 

lThe spectral parameter is commonly given in three different ways. 

v (=c/Ao) [THz], (2) wavelength A [nm], and (3) wave number 6 (=l/Ao) [cm-ll (where 

c % 3 ~ 1 0 ~  [mas-'] is the vacuum speed of electro-magnetic radiation, A, (Sn.1) [nm] is 

the wavelength in vacuum, and n The units shown are those 

typically used in each case, but they are not consistent. For v = CIA, to be in [THz] 

with A, in [nm], we must use c 3 ~ 1 0 ~  [km*s-l], and for u = l/Ao to be in [cm-'1 

it is obvious that A, must be given in [cm]. Incidentally, these wave-number units, 

widely used by spectroscopists, are called "reciprocal centimeters." 

is the basic spectral parameter, that remains unchanged as a ray passes through different 

media, we will follow common practice by expressing most spectral quantities in radiometry 

in terms of wavelength. 

there are also space-frequency spectra, referring to repeating patterns in the spatial dis- 

tribution of radiance, and modulation- or scintillation-frequency spectra, referring to 

frequencies f<<v [Hz] of variation in the'average radiant flux or power in a radiation 
beam. 

modifier, only to refer to the radiation parameters v,  A ,  and/or 6. 

They are (1) frequency 

is the index of refraction). 

Although frequency v 

Note, also, that the term "spectral," itself, can be ambiguous; 

We will consistently use "spectrum" or "spectra" and "spectral" alone , without a 
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where we found that the flux in the beam defined by two small apertures is given approxi- 

mately by 

(this time we use the "approximately equals" sign to clearly recognize that this is an 

approximation). Now, in this same experiment, we insert into the beam, one at a time, 

filters that are transparent (transmittance T = 1) only to certain desired wavelengths 

and are opaque (transmittance 'I = 0) to all other wavelengths, completely blocking them, 

as shown in figure 3.2. Of course, real filters can only approximate those ideal character- 

istics, but it's useful to make the assumptions for analysis to clarify the related concepts. 

With such a set of filters, of successively decreasing spectral intervals (bandwidths) AX 
about the same central wavelength A,, we find that the measured. flux A6 in the beam is 

now approximately proportional to the spectral-wavelength bandwidth as well as to the 

spatial factors, as before. Also, as with the spatial parameters, as the wavelength inter- 

val decreases, the proportionality becomes more exact. In fact, we find that, even though 

we are stopped again by the minimum amount of flux A6 required for any measurement to be 

made, it is once more analytically crseful to assume a continuous underlying distribution to 

which the limiting process of calculus is applicable. Accordingly, we assume that, when 

the spectral interval is made arbitrarily small, the proportionality is exact and the pro- 

portionality constant is called spectral radiance (more explicitly, spectral-wavelength 

radiance) and is denoted and defined as 

AX, 

These relations correspond to those in eqs. (2.5) and (2.6) and, like them, are important 

aids for many who find this approach to the concepts easier to understand. Later, however, 

for useful applications, we'll go back to the approach of eq. (2.12) and employ the equiva- 

lent expressions in terms of position and direction at a single location. 

From eqs. (2.6) and (3.1), it is clear that spectral radiance is the spectral distribu- 

tion' of radiance, the spectral concentration per unit wavelength interval as a function of 

lTbe CIE-IEC International Lighting Vocabulary [ 51 does not use the term "spectral radiance." 

Instead, it speaks of the value at a particular wavelength as a "spectral concentration of 

radiance" and of the spectral concentration as a function of wavelength as the "spectral 

distribution of radiance." However, we follow the widespread practice in this country in 

our use of the term "spectral radiance" for both of these quantities. 
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wavelength 

Accordingly, it provides a 

respect to wavelength and, 

means for specifying the distribution of optical radiation with 

at the same time, with respect to position and direction. Pur- 

thermore, by integrating both sides of eq. (3.2), the value of radiance in a wavelength 

band from X 1  to A2 is obtained as 

(3 .3)  

For example, the wavelength distributions of emitted radiation for three frequently used 

light sources are plotted on relative scales in figure 3.3. If the ordinate scales were 

adjusted to represent values of spectral radiance, the areas under each curve between 

limiting wavelengths A 1  and A , ,  i-e., the integrals of eq. (3.3) between those limits, 

would represent the emitted radiance in that spectral-wavelength band for each lamp. 

As with radiance, we want to define and work with spectral radiance as the property of 
a ray at its intersection with a reference surface (figure 2 .7 ) .  Again, recognizing that 

(AA2.cosO2)/D2 = Awl* is the solid angle1 in steradians [sr] subtended at AA1 by AA2, 

as shown in figure 2 . 6 ,  we.can rewrite eq. (3.1) as 

A A  + 0 

( 3 . 4 )  

The SI units for spectral radiance are often given as 

length (meter [m]) for wavelength as for other distances. However, it then appears, mis- 

leadingly, to be a volume concentration, which it certainly is not.' 

later that there is a radiometric quantity called "sterisent" that is correctly given just 

[W*m-3*sr-1], using the same unit of 

(In fact, we'll see 

lSee Appendix 2 for definition and discussion of the concept of solid angle. 

2Similarly, if the wave-number unit is given as the reciprocal meter 

spectral (wave-number) radiance La E dL/do would be [W.m-l.sr-l], rather than 

[W.m-'*~r-~-cm], 

with respect to area, solid angle, and wave number. An earlier footnote suggests that 

frequency v [TIIz] be regarded as the basic spectral parameter. From that standpoint, 

wavelength and wave number can be considered as indirect measures of frequency, rather than 

as lengths or reciprocal lenzths, per se, as further justification for treating them as 

having different dimensionality from other lengths. 

[m-'1, the unit of 

as we prefer it because it correctly suggests a simultaneous distribution 
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those units and is quite correctly treated as a volume concentration.) 

prefer to use a different length unit (also of more appropriate magnitude), the nanometer 

[nm], for wavelengths and thus make it easier to recognize and keep track of the different 

dimensionality of the spectral parameter in checks of unit-dimension consistency. 

Accordingly, we 

The fully explicit defining equation for spectral radiance, then, is 

(3.5) 

where 

x,y,e,# are defined, relative to the intersecting ray and surface element dA, in 

Lx(x,y,B,$,h) [W*m-2*sr-1*nm-1] is the spectral radiance at the point x,y in the 

d3@(x,y,B,$,X) [W] is the radiant flux through the surface element dA = dx*dy [m2] 

connection with eq. (2.13) (and figure 2.7); 

direction 0 , $  and at the wavelength X; and 

about the point x,y within the element of solid angle dw = sine*de*d@ [sr] 
in the direction e,$ and within the elementary wavelength interval dh [nm] 
about the wavelength A. 

GEOMETRICAL INVARIANCE of SPECTRAL RADIANCE. In the last chapter, considering only the 

spatial parameters of position and direction, we found that the basic radiance is 

invariant along any ray, in the direction of that ray, in lossless passive media: where the 

index of refraction may vary and where its value is n at the point where the radiance is 

L. The same is true for the basic spectral radiance Lv/n2 or La/n2, in terms of fre- 

quency v or wave number a, respective1y.l However, wavelengths depend on the refractive 

index of the medium, so that h(n) = ho/n where A(n) is the wavelength in a medium of 

refractive index n, and A, is the wavelength of the same ray in a vacuum. To see how 

this affects the invariance of the spectral radiance 

situation depicted in figure 2 . 9 .  We now assume that the incident ray contains only wave- 

lengths in an elementary spectral interval 

the incident spectral radiance 

7 

L/n2 

LA E dL/dX, let's go back to the 

dA1 = dXo/nl so that its radiance, in terms of 

Lh' is given by 

Similarly, the refracted radiance in the second medium, of index n2, is now given, in 

terms of the refracted spectral radiance L by 
A2' 

According to eq. (2.22),  these values of radiance are related by 

(3.7) 

(3.8) 

'See Footnote 2 on p. 4 9 .  
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in which we can substitute from eqs. (3.6) and (3.7) and cancel the common value of 

to obtain 
dho 

(3.9) 

The invariant or basic spectral-wavelength radiance, in terms of local wavelength X(n) in 

a medium of varying refractive index n, is, thus, LX/n3 (not LX/n2). Some workers, 

however, prefer to deal with this problem by expressing all spectral quantities in terms of 

vacuum wavelength A, = n*X(n) 
L /n2. 

wavelength as n(h) or n(Xo), the value of n that would make the basic radiance L/n2 

invariant depends on the spectral content of the radiance L = jLX-dX, 
along a ray. If the medium is highly dispersive, the variation of n with X can also 

significantly affect LA/n3, 

peratures. However, the basic spectral radiance in terms of A,, v ,  or u is L /n2, 

Lv/n2, 
instances. 

and then using the basic spectral radiance in the form 

Also, in a dispersive medium, where the refractive index varies significantly with 
A 0  

which may also vary 

although the discrepancy is insignificant in air at room tem- 

A 0  
or Lo/n2, respectively, and is geometrically invariant along each ray in all 

TOTAL FLUX in a RADIATION BEAM. 
ment of flux dQ(x,y,e,$,h) along a ray of spectral radiance LX(x,y,B,@,X) through an 

element of surface dA = dx-dy at its point of intersectgon x,y with the ray and within 

an element of solid angle 

within a spectral-wavelength element dh about the wavelength A .  It is 

From eq. (3.5), we can write the expression for the ele- 

dw - sin8.de-dg about the ray in the direction . e,+ and also 

dQ(x,y,B,4,X) - LX(x,y,8,$,A)*sine~dw*dA*dh 

= LX*dQ*dh [W], (3.10) 

the counterpart of eqs. (2.23) and (2.28), now also taking account of spectral-wavelength 

variations and functional dependence. Then, if we know the distribution of spectral radi- 

ance LX(x,y,B,4,X) over an area A that includes all points of intersection x , ~  between 

rays of a given beam and some reference surface, over a solid angle w at each point x,y 

that contains all directions 

over a wavelength interval AX that includes all wavelengths X for which there is a 

significant amount of spectral radiance,’ the total flux 

with the reference surface is given by 

e,@ for rays of the beam that pass through that point, and 

@ in the beam at its intersection 

Q = j 1 LA(x,y,~,4,h)*dh*cos8.dw.dA [W]. 
A w AA 

(3.11) 

lstrictly, the integration should cover all wavelengths A for which LX # 0. Also, use 

of the symbol A A  in no way implies that the interval is small; it may be of any size. 
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This is the counterpart of eq. ( 2 . 2 4 1 ,  to which the spectral-wavelength dependence has now 
been added. For a more completely explicit expansion of this triple integral, see the 
footnote below eq. (2.24) or Appendix 2. 

At the beginning of this Chapter, we called attention to the wide spectral variations 

that commonly occur. 

be a constant over a wide band of wavelengths. 

the radiance L = j LX(X)*dX 
uniform and isotropic) throughout a beam of radiation. Hence, even when there is a signifi- 

cant spectral variation, the relationships given in eqs. (2.25) through (2.33) may be appli- 

cable and are often useful. 

It is quite unusual for the spectral radiance LX(A) of a source to 

However, there are many situations where 

is a constant, to a useful degree of approximation (practically 
h 

TRANSFORMATION from KNOWN SPECTRAL-RADIANCE DISTRIBUTION to FLUX at ANOTHER LOCATION. We've 

already seen that detector response can be highly variable as a function of the spectral 

parameter, wavelength. The same is true of other interactions with matter that produce 

attenuation along a propagation path. Accordingly, eq. (2.36) must now be rewritten to 

define the spectral-directional propagance for a ray through the point 

e,$ and of wavelength X (at that point and in that direction) as 

x,y in the direction 

(3.12) 

Similarly, eqs. (2.37) and (2.38) become, respectively, 

and 

for the transformation from a known spectral radiance at one location to that at another 

location along the same ray when both points are in the same medium (same refractive index). 

Likewise, for the integrated total flux in the beam at the desired location, eqs. (2.39) 

and (2.40) become, respectively, 

and 

@ = 1 LX,i(~,y,B,@,X)*~*(~,y,8,@,X) *dX*cosO*dw*dA [W]. (3.16) 
P A w AX 

X,i 
L 

exists 

We reemphasize that these relations hold only when the point of incidence, where 

,P exists at the beginning of each ray path, and the point of exitence, where 

at the end of the ray path, are in the same medium (same refractive index). 

of the geometrical invariance of both the radiance and the associated element of throughput 

Also, because 
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I 
along each ray, the reference surface for the coordinates x,y,B,t$,X may be at either 

location, or even at a third location, as long as the same coordinates and the area 

the solid angle w ,  and the wavelength interval Ah (all containing only, and all, rays 

of the beam) are all consistently referred to the same reference surface at its inter- 

section with the beam. 

quantities are easiest to evaluate. 

A, 

Thus it is possible to choose the reference surface where these 

In the more general case, where the refractive indices at the points of incidence and 

exitence are not the same, the transformation must be based on the geometrical invariance 

of basic spectral radiance, taking into account those refractive indices, rather than on 

the invariance of spectral radiance as above. Otherwise, everything proceeds in the same 

way. It's all quite straightforward, but the expressions are longer and more complicated 

and they are seldom needed. 

REMAINING RADIATION PARAMETERS -- TIME and POLARIZATION. The spatial and spectral param- 

eters, which have now been covered, have traditionally received the most attention since 

their effects are almost always significant. 

the remaining parameters, time or frequency of fluctuation or scintillation, and polariza- 

tion, especially when an uncertainty of a few per cent or more is adequate. Accordingly, 

we will put off our discussion of the remaining parameters for a while and turn, next, to 

the measurement equation, to more about spatial distributions, to thermal radiation, and to 

photometry, But we strongly caution the reader that, in doing so, we definitely are not 

recommending this as the ultimate or correct approach for accurate measurements. 

conviction that many of the problems and inconsistencies that arise every day in connec- 

tion with optical radiation measurements can be traced to these remaining parameters, par- 

ticularly to polarization effects, that are too often ignored. 

order because we feel that it will be easier for the reader to grasp the new concepts when 

they are presented in this way. But we strongly emphasize that, until all of the param- 

eters are included, the treatment of the measurement equation and related topics must be 

regarded as only preliminary and incomplete. 

but the limitations on its usefulness must not be forgotten. 

SUMMARY of CHAPTER 3.  The distribution of optical radiation with respect to position, 

direction, and wavelength--the spectral-geometrical or spectral-spatial distribution--is 

spectral radiance 

On the other hand, we may often safely ignore 

It is our 

We present things in this 

It will have a substantial area of usefulness, 

or, more completely, 

(3.5) 

The spectral parameter of wavelength A [nm] may be replaced in these defining equations 

by the more basic spectral parameter of frequency v [THz], or by the other spectral 

parameters of vacuum wavelength A, [nm] and wave number u [cm-l], both of which also 
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remain constant during passage through different media (different refractive indices).' 

Like radiance L, spectral radiance LA is geometrically invariant along any ray, in 

the invariant basic spectral radiance depends on the spectral param- 

the direction of the ray, in an isotropic, passive, lossless medium. In media of varying 

refractive index n, 
eter. For frequency u, for wave number a, and for those who transform always to the 

vacuum wavelength A,, it is Lv/n2, Lain2, and L In2, respectively. However, for 
the spectral parameter of "local" wavelength A(n), where the refractive index is n, the 

basic spectral-wavelength radiance is L1/n3. 

10 

The element of flux associated with a ray of spectral radiance LA is given by 

d@(x,y,8 ,$, A) - LA(x,y,8 , $ , A )  *cosB-dw*dA*dA [W] 

= LA*dO*dX [W]. (3.10) 

The total flux in a beam, given the distribution of spectral radiance at its intersection 

with a convenient reference surface, is 

@ = 1 LA(x,y,B,~,A)*dA*cose*dw*dA [W]. 
A w A A  

(3.11) 

Except for the fact that the additional radiation parameters, time or frequency of modula- 

tion or fluctuation and polarization, have been ignored, eqs. (3.10) and (3.11) are general 

relations of wide validity. 

of refraction. 

In particular, they are not in any way dependent on the index 

For the simple transformations from a known spectral radiance or spectral-radiance dis- 

tribution for the rays of a beam at one location t o  the distribution or the integrated 

value of flux in the same beam at another location, based on the geometrical invariance of 

spectral radiance, it is necessary that both locations (both intersecting reference surfaces) 

be in the same medium (same refractive index). The transformation relations are: 

and 

@ ss 1 I I L (x,y,B,$,X).i*(x,y,B,$,A).dA.cose.dw.dA [W]. (3.16) 
P A w AA A ' i  

When the refractive indices at the two locations are not the same, similar but somewhat more 

complicated expressions must be used, based on the geometrical invariance of basic spectral 

radiance, taking into account those refractive indices. 

'See footnote on first page of Chapter 3.  
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Appendix 1. Units and Unit Symbols 

The base units of the International System (SI) are given in Table Al-1, which fol- 

lows Table 1 of [16], except that we have added the square brackets enclosing each unit 

symbol. That practice was adopted to emphasize the dimensionality of the units and the 

usefulness of that dimensionality in routine unit-dimension-consistency checks and anal- 

yses t o  cope with the great diversity of nomenclature in the literature on optical radia- 

tion measurements. 

Table Al-1 

SI Base Units 

Name Symbol Quantity - 
length . . . . . . . . . .  .meter. . . . . . . . . . . .  [m] 
mass . . . . . . . . . . . .  kilogram . . . . . . . . . .  [kg] 
time . . . . . . . . . . . .  second . . . . . . . . . . .  [SI 
electric current ampere [AI 

thermodynamic temperature . .  kelvin . . . . . . . . . . .  [K] 
amount of substance . . . . .  mole . . . . . . . . . . . .  [mol] 
luminous intensity . . . . .  candela . . . . . . . . . . .  [cd] 

. . . . . .  . . . . . . . . . . .  

Of the SI base units, the one of particular interest in the branch of optical radiation 

measurements known as photometry is the candela, defined officially as follows: 

candela is the luminous intensity, in the perpendicular direction, of a surface of 

1/600 000 square meter of a blackbody at the temperature of freezing platinum under a 

pressure of 101 325 newtons per square meter I13th CGPM (1967). Resolution 51." [16]. 

"The 
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Factor 

1018 

101 5 

10'2 

109 

106 

103 

102 

10' 

Prefix 

exa 

peta 

tera 

gigs 

mega 

kilo 

hecto 

d e b  

, *  

Table Al-2 

SI Prefixes 

Symbol Factor 

E 10-1 

P 10-2 

T 10-3 

G 10-6 

M 10-9 

k 10-12 

h 10-15 

da 10-18 

Prefix 

deci 

cent1 

milli 

micro 

nano 

pic0 

f emto 

atto 

Symbol 

d 

C 

m 

)1 

n 

P 

f 

a 

The names and symbols listed above are used, in combination with the names and sym- 

bols, respectively, of the SI units, as prefixes to form decimal multiples and sub- 
multiples of those units. 

the two recently adopted' prefixes "exa" and "peta" for 10l8 and 

(This table is based on Table 7 of [16] to which we have added 
respectively.) 

'See, for example, NBS Dlmensions, Vol. 59, No. 10, October 1975, p. 229. 
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Table Al-5 

Some Additional non-SI Photometric Units 

Unit - Symbol 

apos t ilb asb 1 
candela-second [ cd-s] 

SI Equivalent 

= r-’[ cd~m-~] - l[cd*s] 
footcandle [fc] = [1m-ft-2] - 10.764 [ lm*m-*] 
footlambert [fLl = r-’[~d*ft’~] = 3.426 [ cd-m’*] 
lambert [L] * r-’[~d*cm’~] = 104*r-1[cd*m’2] 

light-watt** [awl - IKill*[lm] % 680-’ [lm] 
phot [phl - l[lm*~m’~I - 104[im*m-2] 
stilb [sbl - l[cd*~m’~] - lo4 [cd~m-~] 

Quantity 

luminance 

ergolumic 
intensity* 

illuminance 

luminance 

luminance 

luminous flux 

illuminance 

luminance 

* The CIE [5] seems not to have any term for this quantity, nor does there seem to be any 
in general use other than the term for the units, although “beam-candlepower-second” is 
also used at times. 
posal [17]. 

**The light-watt [awl is related to the unit of radiant flux, the watt [W], by 

This term for the quantity is taken from Jones’ “phluometry” pro- 

760 

where 

V ( X )  [dimensionless] is the photopic spectral luminous efficiency [5,18], 

X [nm] is the wavelength, 

0 ( A )  [W-nm-’1 is a distribution of spectral radiant flux as a function of 

cPa [awl 
wavelength , and e,h 

is the luminous flux in light-watts of the radiation described by 
the spectral distribution 8 ( A ) .  

e,h 

The luminous flux, in lumens, in this same beam of radiation is given by 

where 

Km L 680 [lm*W1] at X 8 555 [nm] is the maximum spectral luminous 
efficacy (of radiation) [ 5,181 . 

Note that both the lumen and the light-watt are units of luminous flux. They have the 

same dimensionality and differ only by the numerical scale factor 

are approximately 680 

of the spectrum where 380 s X s 760 [nm]. 

lKmI % 680. There 

lumens per light-watt at all wavelengths in the visible region 
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Appendix 2. 

SPHERICAL COORDINATES (solid polar coordinates). In almost all optical radiation measure- 

ment situations, we are concerned with the flux through a reference surface that intersects 

a beam of radiation. 

surface, the direction of every intersecting ray incident from (or exitent into) the entire 

hemisphere above the plane tangent to the reference surface at that point. That is the 

plane containing the element of surface dA at the given point. The most useful coordinate 

system for this purpose is illustrated in figure A2-1. 

origin. The normal to dA at 0 is chosen as the polar axis for spherical coordinates 

or the Z-axis for rectangular coordinates. The tangent plane, containing the element dA, 

is then the X-Y plane. A straight line extending from 0 in some convenient direction 

in that plane is selected as the azimuth reference or X-axis. 

any point P in space, as shown in the figure, are then p,e,Q, where p is the length 

of the line OP, 0 is the polar angle between the line OP and the polar axis, and Q 

is the azimuth angle in the tangent plane between OP', the projection of OP on that 

plane, and the azimuth reference (the X-axis). The corresponding rectangular coordinates 

of P are x,y,z, where 

Spherical Coordinates and Geometrical Relationships 

We need coordinates for specifying, at each point of that reference 

The given point 0 is taken as the 

The spherical coordinates of 

x = p.sine*cos@, 

y = p-sine-sinQ, and 
= P-COse, 

so that 

(A2-1) 1 
(A2-2) I 

Usually, we are concerned only with the direction of a ray rather than the coordinates of 

a particular point on the ray. The direction of the ray through 0 and P is specified 

by just the two angles e,$. Also, when they are often confined to the hemisphere above 

the tangent plane, 0 5 8 5 1112 [rad] and 0 5 @ 5 2n [rad]. 

A SOLID ANGLE. One of the best ways to grasp the concept of a solid angle is by analogy 

with the corresponding features of the more familiar plane angle. 

with a brief look at plane angles. 

Accordingly, we'll start 

A plane angle, formed by two straight lines that meet at a point, the vertex, is 

defined as the locus of all directions that may be occupied by either line as it is rotated 

about the vertex to bring it into directional coincidence with the other line. For example, 

in figure A2-2. the lines OA and OB form the angle 0 at the vertex 0. That is the 

angle filled by all of the intermediate positions that could be occupied by either line as 

it is rotated about 0 to bring it into coincidence with the direction of the other line. 

Note that the acute angle 8, as shown, is covered by the most direct sense for such 

rotation. However, these lines also define an exterior obtuse angle of (360 - e) [deg] 
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X 

Figure A2-1. Spherical and rectangular 
coordinates of P ( p , e , g )  = P(x,y,z) 

63 



0 
0 

0 

0 

0 
C /  

D F' 

. . w  'I 
A 8  

F 

0 0'1 
A, 0 ' I  \ 

6 

Figure A2-2. The same plane angle 0 is subtended at  0 by: 

1. the circular arc CD, 

2 .  the straight l i n e  EF, 

3 .  the curve E ' F ' ,  
4. the plane figure E'IF''. 
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o r  (2% - 0) [rad] i f  t he  ro t a t ion  is i n  the opposite sense [ the u n i t s  are defined i n  the  

next paragraph]. 

The length of each l i n e  is immaterial, j u s t  so i t ' s  long enough t o  be a s t r a igh t - l i ne  

segment. 
draw the  tangent t o  each curve a t  the  point of i n t e r sec t ion ,  t he  vertex.  The angle between 

t h e  curves is then the  angle between t h e  tangents. Hence, i t  is a l s o  the angle between the  
in f in i t e s ima l  elements of the curved l i n e s  a t  t h a t  point. 

s t r a i g h t  l i n e  OB i n t e r s e c t s  a transverse s t r a i g h t  l i n e  a t  F, a c i r c u l a r  arc a t  D, an 
i r r egu la r  curve a t  F', and the  extreme point of a plane f igu re  a t  F". The upper s t r a i g h t  
l i n e  OA is too shor t  t o  meet any of these same l i n e s  o r  t he  plane f igu re ,  but i ts  exten- 

s ion i n t e r s e c t s  t he  l i n e s  a t  E, C, and E ' ,  respect ively,  and is tangent t o  the  plane 
f igu re  a t  i ts  other  extremity a t  E". Then we can say t h a t  the angle 8 i n t e rcep t s  the 

l i n e  segments EF, CD, and E'F' and j u s t  encloses o r  contains the  plane f igu re  E"F". 
Conversely, t he  l i n e  segments and t h e  plane f igu re  a l l  subtend the  same angle 8 at 0 .  

In  pa r t i cu la r ,  the c i r c u l a r  arc CD has its center a t  0, so its length is a measure of 
t he  angle 8. In  radians [ r ad ] ,  t he  s i z e  of the angle is given by the  r a t i o  of t he  length 
of the  arc CD t o  its radius  OC o r  OD: 

I n  f a c t ,  an angle is  a l s o  formed when two curved l i n e s  meet i f  i t 's possible t o  

In  f igu re  A2-2, t he  lower 

e = CD/OC [rad]. (A2-3) 

The magnitude of t he  same angle i n  ( c i r cu la r )  degrees [deg] is given by 

A s o l i d  angle is s imi l a r ly  formed a t  a point,  a l s o  cal led the  ver tex,  by a conical sur- 

face o r  -. 
(i.e., is t he  locus of those l i n e s )  t h a t  extend from the ver tex point t o  a point on some 
closed, simply-connected curve i n  space t h a t  does not pass through the vertex.  
"curve," using the  term i n  its broadest sense, may include s t r a igh t - l i ne  segments and dis-  

continuous changes of d i r ec t ion  o r  angles. It is only required t h a t ,  s t a r t i n g  from any 
point on the "curve" and t ravel ing along i t  f a r  enough i n  e i t h e r  d i r ec t ion ,  you r e tu rn  t o  

the  s t a r t i n g  point a f t e r  passing once, and only once, through every other point on the  
"curve." 

form a polygon, t he  "cone" is a pyramid. 
on the  a x i s  of a cy l ind r i ca l  op t i ca l  system, with c i r cu la r  o p t i c a l  components, the so l id  
angle formed a t  the focus is  bounded by a r i g h t  c i r c u l a r  cone and a so l id  angle is very 

o f t en  so depicted. 
c i r cu la r  cone. 
which, as w e  have j u s t  seen, can be formed a t  the  ver tex of a pyramid, o r  of t he  conical 
surface formed by the s t r a i g h t  l i n e s  joining the ver tex t o  a closed curve of almost any 
shape (see f igu re  A2-3). 

Like a plane angle, a s o l i d  angle can be defined as a locus of direct ions;  i t  is the  

The cone, i n  turn,  is the  surface t h a t  contains a l l  possible s t r a i g h t  l i n e s  
7 

Such a 

In  pa r t i cu la r ,  when the  "curve" i s  made up e n t i r e l y  of s t r a igh t - l i ne  segments t h a t  
On the  other hand, when a pencil  of rays  converges 

I n  f a c t ,  speaking loosely,  we o f t en  say t h a t  the so l id  angle is a r i g h t  
However, t he re  is r e a l l y  no such l imi t a t ion  on the concept of a so l id  angle 
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Figure A2-3. A so l id  angle. 
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locus of all directions lying within the defining cone. 

there are always two possibilities: the acute interior solid angle and the obtuse exterior 

solid angle. However, unless the contrary is stated, it is usually assumed to be the acute 

interior solid angle. 

Also, just as with a plane angle, 

Any plane through the vertex of a solid angle that intersects the cone enclosing the 

solid angle will do so along two straight lines that meet at the vertex to form a plane 
angle. Thus, we can consider figure A2-2 as depicting such an intersection with a solid 

angle having its vertex at 0 and with the points A and B lying on the closed curve in 

space that defines the bounding cone and, accordingly, does not pass through 0. Then the 

straight-line segment EF represents a plane area, the arc CD a spherical-surface area, 

the line segment E'F' an irregular surface area, and the plane figure E"P" a section 

through an irregular solid object, all of which subtend the same solid angle w at 0 .  

The measure of a solid angle is sometimes confused with the solid angle itself. The 

solid angle is that which exists at the vertex, regardless of the extent of the bounding 

conical surface, just as a plane angle can be formed at a vertex by very short straight-line 

segments, or even infinitesimal line elements. The measme of the solid angle, on the other 
hand, is provided by the area intercepted by the bounding cone, or its extension beyond the 

defining curve if necessary, on the surface of a sphere centered at the vertex, just as the 

plane angle is measured by the intercepted arc of a circle centered at its vertex. The 

magnitude of a solid angle w in steradians [sr] is just the ratio of this intercepted 

spherical-surface area As to the square of the radius p of the sphere: 

A SOLID ANGLE in SPHERICAL COORDINATES. To express a solid angle w in spherical coordi- 

nates, we will start, first, with just an element of solid angle dw. In figure A2-4, we 
show the angle 0 increased by an infinitesimal element de and the angle $ similarly 

increased by de. The point P, always at the same distance p from the origin 0 ,  moves 

over the surface of a sphere of radius p .  The element of angle de intercepts an arc of 

length pad0 on the spherical surface. The element de, however, represents rotation 

about the polar or Z-axis. Hence, the point P does not move on a great circle. Instead, 

it follows an element of arc of radius pasin0 (the projection of OP, of length p ,  onto 

the X-Y plane, or onto a plane parallel to the X-Y plane through PI. The length of that 

circular arc on the spherical surface is 

sin0*d$ [rad] at the origin 0. Two pairs of these elements of arc enclose the element of 
spherical-surface area dAs = p*-sine.de-d$, as shown in the figure. The element of solid 

angle dw, subtended at the origin 0 by that area element Us is, by eq. (A2-S), 

p*sin0*d$, and it subtends an element of angle 

dw - dAs/p2 sin0*d0*d$ [sr]. (A2-6) 

It is also clear, since each of the angle elements d0 and sinead$ is in units of 

radians [rad], that their product is in units of square radians [rad2], just as the 
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/ 
L p  sin 8 

Figure A2-4. An element of solid angle 

dw = dAs/p2 = sine-de=d$ 

68 



corresponding arc lengths p*d0 and p*sine*d@, each in meters [m], have a product 

dAs = p2*sin0*d0*d~ that is an area in square meters [m2]. Thus, a steradian [sr] is 
a square radian [rad2]. 

Although the relationship between radians and degrees, as plane-angle units, is famil- 

iar enough SO that most people feel they understand it, there is confusion about their 

dimensions. In the case of a solid angle, similar confusion exists concerning dimensions 

and, furthermore, concerning the relationship between steradians and square degrees. Moon 

and Spencer 1191 have made a helpful suggestion, that we recognize the orthogonality of 
direction between radial lengths and transverse lengths by designating their dimensions as 

[Lr] and [Lt], respectively. Then a plane angle has the dimensions [Lt*Lr”] rather 

than being a dimensionless ratio as in the usual treatment. The distinction may not seem 

too important when the same length units are used for both the arc and the radius to eval- 

uate the size of an angle in radians as the quotient of these two quantities. However, if 

we measure the arc in smaller units, equal to 

unit for the radius, the quotient will be the size of the same angle in degrees. 

this one step further, we can now relate the unit of solid angle, the steradian or square 

radian, to the square degree quite simply through this same relationship, since we have 

established the equivalence of a steradian and a square radian. 

n1180 % 1.745 329 x lo‘* times the length 

Carrying 

l[degl = (n/l80)[rad] 1.745 329 x 10‘2[rad] (A2-7) 

l[deg21 = (~/18O)~[rad~] - (n/180)2[sr] 

% 3.046 174 x 10-4[sr]. (A2-8) 

Incidentally, the usefulness and validity of the treatment based on the suggestion by 

Moon and Spencer is well brought out by the way in which it clarifies the confusion about 

the dimensions of work or energy and of torque or moment, something that bothers almost 

every physics student when first introduced to dimensional analysis. 

above, work or energy has the dimensions of force times colinear length--either 

[Ft*Lt] --while torque or moment has the dimensions of force times orthogonal length-- 

usually [Ft*Lr], 

plane angle. 

which is gratifyingly self-consistent. 

In the notation used 

[Fr*Lr] or 

But work or energy is generated when a torque or moment acts through a 

[f *L ]*[Lt*Lr-l] = [Ft*Lt], Dimensionally, that situation is described by t r  

So much for the digression into units and dimensions. We obtained the expression for 

the element of solid angle in spherical coordinates in eq. (A2-6). 

quantity over the appropriate limits then provides us with a general expression for any 

solid angle in spherical coordinates: 

The integral of that 

For example, it is often useful to have the expression for the solid angle at the vertex of 

a right circular cone of half-vertex angle If we choose the polar axis along the axis eh. 
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of the cone and the origin at the vertex, as in figure A2-5, it is easy to see that 

2n oh 
0 a lo Io sine*de*d$ = 2*(1 - coseh) = 4n*sin2(eh/2) [sr]. (A2-10) 

= n/2 [rad], coseh = 0, and Sin(eh/2) a lffi, 
'h. 

For a hemisphere, 

so that 

w hemisphere - 2n [srl 2 2.062 648 x lo4 [deg2] 

and 

w = 4n [srl 2 4.125 296 x lo4 Ldeg21. sphere 

(A2-11) 

(A2-12) 

Finally, we want a general expression for the element of solid angle dwI2 [sr] sub- 

tended at a surface element dA1 by an arbitrarily oriented surface element dA2 [m2] at 

a distance of D [m]. This situation is illustrated in figure A2-6, where dA2 is shown 

with its normal making an angle 

evident in the figure that the solid-angle element dw12 subtended at dA1 by dA2 inter- 

cepts an area element dA2ecose2 on the surface of a sphere of radius D about dA1. 
Then, from eq. (A2-5), we can write immediately 

82 with the line joining the two area elements. It is 

dw12 (dA~*cos6~)/D~ [sr]. (A2-13) 

Up to this point, we have considered only the simplest form of solid angle where the 

cone enclosing the angle is determined by a simply-connected curve. However,' two or more 

such simple solid angles can be combined in various ways to produce much more complicated 

angles. For example, as illustrated in figure A2-7, the solid angle filled by converging 

rays at the focus of a Cassegrain-type optical system is a "hollow" cone. There are con- 

verging rays only within the solid angle between two coaxial right circular cones; there 

are none within the smaller inner cone. 

A PROJECTED SOLID ANGLE. 

element of flux through an element of projected area cosO*dA and an element of solid 

angle dw. There, the obliquity factor cos0 is clearly associated with the element of 

area dA. However, when we obtain from this definition the expression for the flux in an 

entire beam, eq. (2.25), particularly in the case of uniform isotropic radiation, with con- 

stant L throughout the beam, and no vignetting so that the integrals are separable, as in 

eq. (2.30), it is convenient to associate the obliquity factor cos 8 ,  instead, with the 

element of solid angle dw as cose-dw = cose*sine*de*d$. We have followed Jones [16] in 

calling 

In Chapter 2, we defined radiance in eq. (2.14) in terms of the 

(2.31a) 

the prolected solid angle associated with the solid angle 

(and is sometimes so-called), with the obliquity factor 

w. 
cos6 

It is a weighted solid angle 

as the weighting function. 
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Figure A2-5. A right circular cone 
about the polar axis ,  
with half-vertex angle Oh. 
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y- Plane tangent to  
\ sphere Sphere of radius 0 

-d Normol to dA9 

Figure A2-6. An arbitrarily oriented surface element dA2 subtends 

a solid-angle element dw12 at dA1 at a distance D. 

dw12 = ( ~ A ~ * c o s ~ ~ ) / D ~  [sr]. 

i 
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The name is suggested by the analogy with an element of projected area 

while the projection of an area onto another surface can be constructed so that there exists 

an area that is the projected area, don't try to picture or visualize anything similar for 

the projected solid angle. It doesn't exist in that sense, although there are at least two 

geometrical constructions for the measure of a projected solid angle that can be very help- 

cose-dA. However, 

ful. 

The first of these has been called Nusselt's 

cites Seibert [22] who published in the same year 

cites a much earlier publication by Wiener [24]. 

tion of how badly scattered and disjointed things 

construction 1201 by Jakob [21], who also 

as Nusselt [20]. However, Gershun [23] 

This, incidentally, is a good illustra- 

can be in the literature on optical radi- 

ation measurements. 

ure A2-8, a hemisphere of unit radius above a surface element 

cal elevation and in horizontal plan view. 

hemisphere is labelled 

that it subtends at dA at the center of the hemisphere. The rectilinear projection of 

that,spherical-surface area element onto the circular base of the hemisphere in the tangent 

plane containing dA is, in turn, labelled dn - cos8-dw [sr], its area being equal to 

the projected solid angle in steradians. The sides of that element of projected area on 

the base are also shown to be cosO*de [rad] radially and sine*d$ [rad] in the orthogonal 

direction. 

Wi'ener's construction is presented in figures A2-8 and A2-9. In fig- 

dA is shown both in verti- 

A n  element of spherical-surface area on this 

dw because its area is equal to the element of solid angle dw [sr] 

Figure A2-9 shows, similarly, how the conical projection of an irregular object onto 

the surface of the unit-radius hemisphere is equal in total area to the solid angle 

steradians, subtended by that object at dA at the center of the hemisphere. Also, since 

the relationship shown in figure A2-8 holds for every element dw of the entire spherical- 

surface area w, the rectilinear projection of that entire area onto the base of the hemi- 

sphere is equal in area to the total projected solid angle B f cose*dw in steradians 

subtended at dA by this same object. In fact, the relationship holds for the complete 

hemisphere of 2r [sr] solid angle (the area of the unit-radius hemispherical surface). 

The corresponding projected solid angle in steradians is equal to the area of the projec- 

tion of the hemisphere onto the plane of 

is II [sr]. 

w, in 

w 

dA -- the full unit-radius circular base -- which 

We can verify that last result analytically. First, we need the general expression for 

'h the projected solid angle at the vertex of a right circular cone of half-vertex angle 

with its axis normal to dA. Again, as in figure A2-5, we choose the polar axis along the 

axis of the cone and the origin at the vertex to write for the projected solid angle 

2n e 
n = 1 hcos8*sin€I*de*d+ = (n/2)*(1 - cos2eh) 

(A2-14) 

For the full hemisphere, Bh - r/2 [rad], cos2Bh = -1, and sineh = 1, 
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2 2 p - d w =  p -sine-de-d,#, 
= element of ore0 on surface 

= d o  [sr) for p = l  
of sphere of radius P 

p 2 * d Q =  p2*cos8.dw 
=p2 * s i n 8 . c o s 8 - d 8 - d +  
= projection of area ele- 

ment on base of hemi- 

= dO [sr] for p = l  

Figure A2-8. Geometrical construction for measures of an element of solid angle 

dw and an element of projected solid angle dQ. 

dw Z sinO-dO*d+; dQ 5 cose-dw S cose-aine*de*d+ 
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A Measure of the 
SOLID ANGLE SUBTENDED AT 0 

=CONICAL PROJECTION OF OBJECT 
ON SURFACE OF SPHERE 
OF UNIT RADIUS ( p = l )  

A Measure of the 

' = j j c o s e  -sine [sr] 

F w ON BASE OF HEMI- 
= RECTILINEAR PROJECTION 

PHERE (plane of dA) 

Figure A2-9. Wiener's construction for measures of the solid angle w and the 
projected solid angle Ci subtended at dA by an irregular object. 
P is an arbitrarily chosen point on the object; P' is its pro- 
jection (conical) on the unit-radius hemisphere above dA; and P" 
is the projection (rectilinear) of P' on the base of the hemisphere 
(plane of dA). 
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so that 

'hemisphere = IT [sr] 2 1.031 324 x lo4 [deg'], (A2-15) 

in agreement with the conclusion from Wiener's construction. 

Wiener's construction provides valuable insight into the relationships between solid 

angles and the corresponding projected solid angles and facilitates analytical computations. 

It has also been the basis for analog computers to evaluate projected solid angles or the 

related configuration factors (angle factors, view factors, etc.) in illumination and heat- 

transfer engineering [25]. (The relationships between projected solid angles, throughputs, 

and configuration factors, etc. , are discussed in Appendix 3 l . I  

while not as useful for computations, may seem somewhat more satisfying and mathematically 

elegant, since it involves an area intercepted by the cone of the solid angle itself rather 

than a second projection, as in Weiner's construction. 

A second construction, 

The unit-diameter tangent sphere construction is illustrated in figure A2-10. A unit- 

diameter sphere is constructed tangent to the surface element dA at the origin 0 .  Its 

center C, accordingly, lies on the normal to dA (the polar axis) midway between dA and 

the point where the unit-diameter sphere is also tangent to the unit-radius hemisphere about 

0. The elementary cone, subtended at 0 by a remote surface element dS at P, inter- 

cepts an element of area dw [p2*dw, where p = 11 on the surface of the unit-radius 
hemisphere at P', as before. It also intercepts an area da = dw*cos0 - dQ at P" on 

the surface of the unit-diameter sphere [da = 4r2*cos9*do, where r = 1/21, an area that 
is numerically equal to the subtended projected solid angle. This relationship holds true 

for every element of solid angle in the entire hemisphere above 

for the integrated total projected solid angle subtended at dA by a more extended body or 

surface. Again, we can verify its validity for the projected solid angle of the entire 

hemisphere. This would be numerically equal, in steradians, to the total surface area of 

the unit-diameter sphere: 

dA, so it is also true 

= 4nr2 for r 5 1.12 

= n [sr]. 

' hemisphere 
(A2-15a) 

The unit-diameter tangent sphere construction is based on some relations that appear 

to have been first worked out by Sumpner [26] and have been summarized, more recently and 

accessibly, by Nicodemus [27]. 

texts and papers on illumination and heat-transfer engineering as something that is rather 

widely known and we have not succeeded in finding any citations or references that help to 

establish who first devised and published it. 

OTHER SOLID-ANGLE MEASURES and/or 'APPROXIMATIONS. 
a solid angle or projected solid angle, when it represents the "light-gathering power" of 

This construction is used or referred to in a number of 

There are two commonly used measures of 

lAppendix 3 will appear in a subsequent Technical Note along with Chapter 4. 
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Figure A2-10. Measures of an element of solid angle dw and an element of projected 
solid angle dn (unit-diameter tangent sphere construction). 

dw - sine-de-d$ = cos€~-da/(2r*cose)~ - da/(4r2*cosB). 

If 1: = 1/2 and p - 2r '1, then 

da = case-dw - do. 



an optical system or, more exactly, the solid angle or projected solid angle subtended at 
the focus by the converging pencil of rays. 

tended by the edges of the exit pupil, usually a right circular cone. 

half-vertex angle Oh, the two quantities are: 

That pencil is contained within the cone sub- 

For such a cone of 

1. the numerical aperture: N.A. 1 n-sin8 [dimensionless], h 
where n is the refractive index of the medium, and 

2. the relative aperture or f-number: 

(A2-16) 

f/# 3 (2*sinOh)-l [dimensionless]. (A2 -1 7) 

The popular definition of f-number as the (effective) focal length of a lens divided by its 

diameter would lead to the approximation 

optical systems (that satisfy Abbe’s sine condition [14,28]), the height h of an incident 

axial ray above the axis is given by h - fasine, where f is the effective focal length 

and 8 the angle the ray makes with the axis at the focus. Then for the extreme ray, 

f/# = f/2h = (2osinO ) - I  for the maximum value of h and the corresponding 8 - Oh. These 
h 

two measures are related to the projected solid angle as follows: 

f/# 5 (2.tanO )-’. However, in well-corrected h 

n = r*sin2eh = n*[4(f/t)21-1 = r*(N.A.)2*n-2 [srl. (A2-18) 

A common approximation to a solid angle w or a projected solid angle 0, with ref- 

erence to the angular field of an optical system, is the.area of the field stop or exit 

window in the focal plane divided by the square of the focal distance, which reduces to 

SI 2 r-tan20h [sr] 
express the solid angle, or projected solid angle, as r*eh2 [sr]. When 8 is given in 

degrees, rather than radians, this last approximation also yields a value in square degrees. 

in terms of the half-field angle Oh [rad]. Another approximation is to 

h 

Table A2-1 lists the values of each of the foregoing measures or approximations along 

with the corresponding values of projected solid angle Q [sr] for the same values of half- 

vertex angle Bh over the range 0 s €Ih 5 r / 2  [rad] or 0 s Oh 5 90 [degl. The percentage 

of each approximation with respect to the projected solid angle R is also given. 

The range of validity of a particular approximation can be estimated from the table, or 

it can be evaluated directly. For example, to establish the range for using the approxima- 

tion R % rat3 without exceeding a given error of, say one per cent, set h 

h’ n - n - 8  = -0.01.n or *-e 2 = (~.oI)*R = (1.01)*x*sin2e 

Oh = (1.01)’asinO = (1.004 987 562).sinOh, 

Bh = 0.1727 [rad] = 9.895 [degl. 

h h 

h hence 

so that 

Accordingly, rounding off conservatively, the approximation 

within one per cent for O 5 0.172 [rad] or Oh 5 9.89 [deg]. 

R 2 n*Oh2 will be accurate 

h 
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NBS TECHNICAL NOTE 910-1 -- ERRATA 
Reverse o f  Title Page, last line of footnote: 

p r i c e  should be given as $2.10. 

p. 8, next to last line: 
"directed" should read "detected". 

p. 1 1 ,  Figure 2.1: 
ribbon f i lament  should be extended downward so t h a t  po in t  1 

is a t  t h e  middle of t h e  f i lament .  

p. 21 , last line of footnote: 
f i r s t  word should be "wish" (not "with"). 

p. 25, 2nd line of eq. (2.15): 
i n s e r t  81 so t h a t  it reads: 'I= Ll*cosel*dAl*cose2=d~/D2 [W] ,". 

p. 32, eq. (2.24): 
i n s e r t  mu l t ip l i ca t son  dot  between do and dA. 

p .  32, 2nd line after eq. (2.24): 
i n s e r t  "e" i n  "includgs" . 

p.  52, 1st line of eq. (3.10): 
change "sine" t o  "cos'e" . 

p. 52, 1st line after eq. (3.10): 
change "eqs. ( 2 . 2 3 )  and (2 .28 )"  t o  "eqs. ( 2 . 2 4 )  and ( 2 . 2 9 ) . "  

p. 53, 1st and 3rd lines: 
change "eq. ( 2 . 2 4 ) "  to '  "eq. ( 2 . 2 5 ) " .  

p. 53, line 9: 
change "eqs. ( 2 . 2 5 )  through (2 .33 )"  t o  "eqs. ( 2 . 2 4 )  through ( 2 . 2 9 ) " .  

p. 69, next to last line of paragraph following eq. (A2-8): 
change ''ft1' t o  read "Ftl1. 
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