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PREFACE 

This is the third in a series of Technical Notes (910- ) entitled "Self-Study Manual 
on Optical Radiation Measurements." It contains the sixth chapter of that Manual. Inad- 
vertently, this chapter has been completed before chapters 4 and 5, which are nearly ready 
for publication in NBS TN 910-2. Chapter 4 ,  "More on the Distribution of Optical Radiation 
with Respect to Position and Direction," deals with all of the radiometric quantities of 
Table A1-3 in Appendix A of NBS TN 910-1 that were not covered in detail in the first three 
chapters. Chapter 5, "The Measurement Equation," introduces the central topic that ties 
together our entire treatment of optical radiation measurements. 
concept is introduced by deriving the appropriate measurement equations for three different 
illustrative problems. 
call for us next to turn to one or two chapters in Part 111--Applications. We feel that we 
now have established enough of the fundamentals to be able to usefully deal with some 
specific applications, the topic in which we realize many readers will be most interested. 

The measurement-equation 

All of these chapters are still in Part I--Concepts, but our plans 

For background information on the whole project and on the plans for the "Self-Study 
Manual" (SSM), we reproduce here (immediately following) the Preface to the first Technical 
Note 910-1, of March 1976. 
individual chapters are still developing, our principal aims and overall plans are still 
as set forth in that Preface. 

Although the exact details of the outline and plans for the 

Here, in chapter 6 of Part I, we are primarily concerned with establishing the E- 
cepts needed to deal with polarization in relation to radiometry (the measurement of 
optical radiation). 
concerned primarily with polarization phenomena, and we have not tried to compete with them. 
This is not a treatise on polarization phenomena, as such, but only on as much about them 
as is needed to deal adequately with the measurement of power propagated in the form of 
optical radiation -- with radiometry. To our knowledge, this is a topic that has not 
previously been treated in the literature. 

There already exist excellent treatments of polarization that are 

We are grateful to many for valuable comments and criticisms received, both informally 
as well as in formal reviews, concerning all phases of the SSM. In connection with this 
polarization chapter, we are particularly indebted to Drs. Jean M. and Harold E. Bennett 
of the Michelson Laboratory, Naval Weapons Center, China Lake, California, and 
Dr. Elio Passaglia of NBS for helpful discussions and critical reviews. 
has again done an outstanding job of typing a difficult text. 

Mrs. Betty Castle 

Fred E. Nicodemus, Editor 

Henry J. Kostkowski, Chief, 
Optical Radiation Section 

PREFACE to NBS TN 910-1 

This is the initial publication of a new series of Technical Notes (910) entitled 
"Self-Study Manual on Optical Radiation Measurements." 
ters of this Manual. Additional chapters will be published, similarly, as they are com- 
pleted. The Manual is being written by the Optical Radiation Section of NBS. In addition 
to writing some of the chapters, themselves, Fred E. Nicodemus is the Editor of the Manual 
and Henry J. Kostkowski, Chief of the Section, heads the overall project. 

It contains the first three chap- 

In recent years, the economic and social impact of radiometric measurements (including 
photometric measurements) has increased significantly. Such measurements are required in 
the manufacture of cameras, color TV's, copying machines, and solid-state lamps (LED's). 
Ultraviolet radiation is being used extensively for the polymerization of industrial coat- 
ings, and regulatory agencies are concerned with its effects on the eyes and skin of 
workers. On the other hand, phototherapy is usually the preferred method for the treatment 
of jaundice in the newborn. Considerable attention is being given to the widespread utili- 
zation of solar energy. These are just a few examples of present day applications of opti- 
cal radiation. Most of these applications would benefit from simple measurements of one to 
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a few per cent uncertainty and, in some cases, such accuracies are almost essential. But 
this is rarely possible. Measurements by different instruments or techniques commonly dis- 
agree by 10% to 50%, and resolving these discrepancies is time-consuming and costly. 

There are two major reasons for the large discrepancies that occur. One is that opti- 
cal radiation is one of the most difficult physical quantities to measure accurately. 
Radiant power varies with the radiation parameters of position, direction, wavelength, time, 
and polarization. The responsivity of most radiometers also varies with these same radia- 
tion parameters and with a number of environmental and instrumental parameters, as well. 
Thus, the accurate measurement of optical radiation is a difficult multi-dimensional prob- 
lem. The second reason is that, in addition to this inherent difficulty, there are few 
measurement experts available. Most of the people wanting to make optical radiation 
measurements have not been trained to do so. Few schools have had programs in this area 
and tutorial and reference material that can be used for self-study is only partially avail- 
able, is scattered throughout the literature, and is generally inadequate. Our purpose in 
preparing this Self-study Manual is to make that information readily accessible in one place 
and in systematic, understandable form. 

The idea of producing such a manual at NBS was developed by one of us (HJK) in the 
latter part of 1973. Detailed planning got under way in the summer of 1974 when a full- 
time editor (FEN) was appointed. The two of us worked together for about one year devel- 
oping an approach and format while writing and rewriting several drafts of the first few 
chapters. 
of the Manual. 
uted, along with a questionnaire, for comment and criticism to some 200 individuals repre- 
senting virtually every technical area interested in the Manual. About 50 replies were 
received, varying widely in the reactions and suggestions expressed. Detailed discussions 
were also held with key individuals, including most of the Section staff, particularly 
those that will be writing some of the later chapters. In spite of the very wide range of 
opinions encountered, all of this feedback has provided valuable guidance for the final 
decisions about objectives, content, style, level of presentation, etc. 

These are particularly important because they will serve as a model for the rest 
During this period, a draft text for the first four chapters was distrib- 

In particular, we have been able to arrive at a clear solution to difficult questions 
about the level of presentation. Both of us started out with the firm conviction that, 
with enough time and effort, we should be able to present the subject so that readers with 
the equivalent of just elementary college mathematics and science could easily follow it. 
That conviction was based on our experience of success in explaining the subtleties of 
radiometric measurements to technicians at that level. What we failed to consider, how- 
ever, was that, in making such explanations to individuals we always were able to relate 
what we said to the particular background and immediate problem of the individual. That's 
just not possible in a text intended for broad use by workers in astronomy, mechanical 
heat-transfer engineering, illumination engineering, photometry, meteorology, photo-biology 
and photo-chemistry, optical pyrometry, remote sensing, military infrared applications, etc. 
To deal directly and explicitly with each individual's problems in a cook-book approach 
would require an impossibly large and unwieldy text. 
principles which immediately and unavoidably require more knowledge and familiarity with 
science and mathematics, at the level of a bachelor's degree in some branch of science or 
engineering, or the equivalent in other training and experience. 

So we must fall back on general 

In its present form, the Manual is a definitive tutorial treatment of the subject that 
is complete enough for self instruction. 
in the title. The Manual does not contain explicitly programmed learning steps as that 
phrase sometimes denotes. In addition, through detailed, yet concise, chapter summaries, 
the Manual is designed to serve also as a convenient and authoritative reference source. 
Those already familiar with a topic should turn immediately to the summary at the end of 
the appropriate chapter. They can determine from that summary what, if any, of the body 
of the chapter they want to read for more details. 

This is what is meant by the phrase "self-study" 

The basic approach and focal point of the treatment in this Manual is the measurement 
equation. We believe that every measurement problem should be addressed with an equation 
relating the quantity desired to the data obtained through a detailed characterization of 
the instruments used and the radiation field observed, in terms of all of the relevant 
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parameters. 
and instrumental parameters, as previously pointed out. The objective of the Manual is to 
develop the basic concepts and characteristics required so that the reader will be able 
to use this measurement-equation approach. 
uncertainties in the measurement of optical radiation can generally be limited to one, or 
at most a few, per cent. 

The latter always include the radiation parameters, as well as environmental 

It is our belief that this is the only way that 

Currently, the Manual deals only with the classical radiometry of incoherent radiation. 
The basic quantitative relations for the propagation of energy by coherent radiation (e.g., 
laser beams) are just being worked out [19-221. 
satisfactory general treatment of the measurement of coherent (including partially coherent) 
optical radiation is not possible. 
measurements of laser radiation, we won't attempt to deal with it now. 
uation will be changed before the current effort has been completed and a supplement on 
laser measurements can be added. 

Without that basic theory, a completely 

Accordingly, in spite of the urgent need for improved 
Possibly this sit- 

As stated above, we first hoped to prepare this Manual on a more elementary level but 
found that it was impossible to avoid making use of both differential and integral calculus 
of more than one variable. 
mathematics, we go back to first principles each time a mathematical concept or procedure 
beyond those of simple algebra or trigonometry is introduced. This should also throw addi- 
tional light on the physical and geometrical relationships involved. Where it seems inap- 
propriate to do this in the text, we cover such mathematical considerations in appendices. 
It is also assumed that the reader has had an introductory college course in physics, or 
the equivalent. 

However, to help those that might be a bit "rusty" with such 

The Manual is being organized into three Parts, as follows: 

Part I. Concepts 

Step by step build up of the measurement equation in'terms of the radiation parame- 
ters, the properties and characteristics of sources, optical paths, and receivers, and the 
environmental and instrumental parameters. Useful quantities are defined and discussed 
and their relevance to various applications in many different fields (photometry, heat- 
transfer engineering, astronomy, photo-biology, etc.) is indicated. However, discussions 
of actual devices and measurement situations in this Part are mainly for purposes of 
illustrating concepts and basic principles. 

Part 11. Instrumentation 

Descriptions, properties, and other pertinent data concerning typical instruments, 
devices, and components involved in common measurement situations. Included is material 
dealing with sources, detectors, filters, atmospheric paths, choppers (and other types of 
optical modulators), prisms, gratings, polarizers, radiometers, photometers, spectro- 
radiometers, spectrophotometers, etc. 

Part 111. Applications 

Measurement techniques for achieving a desired level of, or improving, the accuracy 
of a measurement. Included will be a very wide variety of examples of environmental and 
instrumental parameters with discussion of their effects and how to deal with them. This 
is where we deal with real measurements in the real world. 
drawn from the widest possible variety of areas of application in illumination engineering, 
radiative heat transfer, military infrared devices, remote sensing, meteorology, astronomy, 
photo-chemistry and photo-biology, etc. 

The examples will also be 

'Figures in brackets indicate literature references listed at the end of this Technical 
Note. 
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Individual chapter headings have been assigned only to the first five chapters: 

Chapter 1. Introduction 

Chapter 2. Distribution of Optical Radiation with respect to Position and 
Direction -- Radiance 

Chapter 3. Spectral Distribution of Optical Radiation 

Chapter 4. Optical Radiation Measurements -- a Measurement Equation 
Chapter 5. More on the Distribution of Optical Radiation with respect to 

Position and Direction 

Other subjects definitely planned for Part I are thermal radiation, photometry, distribu- 
tion with respect to time, polarization, diffraction, and detector concepts. It is not our 
intention, however, to try t o  complete all of Part I before going on to Parts I1 and 111. 
In fact, because we realize that a great many readers are probably most interested in the 
material on applications to appear in Part 111, we will try to complete and publish some 
chapters in Parts I1 and 111 just as soon as adequate preparation has been made in the 
earlier chapters of Part I. However, because our approach to radiometry differs so much 
from the traditional treatment, we feel that unnecessary confusion and misunderstanding 
can be avoided if at least the first nine chapters of Part I are published first and so 
are available to readers of later chapters. 

Finally, we invite the reader to submit comments, criticisms, and suggestions for 
improving future chapters in this Manual. 
and problems from as widely different areas of application as possible. 

In particular, we welcome illustrative examples 

As previously stated, we are indebted to a great many individuals for invaluable 
"feedback" that has helped us to put this text together more effectively. 
inputs and encouragement from the Council on Optical Radiation Measurements (CORM), 
especially the CORM Coordinators, Richard J. Becherer, John Eby, Franc Grum, Alton R. 
Karoli, Edward S. Steeb, and Robert B. Watson, and the Editor of Electro-Optical Systems 
Design, Robert D. Compton. In addition, for editorial assistance, we are grateful to 
Donald A. McSparron, Joseph C. Richmond, and John B. Shumaker, and particularly to 
Albert T. Hattenburg. 

Notable are the 

We are especially grateful to Mrs. Betty Castle for the skillful and conscientious 
effort that produced the excellent typing of this difficult text. 
Henry J. Zoranski for his capable help with the figures. 

We also want to thank 

Fred E. Nicodemus, Editor 

Henry J. Kostkowski, Chief, 
Optical Radiation Section 

March 1976 
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SELF-STUDY W A L  on OPTICAL RADIATION MEASUREMENTS 

Part I. Concepts 

Chapter 6 .  Distribution of Optical Radiation with Respect to Polarization 

by John B. Shumaker 

This chapter develops and illustrates the concepts necessary 
to include polarization rigorously in classical radiometry. 
treatment is based upon the Stokes polarization vector of spectral 
radiance and Mueller transmittance matrices. The Mueller matrices 
of many common polarizing optical components are discussed. Con- 
siderable attention is paid to the measurement of the Stokes 
spectral-radiance-vector components and to the measurement of the 
Mueller-transmittance-matrix elements. 
are illustrated by discussions of such subjects as radiometer cal- 
ibrations, three-polarizer attenuators, depolarizers, and the 
characterization of Polaroid-type polarizers. Also included are 
an appendix on matrix multiplication and an appendix showing one 
way by which, in principle, any Mueller transmittance matrix may 
be measured. 

The 

The concepts and techniques 

Key Words: Mueller matrix; polarization; polarizer; Stokes 
parameters. 

In this CHAPTER. We discuss polarization, another of the radiation parameters introduced 

in Chapter 1 [l]. The other radiation parameters -- position, direction, wavelength, and 
time -- are continuous variables and we have used functional notations like L(x,y,B,+,h) 

to show the dependence of radiometric quantities upon these parameters. Polarization, how- 

ever, enters somewhat differently. We include polarization by introducing four polariza- 

tion components of spectral radiance, 

and L (x,y,0,$,A). The first of these, LA,o,  is identical with the spectral radiance 

we have been using in earlier chapters. 

vide the polarization information. 

extension of the quantities appearing in the measurement equation are adequate to handle 

any kind of polarizing optical element and any polarization state within the approximations 

of classical (geometrical optics) radiometry of incoherent radiairion. 

LA ,o (x,y, e,+, A), LA, 1(x,y,6, 9, A ) ,  LA, (x,y, 6 ,$,A), 

A 3 3  
and LA,39 pro- LA,2’ The other three, LA,1, 

The expressions that result from this four-fold 

We will not in this chapter discuss in detail specific polarizing or depolarizing 

instruments. These will be described in Part I1 and are also covered in several of the 

references [ 2 , 3 , 4 , 5 ] .  We concentrate here on developing and illustrating the use of the 
concepts and equations necessary to include polarization rigorously in classical radiom- 

etry. 

electric field and the polarization state of radiation. 

ponents of spectral radiance and study how they are transformed by ideal polarizers and 

retarders. Next we discuss the response of a radiometer to polarized light and how it may 

be calibrated. After this we examine real, non-ideal, optical components and finally con- 

clude the chapter with a brief look at some experimental precautions in the use of polar- 

izing optics. 

We begin the chapter with a review of the relationship between the oscillating 

We then introduce the four com- 
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The object of this chapter is to extend the equations of radiometry which have been 

developed in preceding chapters so that they can include polarization rigorously. We make 

little attempt to provide an intuitive understanding of the polarization phenomenon. Our 

approach is directed toward the radiometrist who may regard polarization as an unfortunate 

complication which, like the common cold, has been inflicted upon him by the whimsical 

gods. We therefore have tried to present a systematic measurement approach to the polari- 

zation problem which does not require the reader to become an expert on polarization optics. 

As a consequence, we illustrate our equations and the kinds of measurement information 

involved with conceptual measurements which employ simple, easily available instruments. 

Although some very precise relative polarization measurements can be made using high 

quality optical components and specialized instruments such as ellipsometers, such preci- 

sion is usually not required in radiometry. 

described in some of the references [2,5,6] and will also be considered in Parts I1 and 111. 

This chapter also does not discuss the many remarkable uses which man and nature have made 

of polarized light. These are briefly discussed in reference [2] which includes extensive 

further literature references. 

These special devices and technique's are 

THE STOKES COMPONENTS of POLARIZATION 

Polarization can be thought of in terms of the orientation of an electromagnetic field 

vector oscillating about the line of sight between an observer and a light source. 

the consequences of polarization can be derived from this starting point and the names 

"linear" polarization and "circular" polarization originate in this description. However, 

within the approximations of geometrical optics a more direct phenomenological approach is 

possible. This simply requires the reinterpretation of spectral radiance as being fully 

characterized by four independent polarization components, called Stokes components. All 

four components are measurable, as we will see, and form a phenomenological basis for the 

quantitative inclusion of polarization in radiometry and photometry. 

of describing polarization [2,4,5] but for our purposes the use of Stokes components is the 

simplest because for light with a negligible degree of polarization -- frequently the most 
important situation in radiometry -- the treatment reduces directly to the equations we 
have been considering in the preceding chapters. 

lar insight into why or how polarizing optical components work but we will not be inter- 

ested in that aspect of polarization in this chapter. 

ization state of a beam affects the response of a radiometer and in how to describe the 

flux of a polarized beam so that the beam is uniquely defined from a radiometric point of 

view -- so that it could be used to calibrate a radiometer, for example. The four Stokes 

components of spectral radiance at every point and direction in a radiation field provide 

that kind of description. Since most people prefer to think in the familiar terms of 

electric field vectors and linear and circular polarization, we will indicate how the 

Stokes components are related to these common concepts, but we emphasize that this is not 

essential to radiometry. 

All of 

There are other ways 

The Stokes components provide no particu- 

We are interested in how the polar- 
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We begin with the familiar microscopic description of polarization. We consider a 

single steadily radiatir.g oscillator at a distant point on the negative Z-axis of a rectan- 

gular coordinate system and imagine that we can continuously record the instantaneous 

electric field' present at the origin due to this oscillator. 

light source of a few wavelengths or less, the Z component of the electric field -- the 
component along the direction of propagation -- will be completely negligible and the field 

Except at distances from the 

will lie in the X-Y plane. The X and Y field 

E = V .cos(2~r.v.t 

E = V -cos(2a*v*t 

x x  

Y Y  

components then will be of the form 

+ 6y) 

where Vx and V are the amplitudes [V-m-'1, 

are the phases [rad] of the electromagnetic wave 

figure 6.1 are shown some examples to illustrate 

time for some special combinations of amplitudes 

the left shows the pattern traced out in the X-Y 

vector and the graphs on the right show the time 

Y 
v is the frequency [Hz], 6x and 6 

Y 
train, and t is the time [SI. In 

how the electric-field vector changes with 

and phases. In each case the sketch on 

plane by the tip of the electric-field 

behavior of the X and Y components. In 

diagrams (a) we see light which is described as linearly polarized2 in a vertical direction; 

the horizontal component, Ex, of the electric field is always zero.3 Diagrams (b) show a 

more general example of linear polarization. E and E are exactly in phase with one 

another, 6 = bX, but their amplitudes V and Vx differ. Diagrams (c) show right 

circularly polarized light; the electric vector appears to trace a circle in the clockwise 

Y X 

Y Y 

'The electric and magnetic field vectors are perpendicular to each other and to the direc- 

tion of propagation of the radiation. 

upon the magnetic field, as it is in much of the older literature. 

Our development could equally well have been based 

"'Linear" and ''plane'' polarization are synonymous terms. 

with the terms "circular" and "elliptical" and so is used exclusively here. 

"Linear" seems more consistent 

3The terms "horizontal" and l'vertical'' linear polarization and "right" and "left" circular 

polarization are somewhat arbitrary and are used differently by different authors. 

which contains no vertical component of the electric field may be described as horizontally 

polarized; however, if the magnetic field vector is emphasized instead of the electric 

vector then such light would be called vertically polarized. Right and left handedness are 

likewise ambiguous descriptions of circular polarization. Fortunately, as long as one is 

consistent within his own calculations it rarely matters what conventions one adopts for 

these definitions. To insure consistency one must usually take all his formulas and equa- 

tions from the same source. Our conventions used in this chapter agree with those of 

Shurcliff [2] where, for instance, light reflected from horizontal surfaces such as from a 

desk top or the ocean is defined as possessing enhanced horizontal polarization. 

sunglasses, consequently, are vertical polarizers as customarily worn. 

Light 

Polarizing 
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Figure 6 . 1  

Electric-field-vector behavior for 
monochromatic polarized radiation 

y I  

EWt 

(a) Linearly polarized in the Y-Z plane 

(b) Linearly polarized at +30° 

(c) Right circularly polarized 

(d)  Right e l l ip t i ca l ly  polarized 
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direction (as we look back toward the source). E and Ex have equal amplitudes but are 

exactly a quarter cycle out of phase with one another: 6 = 6 + n/2. If 6 = 6x - a12 
the electric vector will rotate in a counterclockwise direction and the polarization is 

called left circular. The final example shows elliptically polarized light which is the 

general case of eq. (6.1). In this case no special relationships exist between V, and 
VX and between 6y and 6,. Ey and E, have unequal amplitudes and are out of phase 
by an angle y = 6y - 6x.' If y is positive the polarization is called right elliptical 

and if y is negative it is called left elliptical. Elliptical polarization represents 

the most general expression of a perfectly monochromatic ray which is possible. 

circular polarizations are special cases of elliptical polarization. 

Y 

Y X  Y 

Linear and 

As an aid to visualizing polarization we might think of a classical source mechanism 

At radio wavelengths a vertically in terms of the oscillations of charged particles. 

polarized field can be produced by a vertical transmitting antenna with a cluster of elec- 

trons sloshing up and down at the radio frequency. At optical wavelengths we can similarly 
imagine a vertical vibration of electrons at the source as one way of generating vertically 

polarized light. 

charges moving in circles at the source. If the charges are moving in circular orbits as 

seen by an observer in one direction then observers in other directions will see the 

charges moving in ellipses or even vibrating in straight lines thus observing elliptical or 

linear polarization. Such directional dependence of the polarization form is actually 

observed in the Zeeman effect, for example, where some spectral lines emitted by a gas in a 

magnetic field show circular polarization if viewed along the direction of the magnetic 

field and change continuously through elliptical to linear polarization as the viewing 

direction changes toward the perpendicular to the magnetic field. 

Circular polarization then can be thought of as being generated by 

Three parameters are required to describe the general polarization ellipse. They can 

6y - be chosen in several ways. For example the magnitude of the parameter y = 

specifies the ellipticity of the polarization and its sign specifies its handedness -- left 
or right. The parameter Vy/Vx specifies the orientation of the ellipse in the X-Y plane. 

And the parameter A set of parameters which 

has proven to be somewhat more useful, however, is the set of Stokes parameters2: 

Vx2 + Vy2 specifies the size of the ellipse. 

ly 

if necessary to give 

is further required to be adjusted by adding or subtracting integral multiples of 2* 

I y I  5 n. 

21n eq. (6.2) that follows, the proportionality constant K is given by K = nf(2~-c) 
where n is the refractive index, p the magnetic permeability and c is the vacuum 

velocity of light. 

then K/n = 1.327 x [WOV-~] for non-magnetic materials. Equations (6.2) contain less 

information than eqs. (6.1). The absolute phase information has been lost. Ultimately 

this will result in the exclusion of interference effects from our treatment and in the 

additivity of radiometric quantities such as spectral radiance. These, of course, are 

just the limitations (and advantages) of geometrical optics. 

If Vx and Vy are expressed in voltsfmeter and Enpi in watts/m2 
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E = IC(~V~*V *shy). 
n, 3 Y 

There are four of these parameters, the first of which is redundant in the present context1 

but, as we shall see later, forms the basis for including unpolarized light. The second 

Stokes parameter E is a measure of the excess of horizontal linear polarization over 

vertical linear polarization. It is called the horizontal preference parameter. The third 

parameter E 

zontal) to that at 135'. It is called the +45' preference parameter. The last Stokes 

parameter is a measure of the excess of right-circular component to left-circular component. 

It is called the right-circular preference parameter. 

dimensions of irradiance and constitute the four Stokes polarization components of normal 

irradiance from a single steady oscillator. 

n,l 

is a measure of the excess of linear polarization at 45' (from the hori- 
n,2 

These parameters all have the unit- 

A real, non-monochromatic, non-point radiation source will also generate a varying 

electric field vector at any point. 

generally not be easy to describe. 

plane. For another, it may not be periodic. 

interval approach zero the motion of the electric field vector will become planar and 

elliptical and so the Stokes parameters are appropriate for describing the polarization 

state of the radiometric quantity spectral radiance. 

Stokes spectral radiance components that a real radiometer would measure are given by 

But the motion of this electric field vector will 

For one thing the motion need not be confined to a 

In the limit as'the solid angle and wavelength 

Accordingly,the average values of the 

vx2 + v 
Aw*A? dx d y 9 d t 1 

L h , O  =-  AA-At IIAdAt 
vx2 - v 

Au*hhY dx dy d t 1 
L X,1 =-  AA-At lIAdAt 

2vx*v -cosy 
dx-dy dt 1 Y L -- h , 2  M - A t  llAdAt IC Au*AX 

2Vx*Vy-siny 
L -- 1 dx *dy *d t h , 3  AA-At ,lAdAt Aw*AX 

where At is the time required for a measurement, AA is the area of the detector surface 

perpendicular to the ray direction, Au is the solid angle from which rays can illuminate 

~~ 

'Because = E:,l + E,',2 + . 
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V and y are 
"IC, y 

the detector and AA 

the field amplitudes and phase difference at the detector surface. 

is the wavelength band reaching the detector. 

In the mathematical limit as hA, At, Aw and AX approach zero 

8 

This is the condition for complete polarization. 
these four parameters, A ,  t, UJ and A ,  all measurement results would show complete 

polarization. However, as was discussed in Chapter 2, [l] radiometric measurements cannot 

be made if any of these resolution intervals goes to zero because zero power would then be 

received.l The practical limits on the smallness of AA, At, Aw and Ah result in 

values of Stokes spectral-radiance components which obey 

With sufficient radiometer resolution in 

Thus, we speak of a polarized component of spectral radiance 

Lh,p = +:,1 + L112,2 + Lh2,3 

and an unpolarized component 

( 6  5) 

LA,u - LA,o - LA,p 
and define the degree of polarization as 

Although at first glance it would seem that a definition of unpolarized light which 

obviously depends upon instrument resolution would be highly unsatisfactory, it turns out 

that this is rarely a problem. Usually unpolarized light arises because of inadequate 

'By considering the coherence properties of radiation one can deduce that the state of 

polarization in the detector plane remains essentially constant over areas of the order of 
6A 'I, AZ*(6u)- ' .  Similarly, the state of polarization is essentially constant in time over 

a time interval of the order of 

intervals need be no smaller than these values. 

intervals would require a source with spectral radiance 

6t 'I, (6")" = h2-(c*6A)'1. Therefore, the resolution 

A perfect radiometer with these resolution 

to achieve a 1% measurement accuracy at 

solar spectral radiance. 

must be larger if useful accuracy is desired. 

A = 500 [nm]. This is a factor of lo6 times the 

For any less intense source the radiometer resolution intervals 

7 



resolution in the time dimension. For typical spectrometers and for steady incandescent 

sources (so-called natural light), measurement times less than 

required to observe complete polarization. That is, Vx, 

appreciably over periods of 10-1 

L can be expected. If At is very much longer, however, the fluctuations in V V 

and y may cause cancellations in computing the mean values of these three Stokes compo- 

nents. 

averaging. Thus, L will appear to include a contribution which has disappeared from 

seconds would be 

V and y will not change 
Y' 

seconds and non-vanishing values of Lh,l' L x,2 or 

A 9 3  xy Y 

being the sum of positive quantities V2 and V2, will not be reduced by , 0' X Y 

h,O 
and L components and is consequently called unpolarized. Since the 

x,3 
L 

time resolution required to resolve the unpolarized component is so far beyond the capa- 

bilities of customary radiometry there is, for all practical purposes, no ambiguity in the 

definition of unpolarized light. Occasionally a (usually periodic) rapid variation in 

polarization over t or over one of the other parameters A, w or h is deliberately 

introduced to simulate the "natural" unpolarized light we have just described. 

variations are usually sufficiently coarse that they could conceivably be resolved by some 

radiometers. For this reason such light is frequently called depolarized instead of 

unpolarized. 

the Lh,l, h , 2  

These 

is the spectral radiance that we have been con- 

It is a measure of the total radiant flux associated with 
LAYO' The first Stokes component, 

sidering in earlier chapters. 

a ray and is therefore usually the quantity of greatest interest. 

spectral radiance which a polarization-indifferent radi6meter would measure. L A Y O  can 

either negative or positive. 

than horizontal linear polarization then the horizontal preference component 

negative. If the radiation is completely vertically polarized then = -L 

radiation contains equal horizontally and vertically linearly polarized contributions as in 

unpolarized light or in 45" polarized light then 

in excess then L 

pletely horizontally linearly polarized. 

radiance, LhY2, describes the +45" and +135" linearly polarized content of the radia- 

tion in an exactly analogous manner. And finally, the right-circular preference component, 

It is the value of 

and L may be 
h , 3  

never be negative. The other three Stokes components L h , 2  
If the radiation contains more vertical linear polariz?tion 

will be 

If the X,O' 

L = 0. If the horizontal content is 

when the radiation is com- 
h , l  

A,O 
is positive; its maximum value is L 

x,1 
The +45"-preference Stokes component of spectral 

similarly takes on values from -L for completely left-circularly polarized L h , 3 '  X,O 
light through zero for light with no net circular polarization to 

right-circularly polarized light. 

0" and 45" and the complementary angles 90" and 135") will have non-zero values for 

both L 

addition L 

cular polarization and is, of course, elliptically polarized. 

+L for completely 

Radiation linearly polarized at other angles (other than 

are non-zero and in 
A92 

and L 
A,l 

and Likewise if either or both of L 
A,1 

is non-zero then the radiation contains attributes of both linear and cir- 
h , 3  

Although for spectral radiance the four Stokes components provide a complete and, for 

all practical purposes, unique description of the polarization state of radiation, the same 

cannot be said for the integrals of spectral radiance such as radiance, spectral intensity, 
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spectral irradiance, etc. For such cases, as we have indicated, the trajectory of the tip 

of the electric vector can no longer be described, in general, by three parameters. The 

only Stokes component of these integrated radiometric quantities which is always unambigu- 

As in earlier chapters where polarization ous is the first one -- the integrals of 
was neglected, an integral of spectral radiance does not uniquely characterize a complete 

radiation field; one must, in general, trace the spectral radiance by determining the 

propagance, ray by ray, from source to receiver and then, at the receiver, perform the 

desired integration of spectral radiance. Fortunately, at the ultimate detector the usual 

quantity of interest is the total power, and to calculate this requires only an appropriate 

integral of LAYO. 

spectral radiance. 

LAYO' 

Therefore, we shall discuss polarization only in terms of rays and 

STOKES VECTORS and MUELLER MATRICES 

The complete description of polarization in classical radiometry requires the specifi- 

cation of four parameters such as the Stokes components of spectral radiance associated with 

each ray. These Stokes components are measurable with, for example, a linear polarizer and 

a quarter-wave plate. 

of propagancel or transmittance to include polarization. 

We will return to this later after we have generalized the concept 

In Chapter 3 ,  eq. (3.14) [l] we related2 the spectral radiance L' of a ray emerging 

from an optical medium to the incident spectral radiance 

propagance T: 

L by means of a transmittance or 

'For simplicity we'll usually speak only of transmittance and won't distinguish between 

propagance and transmittance. However, our results apply equally well when reflectance is 

involved provided some care is exercised in defining the coordinate system used for the 

incident and reflected rays. 

at the point of reflection of the ray. The incident ray is referred to such a coordinate 

system with its Z-axis along the ray in the direction of propagation, its Y-axis in the 

plane of incidence -- that is, the plane defined by the incident and reflected rays -- and 
its X-axis perpendicular to the plane of incidence and, therefore, lying in the reflecting 

surface or, more generally, tangent to it. The reflected ray is referred to a coordinate 

system with its Z-axis in the direction of propagation of the reflected ray, with its X-axis 

coincident with the X-axis of the incident ray and with its Y-axis in the plane of incidence 

but with its sense chosen to preserve the handedness of the coordinate system. If the 

incident-ray coordinate system is right-handed then that of the reflected ray is also. 

The simplest coordinate system to use is one with the origin 

21n the interests of typographical simplicity several of the symbols used in earlier chap- 

ters will be modified in this chapter. In particular, since we will be dealing only with 

spectral radiance we will have no need to distinguish between L and LA, so we will 

usually omit the subscript h on this quantity. The spectral-radiance input to a device, 

formerly denoted LAi, will usually be written L and the output, L will usually be 

written L'. The transmittance, T, or propagance, T*, will usually be written T. 
AP , 
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L and L' we now see consist of four components each so we must expect four equations of 

this type -- one for. each component. 
ent forms of polarization and since every component of 

each component of L' the propagance T must now contain sixteen elements: 

Moreover, since the propagance may differ for differ- 

L may in general contribute to 

Ld = TOO*LO + TO1*L1 + TO2-L2 + T03 OL3 

T30*L0 + T31*L1 + T32*L2 + T33'L3* 

Thls is the generalization of eq. (3.14) which is required to describe the changes in the 

Stokes spectral-radiance components of a ray upon passing through an optical medium. 

as the spectral radiance in a beam may vary from ray to ray and from wavelength to wave- 

length, so may the propagance elements 

the values of these elements depend upon the ray we are examining and we should write them 

as TOO(x,y,B,~,h), etc., where the x,y,B, and 4 are the same reference-surface 

quantities which identify the ray of spectral radiance 

out most of this chapter we deal with the behavior of a single ray so we will usually not 

explicitly display this dependence. 

Just 

. . vary from ray to ray, etc. Thus 

LX,O(~,y,B,g,h). However, through- 

Because the four Stokes polarization components are independent [within the restric- 

tion Lo 2 (L2 + L i  + I,;)'] it is common to describe the set of four as a vector, the 

Stokes spectral-radiance vector 
1 

By expressing spectral radiance this way, as a column vector, eqs. (6.7) can be compactly 
written as 

L' 5 T * L ,  ( 6 . 9 )  

where T is the 4 x 4 matrix 

10 



T =  
T20 T21 '2.2 *23 

T30 T31 T32 T33 

(6.10) 

and eq. (6.9) means exactly the same thing as eqs. (6.7) -- no more and no less. We shall 

generally use this vector and matrix notation1 throughout the rest of this chapter, not 

because of any useful four-dimensional mental image that might be envisioned, but simply for 

economy of notation. 

There is one precaution about matrix equations which must be observed. That is that 

the product T L is not always the same as L T and the product of two matrices 

Tl*T2 is not generally the same as T2*Tl. The rule for writing the equations correctly 
in accordance with the conventional matrix multiplication formulas is to write the incident 

radiation vector and the transmittance matrices in the order, from right to left, in which 

the ray encounters the optical elements they represent. 

radiance vector L passes through one optical device with transmittance matrix T, and 

then through a second with transmittance matrix 

be 

So, if a ray with spectral- 

T2, the emerging spectral radiance will 

The effect of a succession of optical devices can be combined into a single effective trans- 

mittance matrix by simply multiplying the individual matrices together in the proper order. 

Thus, eq. (6.11) can be written 

L' = T*L * (6.12) 

where the product matrix T - T,*T, 
multiplication. 

the radiance components passing device 1 and then again using eqs. (6.7) inserting these 

expressions for the radiance input to device 2 to obtain expressions for the final emerging 

radiance components. 

can be obtained by following the rules for matrix 

Of course the same result would be obtained by writing out eqs. (6.7) for 

The matrices which describe the transmittance or propagance through optical elements 
(. 

which influence polarization are known in the literature as Mueller matrices. 
simple cases the proper form of the Mueller matrix is obvious by inspection. 

elements for which equations can be written relating the amplitudes and phases of the 

In very 

For optical 

'Readers who are not familiar with matrix manipulations, or who tend to forget which sub- 

script means what, will find everything needed to convert these matrix equations to workable 

formulas in Appendix 6. 
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emerging radiation field to the amplitudes and phases of the entering field, the matrix can 

be derived by a straightforward procedure [7,8]. 

optical elements such as ideal polarizers, quarter-wave plates, mirrors, etc. For a real, 

non-ideal device, however, the Mueller matrix can only be obtained ultimately by experiment. 

Mueller matrices for ideal optical components have been tabulated by many authors [2,7]. 

This includes all perfect polarizing 

THE SIMPLE SPECTRAL FILTER 

Let us now study some examples of the use of Mueller matrices and Stokes components. 

Perhaps the simplest useful optical element is just a glass absorbing spectral filter with 

transmittance ~(1). The Mueller transmittance matrix for this should have the effect of 

simply multiplying each component of L by T with no mixing by or interaction with other 

components. That is, we want 

(6.13) 

Comparing these equations with eq. (6.7) we see that T = ~ ( h ) ,  Tll = T(A), T22 = ~ ( h ) ,  

T33 - T(A) and all other T = 0. Thus, for a simple filter we have 

00 

ij 

1 0 0 0  

(6.14) 

THE IDEAL POLARIZER 

A more interesting optical element is the ideal linear polarizer. An ideal polarizer 

possesses a polarization axis (perpendicular to the ray direction) with the property that 

the transmittance to light linearly polarized in this direction is 1 and the transmittance 
to light linearly polarized at right angles to this direction is 0. 

reflection effects, crystal-prism polarizers such as the Nicol-prism polarizer come close 

to this ideal. If the angle between the polarization axis of the polarizer and the hori- 

zontal reference axis or x-axis of the optical system is 4 
matrix of an ideal linear polarizer is 

Aside from surface- 

the Mueller transmittance 

lo  0 0 O J  

(6.15) 

12 



Let us use eq. (6.93 to see the effect of such a polarizer on unpolarized light. 

unpolarized light is characterized by L1 = Lq 5 Lg = 0,  we have 

Since 

1 cos24 s i n 2 4  0 

cos24 c0s224 sin24*cos24 0 1  . [ r] 
sin24 sin24*cos24 sin224 o sin24 L' = P W * L  = 4 (6.16) 

= ' [ ~0:24] 
. 

0 0 0 0 

The vector equation (6.16) is simply a shorthand for the set of four equations: 

L; - % L o  
L; = %L0.c0s2~ 

L; = 0. 

L; = 35LO*sin24 

By using the trigonometric identity 

Ld = ( L i z  + L2 l 2  + L;z)*. 

polarized. Since L; = 0 there is no circular component so the polarization is strictly 

linear. If we turn the polarizer so that its axis is parallel to the 

expect horizontally polarized light. Putting 4 = 0' in eq. (6.16) we obtain 

c0s224 + sin224 = 1 we see that 

This shows [eq. (6.4)] that the output radiance is completely 

x axis we would 

Thus, light with Stokes components like 

is pure horizontally polarized light. 

light polarized in that orientation. 

If the polarizer is turned to 4 = 45' we expect 

From eq. (6.16) we get 

L' = % L o *  [ i] .  
Thus, light whose Stokes components are a multiple of 
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is linearly polarized at 45'. Similarly 

shows that vertically polarized light is 

inserting 4 = 90' and 135O in eq. (6.16) 

a multiple of 

and light polarized at 135' is characterized by Stokes components proportional to 

Notice that the spectral radiance 

while the other components may have either sign. 
Lb is always positive, as its name suggests it must be, 

Suppose instead of starting with unpolarized light we had put arbitrarily polarized 

light through the ideal linear polarizer. We have 

(6.17) 

where we have used the abbreviations cos24 = C and sin24 * S. As with initially 

unpolarized radiation, the transmitted radiation is completely linearly polarized at the 

orientation 4 of the polarizer axis. Equation (6.17) takes on an especially simple form 

if the initial ray is completely linearly polarized. 

has the form 

In this case, as we have seen, L 

where JI is the polarization direction. Substituting from this expression L1 = LO*cos2$ 

and L2 5 LO*sin2J, in eq. (6.17) we find 
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(6.18) 

When 4 * JI 
p l e t e l y  extinguished. 
behavior of a p a i r  of i d e a l  po lar izers .  

t h e  po la r i ze r  has no effect on t h e  ray  but  when 4 = JI 5 90° t he  ray is com- 

Equation (6.18) is known as Malus' Law and expresses  the  f ami l i a r  

Before going on t o  consider o ther  po lar iz ing  components w e  should remark t h a t  t h e  

d iscuss ion  above can be turned around and used t o  de r ive  the  Mueller t ransmit tance matr ix  
of an i d e a l  po lar izer  [eq. (6.15)]. The argument runs as follows: We def ine  an ideal 

linear po la r i ze r  a s  an objec t  (1) which cannot be used t o  d i s t ingu i sh  c i r c u l a r l y  polar ized 
l i g h t  from unpolarized l i g h t ,  (2) whose output is always completely l i n e a r l y  polar ized i n  

a d i r e c t i o n  p a r a l l e l  t o  its po la r i za t ion  axis, and (3) which a t t enua te s  completely l i n e a r l y  

polar ized l i g h t  i n  accordance with Malus' Law [eq. (6.18)]. I f  we now examine eqs. (6.7) 
we' see that, because the  f i r s t  property says  t h a t  t h e  5 components on t h e  l e f t  do not  

depend upon the  va lue  of 
zeros. 

Lg, t h e  last column of t he  matrix must cons i s t  e n t i r e l y  of 
The second property says  t h a t  t he  output  of t he  po la r i ze r  is proport ional  t o  

where 4 is t h e  o r i e n t a t i o n  of t he  po la r i ze r  ax i s .  Combining t h i s  with t h e  t h i r d  property 
w e  see t h a t  i f  t he  input  ray has a radiance vector  

t h e  output  ray w i l l  be described by 

Therefore t h e  Mueller matr ix  p(4) f o r  an i d e a l  l i n e a r  po la r i ze r  must s a t i s f y  
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where we have subs t i t u t ed  

equation wi th  eqs. (6.7) and remembering t h a t  t h e  last column of 
immediately ob ta in  eq. (6.15). 
t h e  form of a Mueller matrix from t h e  observed experimental behavior of t h e  object  i t  is 

meant t o  describe.  
more accu ra t e ly  descr ibes  real (non-ideal) po la r i ze r s .  

cos2($-a) = )2(1 + cos24*cos2a + sin24-sin2a) .  Comparing t h i s  

P($) must be zero we 
This de r iva t ion  i l l u s t r a t e s  t h e  p o s s i b i l i t y  of deducing 

We w i l l  later use t h i s  approach again with a Mueller matrix form which 

THE IDEAL LINEAR RETARDER 

A l i n e a r  r e t a r d e r  is an o p t i c a l  device f requent ly  made of a t h i n  p l a t e  of an aniso- 

t r o p i c  c r y s t a l  such as calcite o r  quartz  with i ts  faces  c u t  p a r a l l e l  t o  t h e  c r y s t a l  o p t i c  

axis. Such p l a t e s  have t h e  (birefr ingence)  proper ty  t h a t  l i g h t  l i n e a r l y  polarized i n  one 

d i r e c t i o n ,  c a l l e d  t h e  f a s t  axis of t h e  r e t a r d e r ,  travels with a higher v e l o c i t y  than l i g h t  
l i n e a r l y  polar ized  i n  a d i r e c t i o n  a t  r i g h t  angles  t o  t h i s ,  c a l l e d  t h e  slow a x i s .  
of both po la r i za t ion  forms en te r ing  a r e t a r d e r  then w i l l  emerge wi th  t h e  components phase 
s h i f t e d  with respect  t o  one another and consequently with its po la r i za t ion  form changed. 
The amount of phase s h i f t  i s  c a l l e d  t h e  retardance,  6. The re ta rdance  is r e l a t e d  t o  t h e  
thickness ,  a ,  of t h e  p l a t e  and t h e  ind ices  of r e f r a c t i o n  n and n f o r  t h e  fast and 

slow po la r i za t ions ,  r e spec t ive ly ,  according t o  

A mixture 

f s 

The Mueller t ransmi t tance  matrix f o r  an i d e a l  r e t a r d e r  is: 

(6.19) 

(6.20) 

where C - cos24, S = sin24 and 4 is t h e  angle  between t h e  f a s t  a x i s  of t h e  r e t a r d e r  
and t h e  horizontal .  

Retarders i n  which t h e  re ta rdance  is one-quarter cycle  (6  = a/2) o r  one-half cycle  

( 6  = T )  

converting l i n e a r l y  polarized l i g h t  t o  c i r c u l a r l y  polarized l i g h t ,  and vice-versa;  half- 
wave p l a t e s ,  f o r  r o t a t i n g  t h e  d i r e c t i o n  of po la r i za t ion  of l i n e a r l y  polarized l i g h t .  If 

we set 

are ca l l ed  quarter-  and half-wave p l a t e s .  Quarter-wave p l a t e s  are use fu l  f o r  

6 = n / 2  i n  eq. (6.20) w e  obtain t h e  Mueller mat r ix  f o r  an i d e a l  quarter-wave p l a t e :  
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(6.21) 

DETERMINING STOKES COMPONENTS with IDEAL INSTRUMENTS 
With an ideal linear polarizer and an ideal quarter-wave plate we are now in a posi- 

tion to measure, in principle, the four Stokes components of an arbitrary light ray. We 

pass the ray through the quarter-wave plate and then through the polarizer and measure the 

output with a polarization-indifferent detector. The Mueller transmittance matrix for the 

combination of quarter-wave plate at angle @ = a and polarizer at angle $I = 6 is 

0 (6.22)l 

1 0 0 
0 cos22a 

.O sin2a-cos2u sin22a 

0 sin2a -cos2a 

1. 1 cos2a*cos2(~-a) sin2a*cos2(6-a) sin2 (B-a) 

cos28 cos2B*cos2a*cos2(~-a) cos2B*sin2a*cos2(6-a) cos2B*sin2(B-u) 

sin26 sin26*cos2a*cos2(f3-a) sin26*sin2a~cos2(6-a) sin26-sin2(/3-a) 

0 0 0 0 

If a ray with spectral-radiance vector 

passes through this combination, the spectral radiance vector 

be given by 
L' of the output ray will 

cos26 
L' = A-L - +[L~ + ~~-cos2a*cos2(6-a) + ~~*sin2a*cos2(6-a) + L3*sin2(B-a)]* [ si11]16.23) 
- ~~ 

lobviously, unless one can find simplifying trigonometric identities a long train of 

polarizing optics will quickly lead to an almost unmanageable problem. The operator form 

of Mueller matrix manipulation described by Priebe [9 ]  permits many simplifications to be 
performed before the matrix elements become too unwieldy. His technique is especially 

useful for weakly (linearly) polarizing components, small retardances, and small angles 

of rotation. 
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Since we are only interested in the response of a polarization-indifferent detector to this 

ray we actually need only the Ld component of L' which is 

Ld = %[Lo + L 1 *cos2a*cos2(13-a) + L2-sin2a*cos2(E+a) + L3*sin2(B-a)]. (6.24) 

Had we been interested in passing the output into or through any further polarization- 

sensitive components we would, in general, have needed all four components of 

eq. (6.24) we see that if we make four measurements of 
L'. From 

Ld at four combinations of a 

and 6, we can solve the four resulting equations for the Stokes components LO' L1' 

A particularly simple solution is obtained when a and 

follows : 

L2, and L3 of the original ray. 

B are set at 0", 45O, and 90" as 

From these four measured values of 

can be obtained at once. 

(6.25) 

Ld the polarization components of the original ray 

In general the result of passing a ray through an ideal retarder followed by an ideal 

linear polarizer is a ray whose spectral radiance is a skn of the Stokes components of the 

original ray each multiplied by sines and cosines of the orientation angles and the 

retardance.l Such a relationship readily lends itself to Fourier analysis, and many auto- 

matic techniques for measuring some or all of the Stokes components are based on this idea 

[10,11]. 

It is possible to deduce relative values of L1, L2, and L3 by measuring the pair 

of angular settings a and 6 of the quarter-wave plate and polarizer which simultane- 

ously minimize Ld . This is a common technique in ellipsometry, for example, because such 

a determination requires only monotonicity of detector 

not even significant 

adjusting a and 13 

This occurs when 

and 

stability. The minimum value of 

is 

L; 5 %[Lo - (L: + L; + 

tan2a = L~/L., 

tanz(13-a) = L~/(L: + L ~ )  24 , 

response -- not linearity or, indeed, 
Ld 

which can be achieved by 

(6.26) 

'The complete expression i s  given in eq. (6.41). 
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as can be obtained by differentiation of eq. (6.24). From a measurement of the angles a 

and 

components from eq. (6.26): 

$-a at this minimum’ then we can calculate the relative values of the polarization 

L JL = COS~C~-COS~(B-~) 
1 P  

L,/L~ = sin2a*cos2(B-a) 

L ~ J L ~  = sin2(B-a), 

(6.27) 

4 
where L = (L: + L i  + Li) 
determination of Lo and L cannot be carried out by measurements of angles only but 

requires flux measurements with the ubiquitous problems of temporal, positional, direc- 

tional, and wavelength responsivity and of detector linearity which characterize and 

bedevil radiometric measurements. 

is the polarized component of Lo. Unfortunately the 
P 

P 

An alternative way to measure relative values of L1, L2, and L3 is by using a 

variable retarder -- usually called a compensator. 
of two wedge-shaped retarders arranged so that sliding them across one another changes the 

total thickness of the composite block and hence the retardance of the device. By simul- 

taneously adjusting the retardance and angular orientation of a perfect compensator, 

arbitrarily polarized light can be converted to any other arbitrary polarization state 

which possesses the same degree of polarization. 

components are to be determined, through a compensator and then through a fixed perfect 

polarizer and adjust the compensator so that the polarizer is able to extinguish the polar- 

ized component of the light. From the retardance and orientation settings of the compen- 

sator when this adjustment has been achieved the Stokes component values can be computed. 

Taking for simplicity a polarizer with its polarization axis horizontal we have from 

eqs. (6.15) and (6.20) 

This is a retarder composed essentially 

Thus, we may pass radiation, whose Stokes 

The output radiance is 

lIn the literature of ellipsometry the angles a and x = B-a defined by eq. (6.26) are 

known respectively as the azimuth and ellipticity of the polarized component. See refer- 

ence [6] for a review of ellipsometry. 
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By differentiation we find that L d  has a minimum value of 

at values of the orientation angle 4 and retardance 6 which satisfy: 

L,/L~ = -(c0s224 + sin224*cos6) 

L I L  = -sin24*cos24.(1 -cos&) 

L ~ I L ~  = sin24asin6. 

2 P  
(6.28) 

These ellipsometric techniques can be extremely accurate and are used extensively in 

studying surfaces and surface films by the analysis of the relative polarization form of 

reflected light [5,6]. 

minimum flux level and that L and the more important component Lo remain undetermined. 

THE IDEAL CIRCULAR POLARIZER 

Note that these techniques require an accurate means of sensing a 

P 

In eqs. (6.25) we saw how a quarter-wave plate followed by an ideal linear polarizer 

with its polarization axis at 45" to the fast axis of the retarder could be used to gather 

information about the Stokes component which is the circular polarization component. 

In this case the Mueller transmittance matrix [eq. (6.22)] reduces to: 
L3,  

~ (6.29) 

where C = cos 28, S = sin 28, 8 describes the orientation of the linear polarizer and 

the + or - signs are chosen according to the sign of B - a = +45". Arbitrarily 

polarized light passing through this combination will emerge with Stokes vector 

(6.30) 

Suppose, for example, that the incoming light is completely circularly polarized so that 

L = f L  and that its handedness is opposite to that of A 
L' = 0 ,  i.e. complete extinction. Notice that although a measurement of the spectral 

radiance of the emergent ray yields information primarily about the circular polarization 

component L3 the emergent ray itself is linearly polarized. In order to generate cir- 

cularly polarized light we must reverse the retarder-polarizer combination: the light must 

first pass through the linear polarizer and then through the quarter-wave plate. Taken in 

We will then observe cir' 0 3 
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t h i s  order  t he  combination has  the  Mueller matr ix  

Pcir * Q(B 

where C = cos28, S = sin20 
quarter-wave p l a t e  is a t  t h e  

through t h i s  combination t h e  

L' = Pcir' 

(6.31) 

and 8 is the  o r i e n t a t i o n  of t h e  l i n e a r  po la r i ze r .  The 

angle  a = B 545". 

r e s u l t  i s  

Now i f  a r b i t r a r i l y  polar ized l i g h t  passes  

L cos28 1 (6.32) 

which r ep resen t s  pure c i r c u l a r l y  polar ized l i g h t .  
matical qu i rk  t h a t  t he  product of two matrices may depend upon the  order i n  which they are 

taken, t h e  d i f f e r e n c e  between Acir and Pcir [ ( o r  eqs.  (6.29) and (6.31)] i s  important 
experimentally s i n c e  commercial c i r c u l a r  p o l a r i z e r s  are usual ly  made by cementing a 

quarter-wave p l a t e  t o  a l i n e a r  po la r i ze r  with t h e i r  axes 45" a p a r t .  

act  as a c i r c u l a r  po la r i ze r  only i f  l i g h t  e n t e r s  from t h e  l i n e a r  po la r i ze r  s i d e  and w i l l  

act  as an analyzer  of c i r c u l a r l y  polar ized l i g h t  only i f  t he  l i g h t  e n t e r s  from the  quarter-  

wave p l a t e  s ide .  

I n  add i t ion  t o  i l l u s t r a t i n g  t h e  mathe- 

Such a device w i l l  

An i d e a l  c i r c u l a r  po la r i ze r  without t hese  idiosyncracies  can be made by adding a 

second quarter-wave p l a t e  t o  make a sandwich with t h e  l i n e a r  po la r i ze r  i n  the middle. 

Each element must be turned 45" from the  previous one t o  give 

where Q ( @ )  is t h e  Mueller matr ix  [eq. (6.21)] f o r  a quarter-wave p l a t e  and p($) i s  t h a t  
f o r  a l i n e a r  po la r i ze r  [eq. (6.15)]. I f  w e  mult iply out  t h e  matr ices  w e  f ind 

(6.34) 

P lus  s i g n s  i n  eq. (6.33) lead t o  p lus  s igns  i n  eq. (6.34) and a r igh t - c i r cu la r  p o l a r i z e r .  

Minus s i g n s  throughout g ive  a l e f t - c i r c u l a r  po la r i ze r .  
p rope r t i e s  analogous t o  those we a s s o c i a t e  with t h e  i d e a l  l i n e a r  po la r i ze r :  
used as p o l a r i z e r  o r  analyzer  from either s ide ;  it w i l l  pass  c i r c u l a r l y  polar ized l i g h t  

of t h e  proper handedness but  w i l l  ext inguish any component of t h e  opposi te  handedness; and 

This c i r c u l a r  p o l a r i z e r  now has 
i t  can be 
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it cannot distinguish between linearly polarized light and unpolarized light. 

RADIOMETER CALIBRATION 

Equation (6.32) is a special case of 

L (6.35) 

1 cos28 sin28 

cos2a*cos2(a-B) cos2a~cos28*cos2(a-B) cos2a*sin2B.cos2(a-B) 0 

sin2a*cos2(a-B) sin2a*cos2~.cos2(a-~) sin2a*sin2~*cos2(a-~) o 
sin2 (a-8) cos28 sin2(a-8) sin2B-sin2 (a+) 

r 1 1 
cos2a*cos2(a-B) 

sin2a*cos2(a-B) ' i sin2 (13-8) J = %(Lo + L -cos28 + L2*sin2B)* 1 

which can be obtained by multiplying the matrices of eqs. (6.21) and (6.15). This 

describes the behavior of a polarizer at orientation angle 6 followed by a quarter-wave 

plate at orientation angle a. 

polarizer any arbitrary state of polarization of the emerging beam can be achieved. 

$ = a, for example, the output is linearly polarized at the orientation a, and if 

6 = a 545" the output is right (+) or left (-) circularly polarized. Such a beam can be 

used to measure Mueller transmittance matrix elements and to calibrate a radiometer. 

By the proper orientation of the quarter-wave plate and 

If 

The complete Mueller transmittance matrix for an optical component must be known if 

the polarization state of a ray after passing through this component is wanted. However, 

in many cases all that is needed is a prediction of the response of a complete instrument 

to the input radiation. 

only upon the spectral-radiance component Ld 
thermal, or chemical resp0nse.l 

instrument is required. That is, only the first of eqs. (6.7) is needed. We can write 

This is a simpler problem because the instrument response depends 

which triggers the final electronic, 

Here, only the top row of the Mueller matrix of the 

where dS is the element of radiometer signal output associated with the ray whose Stokes 

Lo, L1, .L2, and L and whose elements of throughput spectral-radiance components are 3 

lSome detectors may respond to properties of the electromagnetic radiation other than 

power -- angular momentum, for example. 
treated in a purely formal way as we describe here, although the resulting responsivities, 

Roi, 
optical component. 

It appears that such detectors can still be 

may not be proportional to the Mueller matrix elements of any physically realizable 
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RO1' 
and wavelength are dO = dw*cose-dA and dh, respectively. The coefficients 

etc., are the first-row Mueller transmittance-matrix elements of the optical part of the 

radiometer, including the optical polarization characteristics of the detector- o r  
transducer-element responsivity, multiplied by the polarization-indifferent responsivity 

of that element in combination with any signal-processing and display components of the 
instrument.l 

all rays which can reach the photo-sensitive surface. 

The total response of the instrument is the integral of this expression over 

(6.36) 

where Ah, AA, and Ao are the acceptance intervals of the radiometer. If these accept- 

ance intervals are small enough that the Stokes radiance vector can be considered uniform 

over all of them then2 

(6.36a) 

where Roi = / A A ~ A ~ , ,  Roi*dw.cos6.dA-dA. These four responsivity factors Roi can be 

determined by observing the response of the instrument to four sufficiently different, 

known polarization states of a test beam with fixed geometry and spectral distribution. 

We thus obtain four equations of the form of eq. (6.36a) to be solved for the four respon- 

. sivity factors Roi. The Li are the Stokes components of the input-beam radiance pro- 

duced, for example, as described above, following eq. (6.35), and measured, if necessary, 

as described in connection with eq. (6.24) using a polarization-indifferent detector and 

a second quarter-wave plate and linear polarizer. 

If the acceptance intervals of the instrument are too large to assume uniform radiance, 

then it may be that the coefficients 

pendent of wavelength and of ray position and direction. 
Roi in eq. (6.36) can be considered constant, inde- 

In this case 

lJust as the electrical engineer replaces an actual generator by an equivalent circuit 

consisting of either an ideal voltage generator and series impedance or an ideal current 

generator and shunt impedance, it is convenient, analytically, to replace the actual 

detector or transducer element by an equivalent combination of (1) a pure transmittance 

(whose Mueller transmittance matrix can be combined with that of the other optical ele- 

ments by matrix multiplication) followed by (2) a polarization-indifferent detector ele- 
ment that, in combination with the following signal-processing and display components, 

determines the magnitude of the overall responsivity. 

2As in earlier chapters we assume linearity throughout this discussion. 

may depend upon ray position, direction and wavelength but not upon Stokes spectral- 

radiance components. 

That is, Roi 
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S = RO0-CP0 + ROl*CPl + RO2*CP2 

where -dw-cosB*dA*dh. Again the four 

determined from observations of the output response S 

+ R03'CP3 (6.36b) 

responsivity coefficients can be 

to four beams with known, different, 

Stokes spectral-radiance-vector distributions. 

isotropic (directionally uniform) responsivity, at least over the acceptance solid angle 

Ahw, is, as we have seen in Chapter 5 [12], to introduce a diffuser as the first component 
of the radiometer. In this case, since such a diffuser is also a depolarizer, we have the 

further simplification: RO1 = RO2 = RO3 = 0. The quantity CP is the total radiant flux 

in the wavelength pass band of the radiometer. 

A common way of achieving approximately 

0 

If neither the Roi nor the L are uniform,the dependence of the Roi upon ray 

direction, position and wavelength can still be determined by probing the instrument with 

well-defined, narrow pencils of rays with uniform Stokes spectral-radiance vector. The 

general usefulness of such a radiometer, however, is questionable since its response is a 

sum of weighted integrals of the spectral radiance distribution falling upon it. For com- 

parison of sources with identical relative spectral radiance distribution 'over direction, 

position and wavelength, of course, such a radiometer might be satisfactory and its cali- 

bration in this case again calls for only four measurements. 

i 

THE ROTATION MATRICES 

If we look back at eqs. (6.15) and (6.21) we notice a similarity in the way the angle 

4 enters into the matrices for a polarizer and for a quarter-wave plate. This is not 

accidental. It arises in the following way: suppose we somehow were given numerical 

Mueller propagance-matripelement values for an optical component at a particular orienta- 

tion, say 4 = 0. How can we generalize this to other orientations, 4 # O? We do it in 

a kind of backward way by first finding the Stokes components of an entering ray in a 

coordinate frame which has been rotated through the angle 4 
tion for which we know the Mueller matrix of the (rotated) optical component. 

multiply this Stokes vector by the Mueller matrix and finally rotate the coordinate frame 

back t o  the original "horizontal" orientation. 

so as to match the orienta- 

Then we can 

Consider an arbitrarily polarized ray described by 

L =  

If we rotate our coordinate frame, only the 

will be affected because these are the only 

tion of a reference, horizontal direction. 

linear polarization components, L1 and L2, 

components whose definitions require specifica- 

So, thinking of L and L2 for the moment as 1 
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orthogonal components of a two-component vec tor  ( see  f i g .  6 . 2 )  w e  can e a s i l y  f ind  t h e  new 

components of t h i s  vector i n  a ro t a t ed  frame of re ference .  I n  real  space w e  know t h a t  i f  

w e  r o t a t e  t h e  "horizontal 'l  d i r e c t i o n  by 45" w e  w i l l  have ro t a t ed  t h e  d i r e c t i o n  of i n t o  

t h a t  of +L2. In our two-dimensional vec tor  space,  however, t he  angle between L1 and L2 

is 90"; t he re fo re  a ro ta t ion  through t h e  angle $ 
through t h e  angle  2$ i n  our (L1,L2) vec tor  space. We see from f i g u r e  6 . 2  t h a t  such a 

r o t a t i o n  of our coordinate axes w i l l  leave us with new components 

L1 

i n  s e a l  space corresponds t o  a r o t a t i o n  

L; = L ~ * C O S ~ +  + L *sin24 2 

and 

This r e s u l t ,  combined with 

L; = Lo 

and 

L; = L3 

i s  very suggestive of eq. (6.7):  t h a t  is, by def in ing  a matrix M($) w e  can write 

( 6 . 3 7 )  

t o  descr ibe  t h i s  r o t a t i o n .  The procedure f o r  handling an o p t i c a l  component turned a t  an 
angle  4 is now f a i r l y  c l e a r .  Rotating t h e  coordinates of L through t h e  angle 4 SO 

t h a t  "horizontal" agrees  with t h e  optical-component o r i en ta t ion ,  applying i t s  Mueller 

propagance matr ix ,  and r o t a t i n g  again through -$ t o  ge t  back t o  t h e  real ho r i zon ta l  is  

equivalent t o  t h e  following 

( 6 . 3 8 )  

i n  which T is t h e  Mueller matrix. The matrix M($) defined i n  eq. ( 6 . 3 7 )  i s  known as 
a r o t a t i o n  matrix. I f  t h e  mul t ip l i ca t ion  of t h e  t h r e e  4 x 4 mat r ices  i n  eq. ( 6 . 3 8 )  i s  
ca r r i ed  out  we obta in  t h e  equivalent Mueller matrix evaluated a t  t h e  angle 4.  That is, 

25 



\ 
\ 
\ 
\ 
\ 
\ 

P 

\ 
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- B  LI 0 

L; - OD - OA + AD = OA + BC 
= L *cos24 + L2*sin2$ 1 

L; = DP = CP - DC CP - AB 
= L2*cos2# - L1*sin2$ 

Figure 6.2. The components of 1 in the L1, L2 and Li, L; coordinate systems. 
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r 
TO1'C - To2.S TO1*S + TO2*C 

TIOC - T20S T1l - A T12 + 

TIO*S + T20*C T21 + T22 + A 

T30 T31*C - T32*S T31*S + T32*C 

12 

=I 
where A = (Tll - T22)-S2 + (T12 + T21)*S*C 

B = (Tll - TZ2).S*C - (T + T21)*S2 

S = sin24 

c = cos24 

(6.39) 

TO2, etc., are taken to be the matrix elements [eq. (6.10)] at 4 = 0. 00' TO1 and T 

Thus, in their dependence upon the orientation angle 4 ,  all Mueller matrices must 

resemble the matrix product of eq. (6.39). This multiplication has already been performed 

for most of the matrices we discuss in this chapter and accounts for the angular orienta- 

tion dependence built into them. Many Mueller matrices in the literature, however, are 

written only for a special angle, usually 4 = 0, and require the transformation of 

eq. (6.39) before they can be used at other orientations. 

In addition to being useful in providing the dependence of the transmittance of 

optical components upon orientation, the rotation matrix M(4) of eq. (6.37) is the 

Mueller transmittance matrix for an ideal circular retarder. Circular retarders are made 

of materials which exhibit the property called optical activity or circular birefringence. 

Crystal quartz and solutions of dextrose are examples of such materials. 

ized light entering a circular retarder will emerge with its direction of polarization 

Linearly polar- 

rotated by the angle 4 appearing in M(4) .  This angle is the circular retardance and is 

related to the wavelength X and the thickness a of the material by 

[compare with eq. (6.19)] where 

polarized light at wavelength X and nII is for left-handed. For solutions of an opti- 

cally active material 

measurements of the angular rotation of the direction of polarization for a fixed path, 

length provide a convenient means of measuring solute concentrations. 

been developed to a high degree of accuracy in instruments called saccharimeters or 

polarimeters. 

nr is the refractive index for right-handed circularly 

nr - na will be proportional to the concentration of solute so that 

This technique has 
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A different kind of rotation problem arises if we have the Mueller matrix elements of 
an optical component or train of components and ask what happens if the radiation passes 

in the opposite direction through the system. 

answer is that for an original matrix of elements T given by eq. (6.10) the matrix for 

the reversed optical system is 

How does the Mueller matrix change? The 

ij 

T(') = TO1 T1l 'T21 T31 . 
-T 02 -T 12 T22 'T32 

(6.40) 

the rows and columns have been interchangedl and the signs of the matrix elements are 

changed once for every subscript 2 which appears. The interchange of rows and columns is 

understandable because the individual columns operate on the individual Components of the 

Stokes vector of the input radiation while the rows generate the components of the Stokes 

vector of the output radiation. 
isn't surprising that the roles of the rows and columns must be interchanged too. 

change of sign associated with the subscript 2 is caused by the transformation of the +45" 
polarization component into its complementary +135" component when an object is reversed.2 

Imagine a plate containing milled slots in horizontal, vertical, and 45" directions and 

also a hole tapped for a right-handed screw. 

horizontal and vertical slots and the tapped hole will appear unchanged but the 45" slot 

will look like a 135" slot. 

sal, and this requires the sign changes shown in eq. (6.40). 

So if we interchange the roles of input and output it 

The 

Now if the plate is viewed from the back the 

Thus, the +45" and +135" directions change roles upon rever- 

'REAL OPTICAL COMPONENTS 
So far in this chapter we have seen that, if we have a source of unpolarized light, a 

polarization-indifferent detector, a perfect linear polarizer, and a perfect quarter-wave 

plate, we can determine the state of polarization of any arbitrary ray and by varying the 

polarization of such a ray we can use it to characterize or calibrate the response of an 

instrument to polarized light. 

exhibit Mueller transmittance matrices which differ somewhat from those given in 

Unfortunately real polarizers and quarter-wave plates 

'If the rows and columns of a matrix are interchanged the result is known as the transpose 
of the original matrix. 

21t is not obvious that the relationship between the matrix for the combination of a polar- 

izer followed by a quarter-wave plate in eq. (6.35) and its reverse in eq. (6.22) satisfies 

eq. (6.40) 
eq. (6.22); when an optical component at orientation 4 
orientation (180" - 4 ) .  
terms of the same angles it will be found that eq. (6.40) is obeyed. 

This is because the angles used in eq. (6.35) are the supplements of those in 

is reversed it will find itself at 

If the matrices in' eq. (6.35) and (6.22) are both expressed in 



eqs. (6.15) and (6.21). High quality crystal polarizers and retarders will probably 

approach the matrices of eqs. (6.15) and (6.20) closely except for the effects of surface 
xeflections. So, for many radiometric applications, where polarization complications are 

no more than small corrections to measurements often made with complete neglect of polari- 

zation, such optical elements can be used and the Mueller matrices of eqs. (6.15) and (6.20) 

will be adequate to account for their behavior (to within 10% or s o ) .  

Regardless of whether a polarizer and retarder are perfect, if their Mueller matrices 

are known the Stokes components of a ray can still generally be measured essentially as 

described in connection with eq. (6.24). 

the polarizer and retarder are needed as before. The difference is that the Mueller matrix 

of the combination of imperfect elements will differ from fq. (6.22) so that eq. (6.24) 

will not be valid. 

ponents Lo, L1, L2, and L3 and the four measurements at suitable angular settings 

will permit these components to be evaluated. 

be exactly a quarter-wave plate due, for example, to its use at a wavelength other than the 

one for which it was designed. For this case eq. (6.24) becomes [using eq. (6.20) in (6.22) 

instead of (6.21)]: 

Four or more combinations of angular settings of 

However, the analogue to eq. (6.24) will still be linear in the com- 

In the simplest case the retarder will not 

+ L2*[sin 2a*cos 2(B-a) + COS 2a-sin 2(B-a).cos6] 

+ L3*[sin 2(B-a).sin6] 

(6.41) 

Obviously if 6 is known, from eq. (6.19) for example, this equation is no more difficult 

to work with than eq. (6.24). 

The real problem arises when one doesn't know the Mueller matrices of his polarizers 

or retarders and has no sources of polarized light with known Stokes components which can 

be used to calibrate them. One can, with considerable confidence, produce unpolarized 

light and a polarization-indifferent detector (using diffusers, such as integrating 

spheres [13], for instance). With such a source and detector, one can determine only 

element 

Rowever, as we have seen in eq. (6.41), for example, when polarizing components are com- 

bined the transmittance to unpolarized radiation of the combination depends upon additional 

matrix elements of the individual components. Thus, we might expect that measurements of 

the transmittances of all combinations of several polarizing components as a function of 

their orientation angles can yield considerable information about the matrix elements of 

the individual components. Using this idea we show in Appendix 7 how almost any Mueller 
matrix can be measured using nothing more than an unpolarized light source and a polariza- 

tion-indifferent detector. In the following paragraphs we show how the same technique can 

be applied to measure a simple matrix which approximately describes the comon Polaroid 

type of polarizer. 

Too of the Mueller matrix of an optical component or combination of components. 
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Our procedure simultaneously measures three linear-polarizing filters. We assume 

that each is mounted in such a way that it can be reproducibly inserted and removed from 

the unpolarized measurement radiation beam and that it can be rotated about the beam axis, 

with its angular orientation read from a scale fixed to the filter mount. 

especially sheet polarizers, can be expected to exhibit a small amount of retardance. 

Likewise, real retarders may be slightly linearly polarizing. Therefore, for the Mueller 

transmittance matrix of such real components we assume a form which is general enough to 

Include both functions: 

Real polarizers, 

d*C d*S "1  
(6.42) 

1 0 -q-c 

In this expression 4 
the filter mount. C - c0s2(4-4~) and S = sin2(4-4'), where is the orientation of 

the polarization axis of the polarizing filter. The angle go and the parameters s ,  d, 

p, and q are to be determlned by experiment. The form of F(+), of course, includes the 

$-dependence of eq. (6.39). 

is the orientation of the filter as read from the scale attached to 

The parameters s, d, p, and q represent a model for dichroic polarizers of the 

Polaroid type with allowance for some retarder behavior.2 In this model 

s = h(kl + k2) 

p = Jkl-k2-cos6 

where the retardance of the filter 

d h(kl - kZ) 
(6.43) 

q = ,/F2*sin6, 

is 6 and the quantities kl and k2 are known as the 

principle transmittances of the filter. 

light ie 
90') I s  kp. The relationships (6.43) imply that 

The maximum transmittance to linearly polarized 

kl and the minimum transmittance (when the direction of polarization is rotated 

lWe use the word "filter" here and in the rest of. this chapter in a general sense to refer 

to any optical element which may modify the distribution of radiation with respect to any 

parameter, including polarization. 

2Equation (6.42) can also be used to describe the polarizing effects of reflecting surfaces 

[4,14]. If the coordinate system described in the footnote on page 9 is used then 

$ - 4 O *  

3Nominal values of kl and k2 have been published [2] for the common Polaroid polarizers. 
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Thus we really have only three parameters to measure -- say s, d, and p -- in order to 
define the Mueller matrix F completely. Note that the matrix includes, as special cases, 

both perfect polarizers (kl = 1, k2 = 0) and perfect retarders (kl = 1, k2 = 1). It 
also provides for the most important imperfections encountered in real linear polarizers 

and retarders. 

We introduce the notation F($) to indicate the result of a measurement with our 

polarization-indifferent detector of the transmittance to unpolarized radiation of filter 

F when it is turned to an orientation angle $ on its mount. Likewise m(+ ,$ ) is the' 

measured transmittance of the pair of filters F and G at angular settings of $f and 
g f  

respectively. Our notation also indicates the direction of radiation travel -- from 
right to left through the symbols; i.e. through filter F first, then through filter G 
% 
to the detector. 

We first measure the transmittances F ( $ f ) ,  E($g), and i($,) of the three individual 

filters. From eq. (6.42) we see that these are given by 

F ( $ f )  = sf, = s and it$,) = sh 
g' 

where the subscripts on s identify the fiiter to which it pertains. This result should 

be independent of $f, 

should suffice. However, a real filter will probably have small inhomogeneities which may 

move into and out of the beam as the filter rotates. In this case the best that can be 

done is to obtain an average value of s by sampling many orientations $. These averages 

of F($&, etc., we will simply write as i, E ,  and E. Thus, 

and oh, so, in principle, a measurement at any orientation % * 

- 

- 
sf = F, s = G, and s = fi . (6.45) g h 

We now measure the transmittance E($f,$h) of a pair of the filters. From eq. (6.42) 

[sf*sh + df*dh*Cf,] . .  

*c 

[df*sh*Cf + sf*dh*Cf*Cfh + pf*dh'Sf*Sfh] 

[df'sh'Sf i- sf'dh'Sf'Cfh - 'f h f fh 1 ' 

. . .  =I ['f 'dh'Sfh] 

(6.46) 

where we have shown only the first column of the product transmittance matrix because it 

turns out that this is all that enters into the final expressions. We have also used the 

shorthand notation 

and 
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The transmittance E(+ ,+ ) is just the (0,O) element of this matrix or: f h  

By expanding Cfh we can rewrite this as 

where 
- 
FH1 = Sf O S h  

(6.47) 

0 0 - 
FH2 = df-dh-c0s2(+ f -'h) 

E3 = d .d sin2 (+fo - f h  and 

If we measure at two or more sets of angles 4, and Oh we will be able to 

solve the resulting set of equations (6.47) -- either by the usual methods for simultaneous 
equations or, better, by least squares fitting -- for the coefficients m2 and m3. 
E l ,  of course, is already known from eq. (6.45).l In this way the orientation-independ- 

ent coefficients m2 and E3 are measured. From these we obtain 

and df'dh = 4- 
(6.48) 

(6.49) 

By repeating this process for the other two pogsible ways of pairing the three filters we 

obtain the other polarization-axis angle differences and the other 

eq. (6.49). 

ual values of d: 

d-d products like 

The three equations of the form (6.49) can be further solved for the individ- 

- 
- 2  - 2  

df - HG2 +.HG3 

-2 -2 
dh = GF2 + GF3 

(6.50) 

lIf ml 
the model of eq. (6.42) may be inadequate. Most likely some of the (0,3) or (3,O) 

elements don't vanish as assumed in eq. (6.42). 

is determined from eqs. (6.47) and does not agree with F-i [eq. (6.45)] then 
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So far our measurements have given us the orientation of the three filter polarization 

axis directions 

tion of any one of them. 

direction associated with our unpolarized measurement beam. 

orientation can be determined, if desired, by passing a beam known to be partially hori- 
zontally linearly polarized through one of the filters and rotating the filter for maximum 

transmission. At this orientation + = which then serves to determine the values 

of the other two filters from eqs. (6.48). 

polarized light is light reflected from a glass surface oriented so that the plane of 

incidence (the plane defined by the incident and reflected rays) is vertical. 

4' with respect to one another but have not revealed the absolute orienta- 

This is obviously because there is no unique transverse reference 

The absolute polarization axis 

A suitable source of partially horizontally 

The final measurements are of the three-filter transmittances HTF((J~,+~,+~). From 

eqs. (6.46) and (6.42) we find, after some simplification, that the (0,O) element of the 

three-filter product matrix is: 

H-(+ ,+ ,+ ) = sh-sg*sf + s a d  .d * C  + d *d as .C h g f  h g f gf h g f hg 

+ d  h * S  g'df'Cgf'Chg - dh'Pg'df'Sgf*Shg' 

As before C 

thing in this equation is now known [from eqs. (6.45), (6.48), 

=  COS^[(+^ - 
gf 

can be calculated directly: 
pg 

(6.51) 

- (+; - $,",I, etc. Every- 

and (6.49)] except p so 
g' 

(6.52) 

+ E *  'gf "hg 

'gf "hg 

Again this result should be averaged over many settings of 

minimize errors due to filter inhomogeneities. Similar three-filter measurements with 

filters F and H in the middle will permit pf and ph to be determined. Finally the 

values of 

+ f, +g, and +h in order to 

q can be calculatedl from eq. (6.44) and with that the three matrices corre- 

sponding to eq. (6.42) are completely evaluated. 

lThe algebraic sign of q In 

many applications this will be of no consequence. The ambiguity is, in part, due to the 

arbitrariness in the definition of circular handedness. The sign of q can be determined 

if a beam containing circularly polarized light of specified handedness is passed through 

the filter and the output is analyzed with a linear polarizer. See also the discussion of 

these sign ambiguities in Appendix 7. 

is not determined by the procedure we have outlined here. 
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The procedure we have outlined applies only to filters which are at least partial 

linear polarizers. This is because the right-hand side of eq. (6.48) can become indeter- 

minate (010) for a pure retarder or a simple attenuating spectral filter. Any such 

component can, however, be measured by putting it in the middle of a three-filter train 

between two polarizing filters which have already been characterized. Equation (6.51) is 

still valid and the symbol G now refers to the unknown filter. The quantity s can be 
g 

obtained by the single filter transmittance measurement as before. This leaves d 

and Q (appearing in C etc.) to be determined. The angle Q can be established 

by setting +f = Qh + 0; - 4, 
parallel to each other) and rotating the unknown filter G until a maximum transmittance 

is obtained. With the polarization axes of F and H parallel to each other the trans- 

mittance is 

g' pg' 0 

g gf'o g 
(i.e., the polarization axes of F and H are made 

(6.53) 

0 This expression has a maximum at 0 = Qh + Qg - 4: .l This serves to determine the angle 
which once again should be averaged for many settings of Q Once Q o  is known the 

other parameters of filter G can easily be obtained by making many measurements and using 

linear-least-squares fitting in eq. (6.51) or by making measurements at two suitable angles, 

g 

9;. h' g 

and 
dg 

and solving the resulting two equations given by eq. (6.53) for the unknowns 

then follows as before from eq. (6.44). If the transmittance, eq. (6.53), 
+,, 

*go qg 
after averaging over 4, then d = 0, - O, g 

exhibits no significant dependence on 

and p = s . Such a filter is just an attenuating spectral filter. 
Qh 

g g  
Needless to say, with real measurements on real filters some uncertainties in 

determining s, d, p, and q can be expected. For example, if 1% measurements are being 

made of a good linear polarizer the uncertainties in s, d, p, and q will all be 

similar and of the order of s/lOO. But since p - q % 0 the relative uncertainty in these 

two parameters may appear alarmingly large. 

final instrument response from a single matrix element T of an optical component cannot 

be larger2 than the fraction 

linear polarizer the uncertainties in p and q can never contribute more than about a 

1% uncertainty to any measurement made using this polarizer. 

Fortunately, the relative contribution to any 

ij 
ITij/Tool. Thus, in the example of the 1% measurements of a 

lIf d 

*This is true if the ultimate instrument detector responds to a property of the electro- 

magnetic radiation such as power, linear momentum, or photon number, but need not be true 

if it responds to a property characteristic of a particular polarization state such as 

angular momentum. J 

is small but not zero there may be a lesser maximum 90' removed from this angle. 
g 
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Once the Mueller matrix elements have been determined for two real linear polarizers 

and two approximate quarter-wave plates the polarizer and wave-plate pairs can be used to 

generate and analyze a wide range of polarization states of light. 

possible the characterization of more complicated Mueller matrices -- in particular those 
of circular polarizers, which are not included in our general imperfect filter expression 
F FO3 - F30 = 0. 

real, inexpensive, polarizing filters and build up a complete polarization measurement 

capability. 

And this in turn makes 

- in eq. (6.42) because we have set We thus see how we can start with 

POLARIZER-ATTENUATORS 

A three-polarizer train is sometimes used as an absolute or predictable variable opti- 

The first and last polarizers of this train are aligned with their cal attenuator [15,16]. 

polarization axes parallel to each other and the middle element is rotated to achieve the 

desired degree of attenuation. 

mittance of the train relative to its maximum transmittance is therefore: 

Equation (6.53) describes just this arrangement. The trans- 

+ dh*df-(sg - p )*Chi] /[sh*sg*sf + s *d a d  + d O S  .d (6.54) g h g f  h g f  

+ dh*dg*sf]. 

This expression for the relative transmittance, of course, is valid only for unpolarized 

light and a polarization-indifferent detector. If the polarizers are all perfect linear 

polarizers we have 
g 

and pf = pg - - ph = 0. Then sf = sg = sh = 1, df = d = dh = 1, 

If the outer polarizers are perfect and the middle component is a perfect half-wave plate 

instead of a polarizer the only change is that d = 0 and p = -1. This results in 
g g 

0 
2c 

2 
T = - = c0s22($g - $g) . 

In both these cases the light emerging from the attenuator is always completely linearly 

polarized in the direction determined by the final polarizer. 

depends only on the easily measured angle 

The relative transmittance 

. 
$, 

Unfortunately, with real optical elements the values of s ,  d, and p must be known 

if the transmittance is to be calculated accurately as a function of $ from eq. (6.54). 

Moreover, the state of polarization of radiation emerging from the attenuator will depend 
g 
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weakly upon the angle @ and upon the state of polarization of the entering radiation. 

Thus, the Mueller matrix of the rest of the optical system must be known and additional 

matrix elements of the attenuator must be evaluated if the effective relative transmittance 

is to be calculated exactly. 

g 

DEPOLARIZERS 

We briefly mentioned depolarized radiation in the early part of this chapter and 

would now like to say a few words about the means of achieving this. 

mittance matrix for a depolarizer is obviously proportional to 

The Mueller trans- 

0 0 0  [i ! ! :] (6.55) 

Unfortunately no single optical element exhibits this property. 

complete measurement situation with a source radiance vector 

Mueller matrix D, 

(responsivity coefficients) Roo, Rol, etc., we have for the radiometer output signal: 

However, if we consider a 

L, an optical component with 

and a radiometer with responsivity matrix R ,  with the elements 

(6.56) 

where Aw, AA, AA, and At are the resolution intervals of the radiometer in these 

parameters. 

the upper row of the responsivity matrix 2 to obtain the output signal 
responsivity of the radiometer and the Stokes spectral radiance vectors of the source are 

sufficiently uniform over the radiometer resolution intervals, they can be removed from 

this integral to give 

(As in our discussion of the calibration of a radiometer, we actually use only 

S.) If the 

where 

(6.57) 
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except <DO0> can be made to vanish, the Mueller matrix <D> will become 

(6.58) 

which is the form for a depolarizer. Most depolarizers consist of two retarders [eq. (6.20)] 

placed one behind the other. The (0,O) element of the resulting product matrix is 1 and 

all the other elements are zero or are trigonometric functions of the 0 ' s  and 6's of the 

two retarders. By carefully choosing the I$ values (or the 8 values) and averaging over 

a range of 6 ' s  (or 4 ' s )  these trigonometric matrix elements can be made negligibly 

small. The 6 ' s  (or +'s) ,  over which the device averageqare arranged to vary in time, 

wav.elength, position or direction. Depolarizers which depolarize by averaging over wave- 

length (%lo0 nm) [17] or over time (%l sec) [17] or over the cross-sectional area of the 

beam ( ~ 1  em2) [3] have been used and' will be described more completely in Part 11. 

izers are frequently known as pseudo-depolarizers or as polarization scramblers. 

Depolar- 

A SIMPLIFIED CHARACTERIZATION of POLARIZATION 

Many radiometric measurements involving polarized light are carried out using just two 

measurements -- one with a linear polarizer set in a horizontal orientation in front of the 
detector and the second with the polarizer turned 90". 

of such measurements are and under what conditions they will be sufficient to characterize 

a light ray. 

is perfect so that its Mueller transmittance matrix in the horizontal orientation is: 

Let us see what the limitations 

In order not to complicate matters unduly, let us assume that the polarizer 

and in the vertical orientation: 

We will also assume that the detector is polarization indifferent or has been compensated 

or calibrated for horizontally and vertically polarized radiation. 

polarized ray with Stokes vector 

When an arbitrarily 
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L 

and 

passes through the linear polarizer in the two orientations, we have 

0 "1 
Lo - L1 
-L 0 + L1 

0 

, o  

The detector will record signals proportional to 

respectively. Thus the original components Lo and L1 can be calculated from 

&[Ld(OO) + Ld(90°)] and %[Ld(O0) - Ld(90°)]. If we can assume that L2 = L3 = 0 then 

the light beam has been completely characterized. Usually L the spectral radiance, and 

the degree of polarization [eq. (6.611 

Ld(0") - Lo + L1 and Ld(90") = Lo - L1, 

0' 

Ld(0")  - Ld(90") 
L I (0" )  + Ld (90") LO 0 

P I -  L1 = 

are the quantities reported. Thus we see that the two-measurement description of polarized 

light is limited t o  those situations in which (as we could have guessed) there is no 45" 

(or 135") linearly polarized component and no circularly polarized component. 

tion of the +45"-preference component can always be arranged by suitable choice of the 

reference "horizontal" direction. 

of this direction this entails the equivalent of at least one additional measurement to find 

this direction and there is thus no real saving in attempting to eliminate this component. 

In many situations, such as scattering studies of isotropic samples irradiated, first, by 

radiation polarized in the plane of incidence and then by radiation polarized perpendicular 

to the plane of incidence, a reference direction parallel to or perpendicular to the plane 

of incidence can be taken and the +4S0-preference component may then be safely neglected 

(but only if the sample is isotropic). 

is probably usually justified in most radiometric measurements where uncertainties of a 

The elimina- 

Note, however, that unless one has some a priori knowledge 

The neglect of the circularly polarized component 
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percent or so are tolerable. 

included, however, because it can creep in whenever partially polarized light at non-normal 

incidence is reflected from mirrors or transmitted through films. 

simplest instruments will be likely to exhibit some circular-polarizatioq selectivity. 

For the highest accuracies circular polarization must be 

Thus, any but the 

When circular polarization can be neglected most of the discussions of this chapter 

can be greatly simplified. For example, no measurements involving retarders such as quar- 

ter-wave plates need be considered; sources, optical components and radiometers can be 

completely characterized using only linear polarizers. Also the procedure outlined in 

eqs. ( 6 . 4 2 )  to ( 6 . 5 3 )  for measuring the Mueller matrix of a polarizer can be simplified by 

omitting the three-filter measurements because we can now set 

for each filter. 

q = 0 and p2 = s2 - d2 

EXPERIMENTAL CONCERNS 

We have tried in this chapter to present a complete, exact treatment of polarization 

and an indication of how this treatment can be applied in the laboratory. We have not 

mentioned the experimental problems which make high accuracy polarization measurements 

difficult -- these properly belong in later chapters where we deal with specific radiometric 
instruments. 

The proper experimental inclusion of polarization in measuring instrumentation, as we have 

seen, requires the insertion into the optical path of one, two, or three polarizing filters 

of one kind or another. These must be rotatable and it must be possible to measure the 

angles of rotation, or at least to set each filter reproducibly at several preselected 

angular positions. 

filter transmittance on angular orientation which may be unrelated to the polarization 

property being investigated. For anything more than qualitative observations it is there- 

fore important that polarization measurements be carried out and suitably averaged over 

many orientations of the polarizing components. Another experimental difficulty common to 

all measurements using multiple filters in tandem but which is exacerbated with polarizing 

filters is that of filter-filter interreflections. Such interreflections have the effect 

of increasing the apparent transmittance of the filter train and thereby introducing errors. 

In the case of polarizing filters this problem can be eliminated by the usual technique of 

tilting the filters, but the axis of rotation of the filters must remain parallel to the 

beam axis. Thus, the filter must wobble as it is rotated. If a tilted polarizing filter 

were rotated about an axis perpendicular to its face, then entering radiation would be 

partially linearly polarized at a fixed orientation by the tilted first surface, resulting 

in observations of partial polarization even of unpolarized light. 

with the filter, however, then this polarizing effect becomes simply an integral property 

of the filter and will be accounted for in the measured Mueller transmittance matrix ele- 

ments. Of course, the filter must always be used at the same tilt orientation. Another 

complication which may require experimental attention is that the lateral displacement of 

the beam as it passes through the tilted filter now rotates with the filter. 

However, some brief mention of some of these problems seems appropriate here. 

Unless the filters are absolutely uniform there will be a dependence of 

If the tilt rotates 
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SUMMARY of CHAPTER 6 .  

Polarization can be included rigorously in classical radiometry (geometrical optics) 

by treating spectral radiance as a four-component mathematical column vector called a 

Stokes vector 

(6.8a) 

The four components of L, are known as Stokes components. The Stokes vector and its 

components, in general, depend upon ray position and direction and upon wavelength, i.e., 

is the spectral radiance which a upon x,y,0,+, and A. The first Stokes component L 

polarization-indifferent detector would measure. It is the measure of the spectral radiant 

flux associated with the ray and is identical to the spectral radiance discussed in earlier 

chapters. 

polarization over its complementary form. 

vertical linear polarization, L describes the excess of +45" over +135' linear polar- 

ization and L describes the excess of right over left circular polarization. The 

spectral radiance 

190 

Each of the other three components of L, represents the excess of one form of 

describes the excess of horizontal over Lh,l 

1 9 2  

A 9 3  
given by 

LLP' 
is the sum of two parts, a polarized part, LA,O' 

and an unpolarized part 

L - L  - A,u A,O LA,p' 

The fraction 

= Lx,p'Lx,o 

is known as the degree of polarization. 

In this description of polarized radiation the transmittance or propagance of an 

For example optical path is represented by a 4 x 4 matrix known as a Mueller matrix. 

(compare eq. (3.14) [l]) 

L; = 1-L, ( 6  9a> 

relates the spectral radiance L at one point on a ray and the propagance T along the A 
path between that point and a second point to the spectral radiance 

point. The Mueller propagance matrix T in this equation is given by 
LA( at the second 
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T =  

so that eq. (6.9a) is equivalent to 

Ld 
= TOO*LO + TO1*L1 + TO2*L2 + TO3*L3 

Li 
= TIO*LO + Tll*L1 + T12*L2 + T13*L3 

where we h ve dropped 

L; = T20*L0 + T21-L1 + T22'L2 i- T23'L3 

L; 
= T30*L0 + T31*L1 + T32-L2 + T33-L3 

he subscript X for simplicity. 

(6.10) 

When polarization is included, the spectral radiance of a ray of radiation transmitted 

by a train of optical components depends upon the order in which the propagating flux in 
the ray encounters the components. 

writing the Mueller matrices and the Stokes vectors. 

on the right and the Mueller matrices are written from right to left in the order in which 

the optical components they represent are encountered. The resulting matrix equations can 

then be evaluated by the usual matrix multiplication rules (Appendix 6). 

This is reflected in matrix equations by the order of 

The entering Stokes vector is written 

The Mueller transmittance matrix of an ideal linear polarizer is given by 

1 c  s o  
c c2 s*c 0 

s s-c s2 0 

0 0  0 0  

Pt4) = k (6.15a) 

where C = cos24, S = sin24, and 4 is the angle between the polarization axis of the 

polarizer and the horizontal polarization reference axis of the ray. When a ray of arbi- 

trary spectral radiance is passed through such a polarizer the polarization state of the 

transmitted ray can be predicted by performing the matrix multiplication indicated in 

eq. (6.9a): 

L' = PC4) * L  = pc4, 

L O  

L1 

L2 

L3 

= %(Lo + L1'C + (6.17) 
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The transmitted ray has a spectral radiance of %(L 

circularly polarized component (L; -- 0) but is completely linearly polarized at the angle 

4 ,  [P = 1, from eq. (6.6)]. 

+ L *cos24 + L2*sin24). It has no net 0 1  

The Mueller transmittance matrix of an ideal linear retarder is 

(6.20) 

where C = cos2$, S = sin24, and @ is the angle between the fast axis of the retarder 

and the horizontal reference axis of the ray. 6 is the retardance of the device and is 

proportional to the thickness of the retarder plate. If 6 = nf2 [rad] the retarder is 

called a guarter-wave plate, which has a Mueller transmittance matrix 

(6.21) 

The combination of an ideal quarter-wave plate and an ideal linear polarizer can be 

used either to determine the state of polarization of an arbitrarily polarized ray or to 

produce any given state of polarization. 

quarter wave plate at angle a and then through a fixed polarizer at angle B the trans- 

mitted ray is given by 

If the radiation passes first through a rotatable 

If the spectral radiance of the transmitted ray is measured at four suitable orientations 

a of the quarter-wave plate the four simultaneous linear equations of the form of 

eq. (6.23) can be solved for the Stokes components 

ray. 

orientation 8, the measurement can, in principle, be carried out by a detector of any 

arbitrary polarization selectivity. For absolute measurements, however, a calibration of 

the detector will be required using (usually) a differently polarized source. In this case 

it will be simpler if the detector is polarization-indifferent so that the spectral-radiance, 

Lo, L1, L2, and Lj of the original 

Since the transmitted beam is always completely linearly polarized at the fixed 
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Ld, is the quantity measured. 

If the radiation passes first through the polarizer and then through the quarter-wave 

plate, the transmitted ray will be described by 

%(Lo + L1'C0S2f3 + L2' msin2f3) 
cos2a~cos2(a-f3) 

sin2a.cos2(a-f3) I sin2(a-f3) I -  (6.35) 
B suitable choice of the orientation angles of the quarter-wave plate and polari e any 
pure polarization state from circular (la-61 = 45") to linear (a-f3 = 0") can be realized. 

The final electrical, thermal, or chemical response, S ,  of a radiometer depends upon 

all four Stokes components of the entering radiance: 

(Roo*Lo + RO1*L1 + R 02*L2 + Ro3*L3)*dw*cos0*dA.dA. (6.36)' 

The quantities AA, AA, and Aw are the acceptance intervals of the radiometer. If these 

acceptance intervals are sufficiently small that the Stokes spectral-radiance components 

can be assumed constant and removed from the integrals in eq. (6.36) then we can write 

S = ROO*LO + RO1*L1 + RO2*L2 + RO3*L3. (6.36a) 

The values of the responsivity factors 

tions of the radiometer output for a beam in four different, known states of polarization 

such as can be obtained from the polarizer and quarter-wave plate combination described by 

eq. (6.35). If the first optical component of the radiometer is a perfect diffuser, 

eq. (6.36) reduces to 

ROi can be determined experimentally from observa- 

S = R  *'$ 
00 0 (6.36~) 

where *dw*cose*dA*dh is the total radiant flux falling on the diffuser 

within .the wavelength band pass of the radiometer. If neither of these simplifications is 

appropriate the dependence of the coefficients upon ray position, direction and wave- 

length can, in principle, be determined by probing the radiometer with rays of known polar- 

ization state. With these functions known, then, a radiometer measurement of an unknown 

beam provides one relationship among integrals of the four Li(x,y,O,@,A) functions. If 

the use of the radiometer is restricted to comparisons of beams with identical relative 
spectral-radiance distributions then such detailed knowledge of its responsivity is unnec- 

essary and four measurements of different known polarization states will characterize it 

for this purpose. 

Roi 
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The ideal Mueller transmittance matrices of eqs. (6.15) and (6.20) are only approxi- 

mations to the transmittance matrices of real optical components. Many real linear 

polarizers and retarders can, however, be adequately represented by Mueller matrices of the 

form 

d*C d*S 0 1  

where 

and 

d*S (s-p)*S*C S*S2 + p*C2 q-C 

d*C s*C2 + pas2 (s-p)*S.C I Fto) = 

L O  -q*c P J  

(6.42) 

(6.44) 

The values of s, d, and p as well as the filter polarization axis direction 4' can be 

determined experimentally by appropriate transmittance measurements. 

known variable polarization state are available it is possible to measure these parameters 
with sufficient accuracy for most radiometric applications by making transmittance measure- 

ments in unpolarized light on three or more such objects as a function of their orientation 

angles. Once the Mueller transmittance matrices of a polarizer and an approximate quarter- 

wave plate have been established they can be used for analyzing or generating a wide range 

of arbitrary polarization states by generalizing eqs. (6.23) and (6.35). 

If no sources of 
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Appendix 6. Matrix Multiplication 

A = [ A  ] =  rc 

by John B. Shumaker 

In this appendix we review the rules for matrix multiplication. We will confine Our 

attention to the 4-component Stokes polarization vectors and the 4 x 4 Mueller matrices 
encountered in the study of polarization in Chapter 6. 

reader should consult mathematics or mathematical physics texts [7,18]. 

A Mueller matrix is a two-dimensional array of 16 numbers, the symbol for any one of 

which may be labeled by two subscripts. 

the column of the element in question. 

equivalent ways: 

For a more general treatment the 

The first subscript denotes the row and the second 

A in any of the following We can write the matrix 

A1O A12 A13 

A20 A21 A22 A23 

r.00 AO1 A02 A03 1 

IA30 A31 A32 A33 1 
The product of two matrices A and B is a new matrix 

C = A * B  

each of whose elements is computed by the formula: 

3 

k=O 'rc = Ark'Bkc9 r,c = 0, 1, 2, 3. 

(A6.1) 

(A6.2) 

(A6.3) 

Unfortunately our page isn't wide enough to display the complete product matrix in one 

block; however, if we may be permitted to break it between the second and third columns we 

can show it all. 

c 
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We may think of a Stokes vector 

( A 6 . 5 )  

as a matrix in which all columns after the first column are zero. 

product of a Mueller matrix by a Stokes vector 

Viewed this way the 

L' = AWL ( A 6 . 6 )  

follows the formula given above. 

product as 

Alternatively we may write a special formula for this 

3 

k-0 
L: cArk'% r = 0, 1, 2, 3 

or 

Ld - AOO*LO + Aol*L1 + AO2-L2 + A03'L3 

Li = AIO*LO + AI1*L1 + A12*L2 + A13*L3 
L; = A20*L0 + A21-L1 + A22*L2 + A23*L3 
L; = A30*L0 + A31*L1 + A32*L2 + A33*L3 . 

( A 6 . 7 )  

The meaning of the product of a matrix or vector by a scalar [which is any non-matrix, 

0 non-vector quantity such as 4, T(A), or %(L + L1-c0s2B + L2*sin2B)] is that each 

element of the matrix or vector must be multiplied by the scalar. For example, 

Similarly, 

( A 6 . 8 )  

( A 6 . 9 )  
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Appendix 7. The Measurement of Mueller Transmittance Matrices 

by John B. Shumaker 

In this appendix we show how Mueller filter transmittance matrices consisting of six- 

teen arbitrary matrix elements may be determined experimentally using an unpolarized source 

of radiation and a polarization-indifferent detector. 

of making unpolarized transmittance measurements of polarization filters singly, in pairs, 

and in triples, as a function of the angular orientations of the filters. In practice, in 

the presence of experimental measurement noise, difficulties may arise in the numerical 

solution of the equations which follow, but we ignore such problems here. 

this appendix is merely to demonstrate in principle the measurability of an arbitrary 

Mueller matrix using only an unpolarized source and a polarization-indifferent radiometer 

with no previously characterized polarizing optical components. 

The technique consists essentially 

The purpose of 

The procedure simultaneously measures three polarization filters. We assume that each 

is mounted in such a way that it can be reproducibly inserted into and removed from the 

measurement radiation beam and that it can 

orientation read from a scale fixed to the 

and H we take their Mueller transmittance 

p o o  FO1 

F1O F1l 

F20 F21 

F30 F31 

F(O"> = 

GO1 

G1O G1l G(o">  = I G20 G21 

LG30 G31 

be rotated about the beam axis with its angular 

filter mount. If the filters are labeled F, G, 

matrices to be perfectly general: 

I F02 F03 

F12 F13 

F22 F23 

F32 F33 
(A7.1) 

and similarly for H. Their dependence upon the orientation angles Qf, Q g Y  and 6, is 
given by eq. (6.39). 

attached to the filter mounts. 

Q = 0" directions (at which tlie matrices written above apply) and the polarization axes of 

the filters, if any. 

These angles are just the orientation angles read from the scales 

We make no assumption about the relationship between the 

The simplest measurements to make are the transmittances of the individual filters as 

measured with our beam of unpolarized light and our polarization-indifferent detector. We 

shall denote these measured transmittances by simply writing a bar over the filter label: 

F, G, and E. These transmittances give us directly 
- 

- 
E = G  oo, and H = HO0. 00 , F = F  
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The next simplest set of measurements we can make is of the filters taken in pairs. Let us 

consider the pair F and H and pass the measurement beam through in the direction from F 

to H. The measured pair transmittance, which we will call s, is just the (0,O) element 

of the matrix product 

That is 

where Chf =  COS^($^-$^), 
(6.39). 

can be solved as simultaneous equations or least-squares fitted to obtain values for the 

coefficients (appearing in parentheses) of the constant and cosine and sine factors in 

eq. (A7.3). Let us call these quantities sl, E2, and 1,: 

Shf = sin2($h-$f), and the angular dependence comes from eq. 

If this measurement is made at a number of angular differences, I#,-$,, the results 

El = HOO*FO0 + H03*F30 

s2 = HO1*Fl0 + HO2*Fz0 

5, = HO1*FZO - HO2*Fl0. 

(A7.4a) 

(A7.4b) 

(A7.4~) 

We can also reverse either filter and repeat the measurements. 

we will get two more sets of equations: 

Using eq. (6.40) we see that 

HF; = HOO'FOO -t H03'F03 

iz; = HO1'FO1 - H02'F02 
HF; -HO1*Fo2 - H02 FO1 
- 

and 

HTP~ = H ~ ~ * F ~ ~  + H ~ ~ - F ~ ~  

'ITP2 = H ~ ~ * F ~ ~  - H ~ ~ * F ~ ~  

H-F, - H ~ ~ * F ~ ~  + H ~ ~ * F ~ ~  

(A7. Sa) 

(A7.5b) 

(A7.5~) 

(A7.6a) 

(A7.6b) 

(A7.6~) 

where we have used a prime (I) to indicate a reversed filter. 

filters F , G  and G,H we can obtain similar equations in products of F and G matrix 

elements and products of G and H matrix elements. Since the (0 ,O)  elements of F, 
6, and H are known [eq. (A7.2)], eq. (A7.5a) and its analogs in FG and GH can be 

solved for FO3, Go3, and €Io3. Likewise from eq. (A7.6a) and its analogs F30, G30' 

Using the other two pairs of 
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and H30 can be obtained. The result for filter G is 

(A7.7b) 

The other solutions can be obtained by cyclic permutations of the symbols F, G ,  and H. 

Notice that when 

sign for the square root. 

GO3 (or G ) is calculated we may take either the positive or negative 30 
This ambiguity arises because we have not defined in our experi- 

ment what we mean by right-circular polarization. 

to be associated with a positive value for the L3 Stokes component. If consistency with 

an independent standard of handedness is necessary then a filter or beam of known handed- 

ness is required. Once one sign has been chosen then the signs of all the other (0,3) and 

(3,O) matri? elements are uniquely defined by equations (A7.4a), (A7.5a), (A7.6a) and their 

analogs. 

We are free to choose either direction 

Equations (A7.5b) and (A7.5~) and the similar equations written for the other two 

filter pairs constitute six equations in six unknowns. 

filter G ,  for .example, is 

The solution of this system for 

(A7.8a) 

(A7.8b) 

where 

and 

The solutions for F and H can be obtained by permuting the symbols. The solution of 

the six equations like eqs. (A7.6b) and (A7.6~) for the (1,O) and (2,O) matrix elements 

follows immediately by symmetry. Again we see that the sign of GO1, for example, can be 

chosen arbitrarily after taking the square root of eq. (A7.8a). As with GO3 we are free 

to take either sign but not if we want to be consistent with other polarization optics. 

for example, is primarily a linear polarizer which is more transparent to horizontally 
polarized light when $ = 0 than to vertically polarized light then GO1 should be chosen 

If, 

G 

g 
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positive. A suitable source of partially horizontally polarized light is light specularly 
. reflected from a glass surface oriented so as to produce a vertical plane of incidence. 

Similarly, if at 4 = 0 it is more transparent to +45" polarized light than to +135' 

polarized light then Go2 should be taken positive. Once these two signs are established 

all the others are determined by eqs. (A7.4), (A7.5), (A7.6), etc. 

g 

Finally we measure the transmittance of all three filters together. Let us assume 

that the beam passes through them in the order F,G,H so that the measured transmittance, 

HGF is given by the (0,O) element of the matrix product 

If we perform the matrix multiplication we find that this (0,O) element is given by 

HGF = HGF~ + HGF -c + HGF a s  + HGF *c + HGF 0s 
2 gf 3 gf 4 hg 5 hI3 

+ KF6 Cgf Chg + w F 7  *Cgf *Shg + HGF~ sgf *chg + Hmg*Sgf*Shg 

where 

_. 

HGFl = HOO*GOO*FOO + HOO'G03'F30 + H03'G30'F00 H03'G33'F30 

K F 2  = 

HGF3 = 

HOO'GO1'F1O + HOO'G02'F20 + H03'G31'F10 + H03'G32'F20 

HOO*G01-F20 - HOO'G02'F10 + H03'G31'F20 - H03'G32'F10 
- 

Z F 4  = HO1'G1O'FOO + H01'G13'F30 H02'G20'F00 H02'G23'F30 

HGF5 = -H02'G10'F00 - H02'G13'F30 H01'G20'F00 H01'G23'F30 
- 

W F 6  = HO1'G1l'F1O + H01'G12'F20 + H02'G21'F10 + H02'G22*F20 

(A7.9) 

(A7.10) 

- 
HGF7 -HO2*Gll*Fl0 - H02'G12'F20 + H01'G21'F10 + H01'G22'F20 

H01'G11'F20 - H01'G12'F10 + H02'G21'F20 - H02'G22'F10 Z F s  = 

- 
HGFg -H02'Gll'F20 + HO2*Gl2'Fl0 + H01'G21*F20 - H01*G22*F10 

and C = c0~2(4~-4~), S = sin2(4 -4 ), etc. Again we assume that by least squares 

fitting or by solution of simultaneous equations we have obtained numerical values for the 

coefficients KF1, m 2 ,  etc., of all the trigonometric factors in eq. (A7.9); that is, 

we assume that we know the left-hand sides of eqs. (A7.10). 

we now know everything except 

of eqs. (A7.10) are a pair of equations in which the only remaining unknowns are and 

G32. Likewise the next two equations contain only two unknowns, G13 and G23. The last 

four equations of the set (A7.10) contain the four unknowns 

gf gf g f  

In the first of eqs. (A7.10) 

G33 so it can be solved for directly. The second and third 

G31 

G11, GI29 Gals and G 22. Thus, 
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all the rest of the matrix elements of the Mueller matrix for the filter G can be deter- 

mined from these nine coefficient values. Measurements of the three-filter train in the 

orders G, H, F and H, F, G will permit the remaining matrix elements of the other two 

filters to be determined. 

appearing in the set of equations (A7.10). The procedure to obtain the solutions is 
obvious and straightforward, but the entire data reduction process for this general case is 

clearly best left to a computer, if possible. 

We won't attempt to write out explicit solutions for the unknowns 

We have assumed that the matrix elements in the first row and first column are non-zero. 

If zeros appear here some of the matrix elements may become indeterminate. For example, in 

eq. (A7.7a) if either FO3 or HO3 vanishes the denominator and one factor of the numera- 

tor will both vanish and G cannot be evaluated. The physical reason for this is clear. 

The experimental procedure, in effect, requires generating partially circularly polarized 

light with one filter and then analyzing it with a second filter. If the first filter fails 

to produce circularly polarized light, no information can be obtained about the circular 

polarization behavior of the second filter. Similar arguments apply to the other first 

column and first row matrix elements. The extreme case occurs when all the first column 

and first row elements of one filter, say G, vanish. Then G is totally opaque and 

obviously contributes nothing to the measurement of filters F and H. With only two 

filters, FO0 and HO0 can be measured as before, but equations ( A 7 . 4 ) ,  (A7.5), and A7.6) 

provide only 9 equations in 12 unknowns and contain no information about the 18 other matrix 

elements which do not lie in the first row or column. When the equations become insoluble 

because of the occurrence of zero denominators one must either abandon the attempt to 

measure the inaccessible matrix elements or find other filters which don't have such limi- 

tations. 

03 

When the matrix elements for an optical component have been determined as outlined 

above they can be inserted in eq. (6.39) to obtain the orientation dependence of the Mueller 

matrix. In general, even for ideal optical components the result will not agree with, for 

example eq. (6.15), but this is only because the angle between the polarization axis of the 

device and the @ = 0" direction was assumed arbitrary. The direction of the polarization 

axis can be found, if desired, by finding the angle +O at which the experimental Mueller 

matrix most nearly resembles the matrix for the ideal component. 

linear polarizer at 

find the angle + O  at which the (0,2) element [from eq. (6.39)] of the experimental 

matrix vanishes. That is, 

For example, for an ideal 

+ = 0" the (0,2) element vanishes so for a real polarizer we must 

GO1 sin2$~~ + G 0 2 * ~ ~ ~ 2 + o  = 0 

or 

= -karctan(G /G ).  02 01 

This is the direction of the polarization axis and if the orientation angle for an ideal 

component is measured from this direction instead of from $J = 0" its experimentally 

determined Mueller matrix should agree with that given by eq. (6.15). 
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