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PREFACE 

Preparation of the NBS Self-study Manual on Optical Radiation Measurements is an important 
part of our effort to meet the needs of the National Measurement System with respect to the 
measurement of optical electromagnetic radiation. Significant needs exist for measurements 
with uncertainties of about one percent, but the uncertainties actually achieved are often 5 
to 10 percent, or even more. These relatively poor accuracies, as compared to those in many 
other types of physical measurements, result to a great extent from the multidimensional 
character of optical radiation; radiant power is distributed and may vary with position, 
direction, wavelength, polarization, and time. Measurement results are also affected by 
various instrumental and environmental parameters. In addition, many of those who make meas- 
urements of optical radiation have little or no training or experience in this field and are 
limited in the amount of time they can devote to acquiring the needed information, under- 
standing, and proficiency with measurement techniques. Moreover, there are few schools that 
offer courses in radiometry, and there are almost no adequate texts or references dealing with 
this entire subject. 

The idea of producing a Self-study Manual at NBS to try to fill some of this void was 
developed by one of us (HJK) in the latter part of 1973. Detailed planning got under way in 
the summer of 1974 when a full-time Editor (FEN) was appointed. The first nine chapters were 
published in a series of four NBS Technical Notes (910- series) up to June 1979. However, 
subsequent progress was slowed by administrative uncertainties and problems that affected the 
availability of authors, causing several changes in scheduling, and that finally ended all 
direct NBS funding for the Project on September 30, 1979. Welcome transfers of funds from a 
number of other federal agencies were obtained to carry the Project to September 30, 1980, 
with the hope that it could then be restored to the NBS budget. When that failed to materi- 
alize, outside funding was again obtained to September 30, 1981 (through FY 81). 

Meanwhile the Program Director (HJK) retired at the end of May 1981, and the Editor (FEN) 
on September 29, 1981. However, remaining FY 81 funds were used for a grant to Catholic 
University of America (CUA), with whom NBS negotiated a cooperative agreement under which CUA 
hired the full-time Editor (FEN) who continues, as before, at NBS (same address and telephone), 
working closely with the new Project Head (JBS) there. CUA is also engaging the services of 
three other former NBS employees: Dr. Kostkowski as part-time consultant throughout the 
Project and as author or co-author of two more chapters, Mr. Richmond as author or co-author 
of two more chapters, and Dr. Venable as author of one more chapter, as outlined in more 
detail below. 

This Technical Note 910-6, with Chapter 10 of Part I--Concepts, is the first departure 
from classical (geometrical- or ray-optics) radiometry in this Manual. From the beginning, 
due primarily to the rapid growth in the use of lasers, there has been a clear and increas- 
ingly urgent need for a treatment of the radiometry of coherent radiation, where geometrical 
(ray) optics is often an inadequate approximation. However, when Dr. Shumaker started, almost 
three years ago, to look into the possibility of writing a chapter on coherence in radiometry, 
it was still not clear whether the basic theory on which this chapter could be based had been 
developed sufficiently to make it feasible. Fortunately, the recent rapid progress in this 
area has taken place and we are delighted to be able, at last, to respond to a number of 
repeated requests for the material in this chapter. 

Our aim for the entire Manual has been to provide a comprehensive tutorial treatment that 
is complete enough for self instruction. That is what is meant in the title by "self-study"; 
the Manual does not contain explicitly programmed learning steps as that term often connotes. 
In addition, through detailed, yet concise, chapter summaries, the Manual is designed to serve 
also as a convenient reference source. Those already familiar with a topic should turn 
immediately to the summary at the end of the appropriate chapter. They can determine from 
that summary what, if any, of the body of the chapter they want to read for more details. 

The material in the Manual is presented at the level of a college graduate in science or 
engineering, but even for those with facility in college mathematics and a first course in 
physics, it's not at all easy reading in spite of our best efforts at clarity and simplicity. 
This is an unavoidable result of the primary aim ("to make one-percent measurements common- 
place") coupled with the fact that it must serve the needs of so many different fields, 
including astronomy and astrophysics, mechanical heat-transfer engineering, illumination 
engineering, photometry, meteorology, photo-biology and photo-chemistry, optical pyrometry, 
remote sensing, military infrared applications, etc. Chapter 10 is probably one of the most 
difficult, since it is the first attempt by anyone, so far as we know, to present the radio- 
metric implications of coherence as they affect those making such measurements. We've done 
our best to make it as simple and readable as possible, but it just isn't a simple subject. 
Most readers will probably find that they can't follow it all on first reading, even taking it 
slowly and carefully. 
once if necessary. We wish we could suggest a number of other sources to consult, a technique 
that often helps in such situations. However, the whole viewpoint .and approach needed here is 
so different from that of most of the other publications on coherence (that aren't primarily 
concerned with making radiometric measurements) that it may be difficult to reconcile them 
with the material here. Furthermore, enough care and thought have gone into the preparation 

But don't be discouraged. Sleep on it and come back to it, more than 
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of this chapter to convince us that it is sound and that, if you'll persevere and give enough 
time for each new idea to become familiar to you, you'll find that it's an adequate and useful 
introduction. 

Apparently it is very difficult for those who have not been directly involved to realize 
the full implications of the situation just discussed. Each of us tends to think of radiom- 
etry and radiometric measurements in terms of our own immediate experiences and requirements. 
What each of us would like to have is a set of simple, carefully designed procedures for 
making our own particular measurements, with appropriate cautions concerning likely sources of 
error. However, the next reader wants the same thing, but for entirely different measurements. 
The desired radiometric quantities to be measured are different, the instrumentation is dif- 
ferent, the ambient conditions are different -- the possible ways in which significant differ- 
ences may exist, in terms of the radiation parameters (position, direction, spectrum, time or 
frequency of modulation or fluctuation, and polarization) as well as instrumental and environ- 
mental parameters, are so numerous that any attempt to cover them all with a "cookbook" treat- 
ment of specific measurement procedures would be impossibly unwieldy and could never be com- 
pleted within any conceivable budget limitations short of utopia. The only way in which we 
can hope to effectively assist every reader who needs to make one-percent measurements is to 
provide you, the reader, with material which, with sufficient effort on y o u r  part, will help 
you to develop sufficient understanding and grasp of basic principles to solve your own par- 
ticular measurement problems. That's why we have concentrated on the basic material of Part 
I--Concepts and why it is not easy reading. 

As an exception, we are currently publishing, in NES TN 910-5, just one chapter of Part 
111--Applications (see list of chapters, past, present and future, below). It gives a detailed 
account of some very difficult high-accuracy field measurements of ultraviolet solar terres- 
trial spectral irradiance, with frequent references to applicable portions of the earlier 
chapters of Part I--Concepts to illustrate how they can be used to achieve improved measure- 
ment results. It also illustrates clearly the complexities of such high-accuracy measurements 
that make it impossible for anyone other than you yourself to determine the details of how 
best to make your particular measurements with your particular instruments and constraints and 
for your particular objectives. 

The present chapter on coherence is, like Chapter 6 on polarization, an attempt to present 
the subject as it pertains to radiometric measurements. There are many interesting and highly 
important features of coherence phenomena, as well as of polarization phenomena. However, we 
are not concerned with them here, as such, but only to the extent that they affect the measure- 
ment of the flow of power or flux in a beam of electromagnetic optical radiation. 

The basic approach and focal point of the treatment in this Manual is the measurement 
equation, first introduced in detail but limited to the radiation parameters of position, 
direction, and spectrum, in Chapter 5 .  We believe that every measurement problem should be 
addressed with such an equation, relating the quantity desired to the data obtained, through a 
detailed characterization of the instruments used and the radiation field observed, in terms 
of all of the relevant parameters. These parameters always include the radiation parameters 
(listed above), as well as environmental and instrumental parameters peculiar to each measure- 
ment configuration. The objective of the Manual is to develop the basic concepts required so 
that the reader will be able to use this measurement-equation approach. It is our belief that 
this is the only way that uncertainties in the measurement of optical radiation can generally 
be limited to one, or at most a few, percent. 

The original, overall plan for the Manual organized it into three Parts: Part I--Concepts, 
Part 11--Instrumentation, and Part 111--Applications. That was our rather ambitious plan when 
we started out; limitations of support and available resources, particularly available authors, 
have determined how much, or how little, we could accomplish. So far, as indicated above, we 
have concentrated on Part I--Concepts. The Part I chapters already published are: 

1. Introduction, by F. E. Nicodemus, H. J. Kostkowski, and A. T. Hattenburg 

2. Distribution of Optical Radiation with Respect to Position and 
Direction--Radiance, by F. E. Nicodemus and H. J. Kostkowski 

3 .  Spectral Distribution of Optical Radiation, by F .  E. Nicodemus 
and H. J. Kostkowski 

4 .  More on the Distribution of Optical Radiation with Respect to 
Position and Direction, by Fred E. Nicodemus 

5 .  An Introduction to the Measurement Equation, by Henry J. Kostkowski 
and Fred E. Nicodemus 

6 .  Distribution of Optical Radiation with Respect to Polarization, 
by John E. Shumaker 
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7. The Relative Spectral Responsivity and Slit-Scattering Function 
of a Spectroradiometer, by Henry J. Kostkowski 

8. Deconvolution, by John B. Shumaker 

9. Physically Defining Measurement-Beam Geometry by Using Opaque 
Barriers, by Fred E. Nicodemus. 

Chapters 1, 2 ,  and 3 were in TN 910-1; 4 and 5 in TN 910-2; 6 in TN 910-3; and 7, 8, and 9 in 
TN 910-4. Now in publication, as mentioned above, is TN 910-5 with Part 111--Applications: 

Chapter 1. Measurement of Solar Terrestrial Spectral Irradiance in the 
Ozone Cut-Off Region, by Henry J. Kostkowski, Robert D. Saunders, 
John F. Ward, Charles H. Popenoe, and A.E.S. Green. 

And in the present TN 910-6, we return to Part I--Concepts: 

10. Introduction to Coherence in Radiometry, by John B. Shumaker. 

Contingent on the availability of outside funding support, we hope that, during the next 
two to three years, we can continue the current arrangements with Catholic University of 
America as described above and complete the following additional chapters of Part I--Concepts: 

Distribution of Optical Radiation with Respect to Time, by Fred E. Nicodemus 

Linearity Considerations and Calibrations, by John B. Shumaker 
Spectrophotometry, by William H. Venable, Jr. 

Blackbody Radiation and Temperature Scales, by Joseph C. Richmond and/or 

Physical Photometry, by A. T. Hattenburg and/or Fred E. Nicodemus 
Thermal Radiation Properties of Matter, by Joseph C. Richmond 

Spectroradiometry of Spectral Lines, by Henry J. Kostkowski. 

Henry J. Kostkowski 

As stated above, the measurement-equation approach is central to the entire Manual and 
the material presented in each chapter needs to be related to the approach introduced in 
Chapter 5. Depending on how well this is accomplished in each chapter, there may be need at 
the 2nd to have a final summary chapter for this purpose, tying up loose ends and putting the 
whole Part I into perspective. Also, examples of various categories of environmental and 
instrumental parameters and their significance could be usefully presented and discussed. But 
it's too soon to evaluate this need at present. 

Incidentally, in preparing material for the Manual, we have had the pleasure of redis- 
covering the fact that the best way to learn anything is to try to teach it to someone else. 
The exercise of preparing tutorial material for such wide general application has required US 
to analyze our own measurement activities in a different way, broadening our understanding and 
resulting in improved methods and more accurate results. Note that all references to measure- 
ment accuracy or uncertainty in this preface are concerned not only with precision (relating 
to the repeatability of measurement results) but also with accuracy (relating to agreement 
with the "truth" which, while unknowable in the last analysis, is approximated by analyses and 
estimates based on the widest possible experience, including agreement with measurements of 
the same quantities by others, particularly when they have used different instrumentation and 
methods of measurement). 
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SELF-STUDY MANUAL on OPTICAL RADIATION MEASUREMENTS 

Part I. Concepts 

This is the sixth in a series of Technical Notes (910- ) entitled 
"Self-study Manual on Optical Radiation Measurements". It contains 
Chapter 10 of Part I of this Manual. Additional chapters will continue 
to be published, similarly, as they are completed. The Manual is a com- 
prehensive tutorial treatment of the measurement of optical radiation 
that is complete enough for self instruction. Detailed chapter summaries 
make it also a convenient authoritative reference source. 

In this chapter we introduce the reader to the basic field quantity 
of the theory of partial coherence, the cross-spectral density function, 
and show how it is used to describe radiation fields. We discuss the 
propagation of cross-spectral density along a beam and illustrate this 
propagation with calculations of diffraction effects in a number of simple 
aperturing and imaging examples. For instance, we treat in considerable 
detail one of the most common radiometric situations in which coherence 
effects can manifest themselves, the measurement of the slit-scattering 
function of a monochromator. Among other things, this treatment shows 
that laser illumination of a monochromator entrance slit must be nearly 
on-axis to avoid serious slit-scattering function distortions. Finally, 
we present the relationships between the cross-spectral density function 
and the classical radiometric quantities, such as spectral radiance. 

K e y  W o r d s :  coherence; cross-spectral density; incoherence; interference; 
partial coherence; radiometry: spectroradiometry: wave optics. 

Chapter 10. Introduction to Coherence in Radiometry 

by John B. Shumaker 

In this CHAPTER. We attempt to provide an introduction to the theory of partial coherence 

and to its significance for radiometry through some illustrations of its application to 

radiometric situations. We begin with the cross-spectral density function which is used to 
describe the radiometric field, including phase relationships, much as the spectral radiance 

function describes the field in classical radiometry. A few examples of this function are 
presented and discussed. Then we give the equation for the propagation of cross-spectral 

density from one surface (such as a source) to another (such as a detector). This equation 
is then applied to such radiometric situations as the irradiation of a surface, image forma- 
tion, and the calculation of the slit-scattering function of a monochromator. Although, in 

principle, the cross-spectral density function is measurable in detail, it is usually more 

practical to assume some simple functional form or model for this function; some common 
models are given. Finally, we discuss the definition of the classical radiometric quanti- 

ties, such as radiance, in terms of the cross-spectral density function and we mention 

briefly the extension of the elementary theory presented in this chapter to a vector theory 
that includes polarization. 

INTRODUCTION. In treating the fundamentals of radiometry (optical radiation measurements) 
in the first nine chapters of Part I of this Manual, we have so far limited ourselves to the 

domain of geometrical or ray optics, where it is assumed that the dimensions of all optical 

components are large compared to a wavelength [m]) and all times are long compared 
to a period [ S I ) ,  etc.' Diffraction and interference phenomena, which are best 

understood in terms of wave optics, rather than ray optics, have so far been ignored. We 

'Unit symbols are all enclosed in square brackets to emphasize dimensionality and encourage 
routine checks of unit-dimension consistency, as discussed in reference [10.11. 
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Figure 10.1. Alternating regions of constructive (C-clear) and destructive 
(D-dotted) interference in the radiation field about two point 
(small) sources. These regions will wriggle and writhe as the 
frequencies (or amplitudes or phases) of the oscillators change. 
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are, however, very conscious of the fact that there is a rapidly increasing interest in 
measurements of laser radiation which, being highly coherent, require a wave-optics treat- 
ment. Also a rapidly increasing amount of material has appeared in the literature on the 
theory of optics and its significance for radiometry. Most of this material, however, has 

been at a theoretical level where it is not too useful for those actually engaged in making 
radiometric measurements. It is the objective of this chapter to begin to bridge this gap 
and to present the results of some of these theoretical treatments in a form that will make 
clear their application to radiometric measurements. 

The theory of partial coherence is filled with complex details and some readers may 

find that they "loose the thread" at times. If so, the summary at the end of the chapter 

may prove helpful to bring more clearly into focus the pattern of the overall treatment. In 
addition, some recent publications [ 10 .21 '  to 110.81 provide further reading and references 
to the growing literature on partial coherence. Our treatment will be found to be different 
in some respects from these largely theoretical references due to our preoccupation with 
radiometric measurements and to our recognition throughout this Manual that practical 

definitions of measurable radiometric quantities (intensity, radiance, etc., and cross- 
spectral density, introduced below) must include a dependence upon the many-dimensional 

resolution interval of the measuring radiometer (e.g. spectral pass-band). This latter 
difference is minor, being limited to the purely formal connection between the electro- 

magnetic field and radiometric quantities. Nevertheless it has proven difficult to cite 
specific references for the ideas and equations presented here and we have done so only in 

rare instances. However, we wish to emphasize that almost nothing in this chapter is 
original; it can all be found somewhere in the literature in some form. 

We will begin by trying to describe the nature of a classical radiometric field at the 
microscopic level. When the fields from separate oscillators are superimposed, the electric 
and magnetic) field vectors add, producing a resultant field vector, and it is the effect 

that this resultant field has on a detector which we ultimately interpret as a measure of 
incident radiant power. If two point (very small) sources have roughly similar frequencies 

and are oriented so that their fields have the same polarization, then there will be regions 
of space, whose minimum dimension is at least half a wavelength, where the electric field 
vectors will lie in the same direction at the same time and will tend to reinforce each 

other over a time period of at least a cycle or two of the optical frequency (%lo [SI). 
Such regions will obviously alternate with regions where the field vectors lie in opposite 

direstions and tend to cancel during this same time period (see figure 10.1). In general, 
if the two oscillators are changing frequency or amplitude or phase these various regions 
will move about and change shape and size with time. When these regions of reinforcement 
and cancellation are large enough and move slowly enough to be detected by the eye or by an 

optical instrument, we call the phenomenon interference and we say that the light from the 
two sources possesses coherence. If no such regions of alternating radiant power are 

discerned by the best instruments then we say that the field is incoherent and that there is 
no interference. Presumably the interference (coherence) is still there but the temporal or 

spatial response of the instrumentation is inadequate to resolve it. Notice that the 
regions of positive and negative reinforcement in figure 10.1 generally increase in width 
with increasing distance from the source. This suggests that, although the field at one 

point may be judged incoherent, it may show distinct coherence effects at points more 
distant from the source. As we shall see, this increase in the degree of coherence with 

distance from the source is quite real; the light from the most incoherent-seeming source, 

-14 
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such as a star, is highly coherent at astronomical distances, as is evidenced by stellar 

interferometer measurements [10.2]. 

Diffraction is the name associated with departures from regular (geometrical- or ray- 
optics) propagation of light. The spreading of light after passage through a pinhole or 
slit is an example of diffraction. Beyond the slit or pinhole the light beams from the 

different parts of the opening interfere producing the diffraction effect. Thus, inter- 

ference and diffraction are essentially the same and originate in the wave nature of light. 
All of these phenomena are included in the theory of partial coherence which is the subject 
of this chapter. 

Fortunately in most optical radiation measurement situations diffraction or inter- 

ference effects are quite negligible so that it is adequate to use the 'simple' geometrical 
optics and classical radiometry which has been the subject of previous chapters. When these 
effects cannot be neglected, their quantitative treatment by the theory of partial coherence 
can be quite concisely stated [eq. (10.36), p. 13, for example]. However, the physical 

detail and mathematical complications which are required to handle any but the most trivial 
optical situations force the adoption of a formidable chain of physical idealizations and 
mathematical and numerical approximations. This is not to say that an accurate calculation 

could not be carried out for a real problem of sufficient importance but that an approximate 
calculation coupled with suitable experimental measurements will usually be more efficient 
and convincing. Thus, we will approach the treatment of coherence as providing a guide to 
measurement problem areas and to estimates of errors and corrections to geometrical optics 
when coherence effects are small. In this spirit we will frequently make assumptions and 
approximations in this chapter which would otherwise be intolerable. 

THE CROSS-SPECTRAL DENSITY FUNCTION. In this chapter we will treat what is known as the 
scalar theory of coherence: 
electromagnetic field -- say the x-component. In a later section we will discuss briefly 
the complications introduced by the vector nature of the electromagnetic field. Now we want 
to attempt to describe the connection between the electromagnetic field and the quantity 

known as the cross-spectral density (or the mutual spectral density). The cross-spectral 
density can be regarded as a radiometric quantity somewhat more basic than spectral radiance 

in that it provides an even more detailed specification of the radiometric field. Our 
discussion of the connection between the cross-spectral density function and the electro- 

magnetic field is not intended to be rigorous but merely to provide, perhaps, some quick 
insight into the nature of this function. (For a rigorous derivation of this relationship 

we recommend especially reference [10.3].) It would be entirely sufficient to take the 
phenomenological view that it is convenient to define such a radiometric field quantity in 

terms of which, as we shall see, not only can all of the classical radiometric quantities be 
expressed but also most interference and diffraction effects as well. Everything of signif- 
icance to radiometry can be viewed in this way without any concern for a more basic picture 

of the meaning of the cross-spectral density function. 

we deal with only a single polarization component of the 

Let us denote the x-component of the electromagnetic field as a function of time at a 

point P by E(P,t) . We imagine that E(P,t) will be roughly sinusoidal (as a function of 
time) but with a continuously changing amplitude and frequency. The optical frequencies we 
are concerned with are in the neighborhood of 10l1 to 10l6 [Hz]. Although someday 
sensors may be developed which are fast enough to measure E(P,t) , at present all radio- 

metric detectors are square-law detectors whose output is at least approximately proportional 

to the integral of the square of E(P,t) over a response time of lo-' [SI or more. The 
square of a sinusoidal field is proportional to the magnitude of the Poyntinq vector of 
electromagnetic theory, and the Poynting vector is associated with the energy per second 
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which crosses a unit area perpendicular to the vector direction. 
relationship is generally assumed between the incident radiometric power and the response of 

a detector or the square of the electric field:' 

Thus, a proportionality 

1 E*(P,t).dP-dt (10.1) 
K 

Ft(Po) = - At- Aa 
At AS 

where Ft(Po) is the measurable average fluence rate (see Chapter 4, p. 17 110.91) and K 

is some proportionality constant. The time required for a measurement is At and Aa is 
the cross-sectional area ( = m  ) of a small opaque spherical detector surface AS (=4nr ) 

centered at the point of interest 

measurement time. If the electromagnetic field passes through a narrow pass-band spectral 
filter centered at wavelength 

incident on the detector is the average spectral fluence rate over the spectral pass band 
of the filter: 

2 2 

Po. 

before being detected then the radiometric quantity 

The integrations are over the detector surface and 

ho 
AX 

(10.4) 

where E(P,t:Xo) is the filter-modified field at the point P. As we have mentioned in 

previous chapters a radiometric quantity, such as spectral fluence rate, at a particular 
point, wavelength, and instant should be identified with an extrapolation from a sequence of 

measurements of successively narrower spatial, spectral and temporal resolution. But, 
because none of these instrument resolution intervals can ever be taken as zero due, ulti- 
mately, to the noise-imposed limit of the minimum energy required for meaningful measurement, 

there is in practice a set of smallest values for At, Aa, and Ah consistent with the best 

'We will frequently specify the function arguments x,y,z simply as P. That is, 

E(P) E E(x,y,z). An integral such as in eq. (10.1) containing dP means that the point P 

explores the region defined by the integration limit. In eq. (lO.l), since AS is a spheri- 
cal surface, the integration over P is understood to be 2-dimensional and could be written 

out in full as 

(10.2) 

Usually in this chapter P will be confined to an area in the X-Y plane, and an integral 

would again be understood to be 2-dimensional. Thus 

(10.3) 

or an equivalent in polar coordinates. This shorthand use of P and dP will generally be 
confined to generalizations and concepts: equations intended for numerical evaluation will 

be written out fully. Also note that we use the parameter subscript to denote a derivative: 

Ft 5 dF/dt; F 2 : d F/(dt.dX): etc., as in [10.101. t,h 
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foreseeable technology which can be used to provide an adequate, unique definition of radio- 

metric quantities. For the purpose of establishing a correspondence between electromagnetic 
theory and radiometry then we perform a suitable average as in eq. (10.4) of electromagnetic 
fields over resolution intervals At, Aa, and A x  with these values and must assume that 

radiometric quantities have been measured at, or extrapolated to, this same resolution. 
Normally, in radiometric practice (intercomparing beams by measurements with the same instru- 

mentation) these resolution intervals cancel out so that their values are largely irrelevant. 

It is customary in the treatment of oscillating quantities in physics and engineering 
to introduce complex variables.' 
specification this notation provides a compact way to keep track of both amplitude and phase 
information with a single variable. Whatever the form of E(t) it can be expressed by a 

Fourier integral2 

Since a complex variable requires two numbers for its 

m 

E(t) = \ A(v)-cos[y(v) - 21~vtl*dv, 
0 

(10.10) 

'We will use the following properties of complex numbers: A complex number, V I  can always 

be expressed as the sum of a real part, a, and the product of i by an imaginary part, b, 
where a and b are ordinary real numbers: 

V a + i - b  

Re(V) : a, Im(V) : b 

and i, of course, satisfies i2 = -1. Equivalently V can be expressed as 

(10.5) 

(10.6) 

where R and e are also ordinary real numbers related to a and b by 

R =  tane = b/a. (10.7) 

R is called the modulus of V I  and e is called the argument or phase of V. The com- 

plex conjugate of V denoted by V* is obtained by replacing i by -i throughout any 
expression for V which involves only real quantities and i 

V* : a - i-b 
= R*exp(-i-e). 

We also define 

IVl : R = m. 

(10.8) 

(10.9) 

2The signs of the phase terms y(v) and 2rvt in eqs. (10.10) and (10.11) are entirely 

arbitrary; the evolution of E(t) or V(t) with time is the same for either sign. The 

present choice leads to agreement with most of the coherence literature. 
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where A ( v )  and y ( v )  are uniquely defined by the function E(t), and u is the frequency. 

The complex field function V(t) which represents E(t) is then obtained by replacing the 
cosine function by a complex exponential function 

00 

V(t) = I A(u).exp[iy(u) - 2aiut].dv. (10.11) 

0 

Thus the real part of V(t) is identically E(t). The imaginary part can be regarded as a 
mathematical device for coding the phase information. The substitution of V(t) for E(t) 

in equations which are linear in E(t) presents no problem: one can always take the real 

part of such equations to recover valid physical relationships. However, equations quadratic 
in E(t) require the substitution of %V*(t).V(t) for E2(t) and are valid only in the 
limit of long time averages. Fortunately in radiometry this limit is always reached: the 

measurement time At is long compared to the natural time scales of the field l/v and 
l/AU % -*- L, AX. 
complex notation as 

1 x  In accord with this customary notation then we will write eq. (10.4) in 

v* (P,t; Xo) .V(P, t; Xo) - dP -dt , 2At-Aa AX 
At AS 

(10.12) 

with the real part of V(P,t:Xo) being simply the electric field E(P,t;Xo) at the point P 
and time t, as transmitted by a very good spectral filter of passband A h  centered near 

The complete function V, including its imaginary part, is constructed from E by 
xO' 
decomposing E into its Fourier components and reassembling as indicated by eqs. (10.10) and 

(10.11). V* is the complex conjugate of V. Actually we never perfom a detailed mathe- 
matical averaging over time and area because we never know V(P,t:X) for optical frequencies. 

The significance of eq. (10.12) is primarily to show that a definite connection exists between 
the electromagnetic field and a measurable radiometric quantity. For this reason it is 

sufficient to write eq. (10.12) as 

(10.13 

where the angular brackets represent the averaging over measurement time and area. We 
have also taken the liberty of incorporating the proportionality constant ~ / 2  into the 

definition of V since we will never have occasion to assign numerical values or unit 
dimensions to V. 

In eq. (10.13) we have shown explicitly the dependence of the fluence rate and the 
complex field V(P) upon the field point of interest in order that we can now introduce a 
generalization of eq. (10.13) by allowing the quantities V* and V to refer to two dif- 
ferent space points: 

Wx(P1,P2,X) = A A  <V*(P1 + AP,t;A).V(P2 + AP,t;A)> . (10.14) 

The angular bracket average in eq. (10.14) consists of an average over a small time interval 
and over identical small areas about P1 and P2 as the small displacement AP covers the 

7 



measurement resolution area.' 
that, although V depends upon time strongly, the average over measurement time implied by 

the angular brackets in eq. (10.14) changes slowly, if at all, from one measurement time to 
the next so that we can ignore any time dependence for 

usually not display the dependence upon wavelength: we will be dealing exclusively with 
spectral radiometric quantities and will leave it understood that they depend upon A .  
WA(P1,P2), which may be complex, is called the cross-spectral density function. Usually we 
apply this function to pairs of points lying in a particular surface such as a source plane, 

an image plane, or an entrance aperture. It is immaterial whether the points P1 and P2 
are points in a real physical object or are simply two points in a field. 

CROSS-SPECTRAL DENSITY and RADIOMETRIC QUANTITIES. When the two points coincide the cross- 
spectral density function reduces to the spectral fluence rate 

We assume that the radiometric field is steady in the sense 

WA(P1,P2,A). We will also hexeafter 

(10.15) 

This quantity, the spectral fluence rate, or its integral, fluence rate, is usually called 
the optical intensity, or simply the intensity, in the coherence literature. The relation- 
ship between spectral fluence rate from a distant small source and the quantity known in 
radiometry as the spectral radiant intensity of that source is 

(10.16) 

where R and e ,$  are the distance and direction from the source whose spectral radiant 

intensity is IA 
desired. The spectral radiant intensity IA is a property of a (possibly hypothetical) 
source while the spectral fluence rate F (P) is a measure of the radiant power con- 
centration in the field at the point P. 

in the direction of the point where the description of the field is 

t,A 

Finally, for completeness, we present a relationship between the cross-spectral 
density in a plane and the spectral radiance in that plane:* 

'BY analogy to the definition of fluence rate the area average is, strictly speaking, 
single surface integral in which AP moves over a small sphere so that P1 + AP and 
P2 + AP simultaneously describe surfaces centered on P1 and P2. The measurement 
tion area is the area of a great circle of this small sphere. 

'Where it may improve clarity, we will sometimes separate the coordinates of 

by a semicolon. For example 
P1 and 

a 

resolu- 

p2 

Also we will frequently omit the z coordinate in such expressions when the points are 

confined to a plane z = const. In this case we distinguish different planes by coordinates 
labeled by primes ( ' )  and use notations like 

and W' (xi,yi;x',y') 2 2  w(xjIy~,z';x',y',z'). 2 2  
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(10.18) 

(10.19) 



(10.20) 

1 27ri exp[- A (c.sinO-cos$ + q.sin8.sin$) -dg-dn 

Here, 8 and $ are the usual polar coordinates of the viewing direction. The integrations 

are over the entire cross-section of the beam or over the source if the surface is a source 
plane. We will return to a discussion of this equation later in this chapter.' For the 

present we will confine our attention to the spectral fluence rate because of its simple, 
direct connection to the cross-spectral density function. As is evident from the discussion 

of fluence rate in Chapter 4 [10.9], this radiometric quantity is closely related to spectral 
irradiance. At most points in most fields of interest in radiometry the fluence rate will 

have a larger value than the irradiance by a factor, of the order of unity, which changes 
very slowly, if at all, with position in the field and with wavelength. So, for the kind of 

accuracy with which we are concerned in this chapter, the two quantities are virtually inter- 

changeable. 

EXAMPLES of CROSS-SPECTRAL DENSITY. In coherence theory the cross-spectral density function 
can be regarded as a basic field entity much as spectral radiance is the basic field entity 

of conventional geometric-optics radiometry. Unfortunately the physical meaning of the 
cross-spectral density function is more abstract than that of radiance. The cross-spectral 
density embodies simultaneously information about the radiometric field strength and infor- 
mation about the phase correlations at all pairs of points. Needless to say, it is not a 

function which one can tabulate or graph easily, depending, as it does upon at least 

xl, yl, x2, y2, and X and having both real and imaginary components. 

To gain some insight into the nature of the cross-spectral density function let us 

examine the behavior of V(P,t) for a typical optical field and calculate WA(P1,P2) from 
the definition, eq. (10.14). First let us assume that the field is generated by a single 

distant oscillator. Since we are particularly interested in the phase or argument of the 

complex field V let us assume that the oscillator is a dipole rotating in a plane con- 

taining the point P of interest. Then the phase of the complex function V(P,t) is just 

the angle of rotation of the dipole. If we think of V as a vector from the origin to the 

point V in the complex plane (where the X-axis is the real axis and the Y-axis is the 
imaginary axis) then the vector V rotates in synchronism with the physical rotating dipole. 

Classically, as the dipole rotates and radiates it slowly loses energy so the amplitude of 
the field from a radiating dipole will slowly decay with time. Therefore we can imagine the 
vector V growing from zero rather quickly and then gradually spiralling in with constant 

angular velocity until after a long time it vanishes again at the origin. 
be a superposition of fields from a great many such oscillators with different frequencies, 

starting, and sometimes stopping due to collisions, at random times. The resultant complex 
field vector V will then basically perform a rotation at some mean frequency but will 
undergo frequent random angular accelerations and decelerations and radial expansions and 

A real field will 

contractions. If we write V(t) as 

v(t) = A(t) .exp[iy(t)l .exp[-2nivot1 

where vo is this mean frequency, then the complex 
vector in the complex plane will exhibit the motion 

(10.21) 

quantity A(t).exp[iy(t)] viewed as a 

of V(t) exclusive of the rotation at 

'See eq. (10.149) on page 49. 
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frequency vo: 
random angular and radial motions of V(t). 

it will trace a kind of complicated random tangle which contains only the 

In the product V*(Pl,t)*V(P2,t) the steady rotational motion, exp(2nivot), of the 
complex vectors cancels out so that the cross-spectral density function 
the average of the product of two randomly dancing vectors like A(P,t).exp[iy(P,t)l. If P1 

and P2 are very close together then both points will view the source from virtually the 
same angle and will experience identical fields -- with the possible exception of a small 
nearly constant phase difference, especially if one point is nearer the source than the 
other. In this case the complex vectors A(Pl,t).exp[iy(Pl,t)l and A(P2,t)-exp[iy(P2,t)I 

will be of equal length and will move in unison maintaining their nearly constant angular 
phase difference separation Ay = y(P2,t) - y(Pl,t). The cross-spectral density can then be 
written 

Wx(P1,P2) is just 

(10.22) 

or, since A(P1) = A(P2) , we can write it symmetrically as 

On the other hand, if the points P1 and P2 are very far apart it may happen that, due to 

obstructions in the source, different oscillators contribute to the field at the two points. 
Or, if one point is much closer to the source than the other, the random dance the vector 
A(t)*exp[iy(t)] is performing at P1 may be totally dissimilar to that simultaneously 

occurring at P2 

Ay(P1,P2,t) of the product 

due simply to the finite velocity of light. In such cases the phase 

(10.24) 

is a completely random angle so that the product complex vector is continuously pointing in 
different random directions. The average value of such a randomly pointing vector is zero 
and we have 

WX(P1'P2) = 0. (10.25) 

These represent the two extreme values for the cross-spectral density function. Usually 

it lies between these values and we may write 

where 

(10.26) 

(10.27) 
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is called the complex degree of coherence at wavelength A and at points P1 and P2. 

When lp(Pl,P2)l = 0 the field is said to be incoherent at points P1 and P2. This 
implies that knowledge of the phase of the field at either point provides no useful informa- 
tion about the phase at the other point. the field is coherent at these 

two points, and knowledge of the phase of the field at either point permits the phase at the 
other point to be predicted exactly. 

WhenIp(P1,P2) I = l 

When the field is so incoherent that the only point pairs for which Wx(P1,P2) does not 
vanish are those within a very short distance of one another (a wavelength or two) -- much 
closer than any other distance of physical interest such as slit widths -- then it is common 
to refer to the field as completely incoherent and to write as an approximation' 

WX (P1 t P2 

where P1 and P2 

X2IY2' Equation 

example. 

(10.28) 

are both taken to be in the X-Y plane with coordinates xl,yl and 

10.28) is assumed to apply at the surface of an incandescent solid, for 

As another example of the cross-spectral density function let us consider a laser beam 
of Gaussian cross-section incident on the X-Y plane from a direction in the X-2 plane 

making an angle of Bo with the Z-axis. The essential geometry is shown in figure 10.2. 
In the plane z = 0 the field will be given as a function of x and y by: 

V(x,y) = A * exp ( - y2 + ;;;cos 2 Bo ) . exp (2nix;sin~~ 
(10.31) 

exp(iy) exp(-2nivt) , 

'Any dependence of the cross-spectral density function or any other radiometric quantity upon 

position -- x, say -- can be construed as being caused by the interference of plane waves 
propagating with a component of their motion in the x direction. If the cross-spectral 

density function changes significantly in a distance R then there must be plane wave com- 
ponents present in the beam with wavelengths X < R in order to produce such spatial struc- 

ture. The use of a delta function in the description of incoherent light is not to be taken 

as suggesting that wavelengths approaching zero are present but rather as a convenient mathe- 
matical approximation valid if the dimensions R of features of interest are very large 

compared to the wavelength of light being observed. 

'6(x1-x2) is the Dirac delta function [10.11]. It has the properties: 

6(x -x ) = 0 for x1 # x2 1 2  

and 

x, +a 

(10.29) 

A*6(y1-y2) as convenient mathematical approximations for sharply 
about A and height about 1. Then we can make the approximate 

2 Ft, x (PI - Ao(P) and u (P1,P2) - A2*6 (x1-x2) - 6  (y1-y2). 

Since 6 ( 0 )  = m we see that eq. ( 1 0 . 2 8 )  requires that F (P) = WX(P,P) = m, an obviously 
unrealistic feature of this approximation. We should try to think of A*6(x1-x2) and 

t,X 

peaked functions, of width 

indentifications: 

(10.30) 
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Figure 10.2. A train of plane waves incident on the X-Y plane 
at an angle from the Z-axis in the X-2 plane 

and with a Gaussian amplitude distribution. 
eo 

where d is a measure of the diameter of the beam and y 

origin at time zero. The quantity 
and the origin expressed in radians. 
eq. (10.14) 

is the phase of the wave at the 
Zi~x*sinO 

x 0 is the phase difference between a point xly 
Assuming that the laser is monochromatic we obtain from 

PiTi* (x1;x2) *sin8 
exp (10.32) 

where A. = A / m .  

By comparing eqs. (10.32) and (10.26) it can be seen that the complex degree of coherence is 

O I  

21ri-  (xi-x2) *sine 
u = exp[ A (10.33) 

and again 1 ~ 1  = 1. 
cross-section is given by 

In this example the spectral fluence rate across the Gaussian beam 
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2 
Ft,X(xiY) = A. 

and the phase difference is 

y 2 + x2*cos e - ex.(- 0 )  [W.m-*I 
2 d2 

(10.34) 

(10.35) 

The PROPAGATION of CROSS-SPECTRAL DENSITY. If the cross-spectral density function is known 
at all points in some cross-section of a beam it can be calculated for any other cross-section. 

The law of propagation of cross-spectral density is 

exp[2~ri. (s1-s2) /XI -c0se~*cos8~ 
w (P',P') = 11 WA(P1,P2) 2 * dPl*dP2. 

Sl'S2'A 
A 1 2  

source 

(10.36) 

In this equation WA(P1,P2) is assumed known for all pairs of points and P2 in one 
cross-section of the beam and s1 and s2 are the optical path lengths PIPi and 

to the points Pi and Pi in a second cross-section where the cross-spectral density is 

wanted (see figure 10.3). We will treat these two cross-sections of the beam for convenience 

as a source plane and a detector plane although, of course, there need not be a physical 
source or detector in either place. The angles and e2 are the angles between the 
normal to the source plane and the directions to points Pi and Pi from P1 and P2, 

p1 - 

DETECTOR 

SOURCE 
PLANE 

Figure 10.3. The propagation of cross-spectral density WA(P1,P2)l 
assumed known for all pairs of points P1 and 

P2 
Optical path lengths s1 and s2 extend to corres- 
ponding points Pi and P; in a second plane where 

the cross-spectral density is wanted (detector plane) 

in one cross section of a beam (source plane). 
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respectively. In the integrations, P1 and P2 each cover the entire source plane independ- 
ently; that is 

m m 11 dPi*dP2 5 11 11 dxl-dyl*dx2*dy2 
source -m -m 

(10.37) 

where xl,yl and x2,y2 are the coordinates of P1 and P2 in the source plane. 

The factors appearing in eq. (10.36) are easily understood. The exponential is just the 

phase change resulting from the difference in the path lengths and m. This dif- 
ference is divided by A to obtain the number of periods and then multiplied by 2.rr to 
express the phase difference in radians. The cosine factors express the reduction in pro- 
jected size of the elements of area dP = dx*dy when viewed from the direction of p’. The 
distances s1 and s2 in the denominator are in effect a statement of the inverse square 
law. The factor A 2  in the denominator is required for dimensional homogeneity and to assure 
the correct propagation of fluence rate computed from eq. (10.36) in free space. Since, by 
Huygens principle, all points P can contribute to each point P’, the integration covers the 
entire source plane for both P1 and P2. Equation (10.36) is valid for source dimensions 
and distances s1 and s2, which are large compared to the wavelength of light. 

It is in the evaluation of the integrals of eq. (10.36) that the difficulties of the 

treatment of coherence occur. To illustrate the kinds of approximations which are employed to 

render these integrals tractable and to better illustrate the meanings of the factors appearing 
in the integrals let us evaluate eq. (10.36) for a simple situation. In figure 10.4 we show a 
point P in a source plane where the cross-spectral density is assumed known and a typical 

field point P’ where the cross-spectral density is desired. The *source’ plane need not be 
a real source, of course. It can be any plane through a beam anywhere. We take the source 
plane to be the X-Y plane and the origin to lie in this plane near the center of the beam. 

Po( ’ ,Y . .- ‘I 

Y ‘  

Figure 10.4. A typical field point P*(x’,y’,z’) is shown at a 
distance R from the origin and a distance s from 

a point P(x,y,O) in the source plane (X-Y plane). 
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The first task is to express the distance s from P to P' in terms of the 

integration -- the coordinates x and y of P. This is simply 

variables of 

2 s = i (x'-x) + (y'-y)2 + 212 

2 2  = d R 2  - 2x'x - 2y'y + x + y (10.38) 

R - ~ ( x ' x  + y'y)/RL + (x2 + y2)/R2 

where R~ = x' and the primed coordinates are the coordinates of 
now assume that the source dimensions are small compared to R. That is x/R 
y/R < <  1. Then we can expand the square root in eq. (10.38) and discard high 

to get: 

+ y I 2  + z f 2  P ' .  We 

< c  1 and 
order terms 

(10.39) 

Next we note that only a small error is introduced by replacing s1 and s2 by R1 and R2 

in the denominator of the integral. A similar substitution in the argument of the exponential 
is not permissible because this function changes quite rapidly with small changes in 
This is easily seen by writing 

sl-s2. 

exp[2ni. (s1-s2)/A1 = C O S [ ~ T *  (s,-s,)/X] + i*sin[2n* (sl-s2)/Xl. (10.40) 

A change of by as little as one wavelength will drive the trigonometric functions 
through an entire cycle while the same change affects the product 
by only a part in lo6 (assuming s1 and s2 are of the order of a meter). So, making 

these approximations and also approximating cos9 by z'/R, which is consistent with 

s1-s2 

s1*s2 in the denominator 

x I  y < <  R, we obtain 

wx (X;,Y;, 2;; x; ,Yil 2;) = 

(10.41) 

In this expression the integration limits describe the cross-section of the beam or the area 
of the source and we recall that we have assumed that this is very small compared to the 

distance to the points Pi and P;. 
2 2 The last exponential factor in eq. (10.41) involving terms in x1 , y1 I etc., identi- 

fies this integral as being akin to diffraction integrals in the Fresnel approximation. In 
coherence calculations this factor is frequently set to unity -- consistent with the stronger 
assumption that the source dimensions are small compared to 
fication eq. (10.41) becomes 

fi. With this further simpli- 
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(10.42) 

x2xi + y2yi)] =dxl *dyl *dx2 -dy2 ex.[- ( xixi + R1 YlYi - 
R2 

which is in the Fraunhofer approximation. 

examples although it should be noted that if 
integrals must be evaluated numerically anyway then consideration should probably be given to 
including additional terms or to calculating (s1-s2) exactly using eq. (10.38) wherever it 

will result in higher accuracy. For the most part we can justify the use of the Fraunhofer 

apprQximation even when the source dimensions are not small compared to 
that this will give us a worst-case estimate of coherence and diffraction effects. The true 
flux distribution.wil1 always lie somewhere between the predictions of geometrical optics 
theory and predictions in the Fraunhofer approximation in the sense that as the distance z' 
to the observing surface increases, sharp edges and shadows predicted by geometrical optics 
gradually become fringed and fuzzy, evolving, for sufficiently large z '  or R, into the 

Fraunhofer irradiation pattern. This is a smoothly periodic pattern dependent upon the 
point of observation only through the angular parameters x'/R and y'/R. If a calculation 
in this approximation reveals that diffraction will cause no significant problems in a meas- 
urement situation then a more exact computation generally is unnecessary. 
be the case if the measurement situation requires only ratios of measurements on similar 
systems. However, if an accurate estimate of the loss of flux from a geometrical beam is 
required as, for example, if the cross-sectional area of the beam doesn't cancel out in the 
simple geometrical ray analysis of the measurements, then it is likely that a more exact cal- 
culation [eq. (10.38) ] will be necessary. l 

This is the expression we will use in all our 

Wx(x1,yl;x2,y2) is so complicated that the 

fi on the grounds 

This will frequently 

Equation (10.42) is about as far as eq. (10.36) can be simplified without some knowledge 

of Wx(P1,P2). 
expressions such as eq. (10.42) are further evaluated in considerable, tedious detail. These 
lengthy passages are set in a smaller type to permit the reader to identify them and skip over 

them if he wishes. We present such examples here to show that the propagation law of cross- 

spectral density is not just another pretty theory but that numbers can be put in and useful 
results obtained. The examples will also indicate how the coherence state can, in certain 
circumstances, significantly affect the results of a radiometric measurement when high spectral, 
spatial, or temporal resolution measurements are attempted. 

Included among the next twenty-five pages or so are some examples in which 

As the first example of the use of eq. (10.42) we will apply it to one of the simplest possible 

sources -- a source in the plane z = 0 that is uniform, rectangular, and incoherent with [from 

eq. (lO.ZS)] 

and 

- a < x  < a  -b < y1 < b 

-b < y2 < b -a < x 
and 1 for 

2 < a  

wX(x1,y1;x2,y2) = 0 otherwise. 

'See reference t10.123 for an example of such calculations. 
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Then eq. (10.42) w i l l  a l low u s  t o  c a l c u l a t e  t h e  c ros s - spec t r a l  d e n s i t y  f o r  any p a i r  of p o i n t s  
( a t  x i ,  y i ,  zi) and P; ( a t  x i ,  y;, z ; )  provided t h a t  both %2 ( = x i  + y1  l2 + z i 2 )  and 

RZ2 ( = x i 2  + y;2 + z i 2 )  are much g r e a t e r  than a2 + b2. 

i n t o  eq. (10.42) we can immediately c a r r y  out  t h e  i n t e g r a t i o n s  over  x2  and y2 t o  g ive  

P i  

If w e  s u b s t i t u t e  expression ( 1 0 . 4 3 )  

( 1 0 . 4 4 )  

w,(x;,y;,z;;X~,Y;,z;~ = - * 

The double i n t e g r a l  i n  eq. ( 1 0 . 4 4 )  f a c t o r s  i n t o  two s i m i l a r  elementary i n t e g r a l s :  

Y '  Y '  b x' x '  a b  a 

1 I exp[- ?-(e - < ) - x ~ ] - ~ x ~ -  exp[- ?*(e - <)'Yl].dY1 
-a -b -a -b 

(10.45)  

It t u r n s  out  t h a t  t h e s e  i n t e g r a l s  are among t h e  few i n t e g r a l s  l i k e l y  t o  a r i s e  i n  these  problems 
which can be expressed i n  a c losed form and can be r e a d i l y  v i s u a l i z e d .  As a r e s u l t ,  coherence 

problems which l e a d  t o  such i n t e g r a l s  a r e  among t h e  few which a r e  eve r  c a r r i e d  through t o  com- 

p l e t i o n  and so t h e  f u n c t i o n a l  form 

undeserved. It has  a s p e c i a l  name 

s i n ( u ) / u  has  achieved an importance which i s  probably r i c h l y  

s i n c ( u )  t s i n ( r u ) / ( r u ) .  

I f  we employ t h i s  n o t a t i o n  eq. ( 1 0 . 4 4 )  becomes 

2 ' 2 '  
- . Ao2 - e x p [ F  *(R1 - R2)] w,cx;,y;,z;;x;,y;,z;> = 
R;R; 

(See f i g u r e  10.5) 

( 1 0 . 4 6 )  

Let  us f i r s t  consider  t h e  case  where both p o i n t s  P i  and Pi a r e  equa l ly  f a r  from 

t h e  source so t h a t  R = R = R. Then eq. (10 .46)  s i m p l i f i e s  a l i t t l e  t o  g ive  1 2  

2 ' 2 '  

w,(xi,yi,zi;x;,y;,z;) = 4ab- Ao2 - 12 
R4 (10 .47)  

1 7  



-5 0 
X 

5 

Figure 10.5. The einc function: sinc x 5 sin(*x)/(sx). 
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There a r e  s e v e r a l  i n t e r e s t i n g  p o i n t s  t o  observe about t h i s  c ros s - spec t r a l  d e n s i t y  funct ion.  

F i r s t ,  t h e  r a d i a t i o n  at a d i s t a n c e  from t h e  source is no longe r  incoherent  -- t h e r e  are no d e l t a  

func t ions  i n  eq. (10.47) The r a d i a t i o n  has become p a r t i a l l y  coherent  merely by t h e  f a c t  o f  
propagation. For a very l a r g e  source dimension, a ,  t h e  s i n c  func t ion  w i l l  o s c i l l a t e  and 

dec rease  r a p i d l y  as xi-x; 
d e l t a  func t ion  behavior1 f o r  very l a r g e  incoherent  sources .  

t h a t  t h e  y-dependence i s  t o t a l l y  independent of the  x-dependence i n  tha t ,  i f  the y-dimension of t h e  
source is changed, on ly  t h e  y-scale of t h e  c ros s - spec t r a l  d e n s i t y  func t ion  w i l l  be  changed. Th i s  

i s  a c h a r a c t e r i s t i c  of s o l u t i o n s  i n  t h e  Fraunhofer approximation of problems involving r ec t angu la r  

sou rces  o r  ape r tu re s :  provided W (P ,P ) h a s  t h i s  p rope r ty  t h e  s o l u t i o n  f a c t o r s  i n t o  independent 

double i n t e g r a l s  -- one double i n t e g r a l  involving on ly  x1 and x2, t h e  o t h e r  double i n t e g r a l  

involving only y1 and y2. Another i n t e r e s t i n g  f e a t u r e  of eq. (10.47) is  t h a t  t h e  x-dependent 

f a c t o r  depends on ly  upon x i  and x i  through t h e i r  d i f f e r e n c e  xi-xi, and s i m i l a r l y  t h e  y- 

dependent f a c t o r  depends only upon t h e  d i f f e r e n c e  When a func t ion  depends on ly  upon 

d i f f e r e n c e s  i n  t h i s  way it  i s  s a i d  t o  be s t a t i o n a r y  because i t  looks t h e  same i n  t h e  neighborhood 

of one x ' ,y '  

where t h e  c ros s - spec t r a l  d e n s i t y  func t ion  is no t  known t h e  p rope r ty  of s t a t i o n a r i t y  is assumed i n  

t h e  i n t e r e s t s  of s i m p l i c i t y  and we see t h a t  t h i s  p rope r ty  can a r i s e  n a t u r a l l y  and i s  t h e r e f o r e  a 

reasonable  assumption. F i n a l l y ,  we can c a l c u l a t e  t h e  f luence  rate from eq. (10.47) by s e t t i n g  

inc reases  ( see  f i g u r e  10.5) so t h a t  eq. (10.47) e f f e c t i v e l y  approaches 
A second f e a t u r e  of eq.  (10.47) is 

A 1 2  

yi-y;. 

po in t  as it does i n  t h e  neighborhood of any o t h e r  po in t .  I n  many coherence problems 

Pi = Pi: 

2 
F (P') = WA(x' ,y ' ,z ' ;x ' ,y ' ,z ' )  = 4ab - Ao2 

t , A  R2 
(10.50) 

where 8 is  t h e  angle  between t h e  normal t o  t h e  s u r f a c e  and t h e  viewing d i r e c t i o n .  W e  see t h a t ,  

i n  c o n t r a s t  t o  expres s ions  we s h a l l  d e r i v e  below, t h e r e  a r e  no d i f f r a c t i o n  e f f e c t s  here:  t h e  

f luence  r a t e  a t  P' depends upon t h e  l o c a t i o n  of P' only through t h e  inve r se  square of t h e  

d i s t a n c e  from t h e  source and through t h e  simple angular  f a c t o r  cos  8 .  The reason,  i n c i d e n t a l l y ,  

t h a t  t h i s  l a t t e r  f a c t o r  i n  t h i s  equat ion and i n  eq. (10.51) below is cos 8 and not  cos8 i s  t h a t  

t h i s  source is no t  lambertian.  Such a completely incoherent  source as t h i s  may no t  even be physi-  

c a l l y  r e a l i z a b l e ;  however, it is a u s e f u l  l i m i t i n g  case  which is comparatively e a s i l y  t r e a t e d  and 

i s  s u f f i c i e n t l y  r e a l i s t i c  f o r  many purposes. W e  w i l l  b r i e f l y  treat a lambert ian source later [ see ,  

e .g . ,  eqs.  (10.166a) t o  (10 .17 la ) l .  From eq. (10.50) we can c a l c u l a t e  t h e  r a d i a n t  i n t e n s i t y  of t h e  

source [eq.  (10.16)] as 

2 
2 

lOne r ep resen ta t ion  of t h e  Dirac d e l t a  func t ion  is 

6(x) = Lim (7). s i n  ax  
a + m  

(10.48) 

I n  t h e  l i m i t  a s  a and b become i n f i n i t e  t h e  c ros s - spec t r a l  d e n s i t y  according t o  eq.  (10.47) 

approaches 

(10.49) 

which, without t h e  f a c t o r  , would be e x a c t l y  c o r r e c t  [compare eq. (10.28)J .  The approx- 

imat ions l ead ing  t o  eq. (10.41) and (10.42) a r e  of course,  t o t a l l y  i n v a l i d  i n  t h i s  l i m i t  and 

e v i d e n t l y  t h e  erroneous f a c t o r  is  a consequence of t h i s  inconsis tency.  

1 9  



2 I , (e)  = 4ab - A,’ cos e .  (10.51) 

From eqs.  (10.47),  (10.50),  and (10.26) w e  o b t a i n  

(10.52) 

f o r  t h e  degree of coherence. The dependence of t h e  degree of coherence upon t h e  s e p a r a t i o n  of 

t h e  p o i n t s  i n  t h e  observing s u r f a c e  is  e s s e n t i a l l y  t h a t  given i n  f i g u r e  10.5. The degree of 

coherence is 1 f o r  p o i n t s  very c l o s e  toge the r  and approaches ze ro  f o r  p o i n t s  ve ry  f a r  a p a r t .  

Negative va lues  f o r  t h e  degree of coherence f o r  c e r t a i n  po in t  s e p a r a t i o n s  mean t h a t  t h e  f i e l d s  

a t  such a p a i r  of p o i n t s  a r e  p red ic t ed  t o  be ou t  of phase. lu(Pi,P;)l means 
t h a t  t h e  phase d i f f e r e n c e  between p o i n t s  Pi and Pi is no t  h igh ly  p r e d i c t a b l e :  an element of 

randomness is present .  

In general the degree of coherence (like the cross-spectral density function) is defined 

A small va lue  f o r  

in terms of the coordinates of pairs of points so that even for a fixed frequency or wave- 
length it would require a 7-dimensional space to plot the absolute value of this function. In 

order to extract some measure of coherence which is easier to grapple with, the terms coher- 
ence length, coherence time, and coherence area are often used. These are all rough measures 
of the separation between the two points P1 and Pa at which the degree of coherence is 
reduced to some arbitrary level’ such as 4 or l/e -- the exact level is not important as 
the terms are only semi-quantitative at best. Coherence length refers to a distance in the 

direction of propagation -- our z-axis -- and could, for example, be defined in the neighbor- 
hood of any axial point (O,O,z) as that value, Azc, for which 

The coherence time is the time required for light to travel the distance Az,: 

Atc = Azc/c (10.54) 

where c is the velocity of light. Of more interest in most radiometric situations is the 

measure of the coherence distance, known as the spatial coherence interval, in directions 
perpendicular to the direction of propagation. These coherence intervals, Axc and Ayc, 

could be defined by 

(10.55) 

The area 

(x,y,z) in the plane normal to the direction of propagation within which a high degree of 
coherence exists; the field outside this area will be only weakly correlated with the field 

AAc = Axc-Ayc known as the coherence area is then the region about the point 

at (X,Y,Z). 

We see from figure 10.5 and eq. (10.52) that the field from a rectangular incoherent 

source exhibits a coherence interval in the x-direction determined by 

‘In the case of functions, such as sinc, which take on negative values, the first zero of 
the function is often used. 
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2a- (%Axc) 
= 0.6 XR or - 0.6XR Axc - - a '  (10.56) 

where 0.6 is approximately the value of u which satisfies sinc(u) = $. The coherence 

interval in the y-direction is the same expression with b replacing a. The coherence area 

is thus 

0.36 h2R2 ~ 

ab AAc = 

2 where A w (  = 4ab/R ) is the solid 

(x,y,z). In this case the values 

h2/AW (10.57) 

angle subtended by the source from the observation point 
for the coherence interval and coherence area are independ- 

ent of x and y because p is stationary. Equation (10.57) says that for any source, the 

irradiation in a distant plane will be highly coherent over areas at least as large as h /Aw. 
If the source is partially coherent the areas of coherence will be larger. If an aperture of 

this size is placed in the field from the source the radiation passing through it will be 
highly polarized and will exhibit strong diffraction effects. 

Returning now t o  eq. ( 1 0 . 4 6 ) ,  which is  t h e  gene ra l  expression f o r  t h e  c ros s - spec t r a l  d e n s i t y  

is  no t  n e c e s s a r i l y  t h e  same 

2 

due t o  a d i s t a n t ,  uniform, r ec t angu la r ,  incoherent  source,  where 

a s  R2, 
R1 

w e  f i n d  t h e  f luence  r a t e  s t i l l  given by eq. (10.50) but  t h e  degree of coherence i s  

(10.58) 

Th i s  is  still  a s o l u t i o n  i n  t h e  Fraunhofer approximation [eq.  ( 1 0 . 4 2 ) ] .  In t h i s  approximation 

t h e  s p a t i a l  s t r u c t u r e  of t h e  f i e l d ,  a s i d e  from t h e  inve r se  square dependence, i s  a func t ion  on ly  

o f  t h e  angular  p o s i t i o n  of t h e  obse rva t ion  point .  This  i s  evident  i n  eqs .  (10.50) and (10.58) i n  

t h e  dependence upon Pi and P i  only through t h e  r a t i o s  xi/R1. yi/R1, z;/R1, e t c .  For t h i s  

reason t h e  f i e l d  a t  two p o i n t s  Pi and P i  which l i e  i n  t h e  same d i r e c t i o n  from t h e  source (so 

t h a t  x i / R 1  = x;/R2 and y;/R1 = y;/R2) w i l l  be  c a l c u l a t e d  t o  be coherent  ( 1p-11 = 1) i n  t h i s  
approximation. It is  u n l i k e l y  i n  radiometry t h a t  a higher  approximation would be needed b u t ,  i f  

i t  were, then t h e  F resne l  approximation of eq. (10 .41)  i s  t h e  nex t  s t e p  t o  t r y  i f  a closed-form 

a n a l y t i c  s o l u t i o n  i s  t h e  goal .  For t h e  p re sen t  example of a uniform, r ec t angu la r ,  incoherent  

sou rce  eq. (10.41) can be evaluated e x a c t l y  i n  t e r m s  of F resne l  i n t e g r a l s .  Aside from showing 

t h a t  t h e  degree of coherence does, a f t e r  a l l ,  depend upon t h e  d i f f e r e n c e  i n  r a d i a l  d i s t a n c e s  when 

t h e s e  d i s t a n c e s  a r e  too small  t o  j u s t i f y  t h e  Fraunhofer approximation, t h e  s o l u t i o n  is  of l i t t l e  

i n t e r e s t .  It i s  too complicated t o  a l low any easy i n t u i t i v e  i n t e r p r e t a t i o n  and, moreover, s i n c e  

r e a l  sources  a r e  never p e r f e c t l y  uniform, r ec t angu la r ,  and incoherent  t h e  accuracy enhancement 

obtained by employing a b e t t e r  but  s t i l l  incomplete a n a l y t i c a l  approximation would seem t o  be of 

marginal p r a c t i c a l  value.  

Another example of t h e  propagat ion of c ros s - spec t r a l  d e n s i t y  t h a t  i s  easy t o  eva lua te  i s  

obtained by r ep lac ing  t h e  incoherent  source w e  j u s t  t r e a t e d  by a coherent one. This could,  f o r  

example, be a small  r ec t angu la r  a p e r t u r e  of dimensions 2a by 2b i r r a d i a t e d  by a l a s e r .  We 

w i l l  assume t h a t  t h e  angle  of incidence of t h e  laser beam is  

t o  be t h e  X-2 plane.  We w i l l  a l s o  assume t h a t  t h e  amplitude i s  uniform over t h e  a p e r t u r e  so  t h e  

c ros s - spec t r a l  d e n s i t y  a t  t h e  a p e r t u r e  has  t h e  phase dependence of eq. (10.32) but with a s t ep -  

func t ion  r ep lac ing  t h e  Gaussian: 

Bo and t ake  t h e  plane of incidence 
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= 0 otherwise.  

When we i n s e r t  eq. (10.59) i n t o  eq. (10.42) w e  o b t a i n  

(10.60) 

-a -b -a -b 

xlx; + Y I Y i  x2x; + Y2Y; 

R2 
)] .dxl-dyl*dx2*dy2. - ex.[- - ( R1 

This  mul t ip le  i n t e g r a l  can be  fac tored  i n t o  a f a c t o r  depending only  upon t h e  coord ina tes  of 

and a f a c t o r  depending only upon t h e  coord ina tes  of 

a r e  only dummy v a r i a b l e s ,  t h e  form of one of t h e s e  f a c t o r s  is j u s t  t h e  complex conjugate  of t h e  

form of t h e  o t h e r :  

P1 

P2, and s i n c e  t h e  v a r i a b l e s  of i n t e g r a t i o n  

(10.61) 

where 

a b  
Vx(x ' ,y ' ,z ' )  = - 2' . e x p ( F )  - I I A o . e x p ( y  -x.s ine0)  

-a -b R2 x 

(10.62) 

- exp[- yy')] .dx*dy. 

This  f a c t o r i z a t i o n ,  of course,  is a consequence of t h e  f a c t  t h a t  f o r  complete coherence t h e  

angular  bracket  average, <Vt(Pl) *Vx(P2)>, is simply equal  t o  t h e  product Vt(P1) *Vx(P2), 
SO t h a t  t h e  propagat ion of Vx(P1) can be t r e a t e d  independent ly  of P2 and v i c e  versa .  I n  t h i s  

example 

vx(P1) = Ao*exp(j;-- 2ni -xl .sineo) 

f o r  -a < x1 < a and -b < y1 < b 

and VA(P1) = 0 otherwise,  

and eq. (10.62) simply d e s c r i b e s  t h e  propagat ion of  t h i s  f i e l d .  I n  ai t In t o  t 

(10.63) 

I Lctor - 
z a t i o n  t h e  i n t e g r a l s  f a c t o r  i n t o  s e p a r a t e  x- and y-dependent i n t e g r a l s  because we a r e  con- 

s i d e r i n g  r e c t a n g u l a r  a p e r t u r e s .  Thus 
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(10.64) 

where 

Ix = c - e x p ( y  -x.sinOo) .exp(- %) -dx 

-a 

and 

(10.65) 

(10.66) 

These i n t e g r a l s  a r e  similar t o  those we evaluated f o r  t h e  incoherent  source,  so we can w r i t e  them 

immediately as 

and 

I = 2 b - e . s i n c  (T) . 
Y 

P u t t i n g  these  expressions i n t o  eqs.  (10.64) and (10.61), w e  f i n a l l y  ob ta in  

(10.67) 

(10.68) 

f o r  t h e  c ros s - spec t r a l  d e n s i t y  a t  t h e  p a i r  of p o i n t s  P ' ( x ' , y ' , z i )  1 1 1  and P;(x;,y;,z;) produced 

by a uniform coherent beam passing through a 2a by 2b r ec t angu la r  a p e r t u r e  i n  t h e  X-Y plane 

wi th  angle  of incidence Bo.  The s p e c t r a l  f l uence  rate a t  t h e  po in t  P ' ( x ' , y ' , z ' ) ,  obtained by 

s e t t i n g  x i  = x i  = x ' ,  e t c . ,  is  

F ( x ' , y ' , z ' )  = - zv2 - 16a2b2* Ao2 as inc  '[F - ($- -sineo)] * s i n c 2 ( z ) .  (10.69) 
t , X  R4h2  

If we use t h i s  expression t o  eva lua te  d-- and 4- and then c a l c u l a t e  t h e  

complex degree of coherence from eq. (10.26) us ing  eq. (10.68) we f i n d  

(10.70) 

(10.71) 
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The r a d i a t i o n  is still  completely coherent.  The only way t o  reduce t h e  degree of coherence i s  by 

somehow phys ica l ly  changing t h e  phase r e l a t i o n s h i p s  so t h a t  some averaging w i l l  t ake  p l ace  i n  t h e  

angular  bracket express ion  of eq. (10.14). 

degree of coherence can be reduced by randomizing t h e  phases i n  e i t h e r  of t h e s e  rad iometr ic  

dimensions. I f  t h e  ins t rumenta l  s p a t i a l  r e s o l u t i o n  i s  not  t oo  f i n e ,  coherent l i g h t  s c a t t e r e d  

from a m a t t e  su r f ace  w i l l  be i n t e r p r e t e d  a s  incoherent  s i n c e  many speckles1 w i l l  be  included i n  

t h e  ins t rumenta l  r e s o l u t i o n  area. On t h e  o t h e r  hand i f  t h e  ins t rumenta l  s p a t i a l  r e s o l u t i o n  i s  

f i n e r  than  t h e  speckle  s i z e  but i ts temporal r e s o l u t i o n  is not too f i n e  then  motion of t h e  

s c a t t e r i n g  matte su r face  w i l l  a l s o  in t roduce  incoherence i n t o  t h e  measurement by averaging over 

many speckles  due t o  speckle  motion dur ing  t h e  measurement t i m e  i n t e r v a l .  I n  e i t h e r  case ,  w i th  

b e t t e r  ins t rumenta l  r e s o l u t i o n  the  r a d i a t i o n  would be found t o  be completely coherent  -- a l though 

i f  t h e  r e so lu t ion ,  requi red  t o  d e t e c t  t h e  coherence, r e s u l t s  i n  an unmeasurably weak s i g n a l  i t  

se rves  no u s e f u l  purpose t o  th ink  of i t  as coherent.  

Since t h i s  average is over both  a r e a  and t i m e ,  t h e  

The s p e c t r a l  f l uence  rate of eq. (10.69) desc r ibes  t h e  d i f f r a c t i o n  p a t t e r n  a s soc ia t ed  wi th  

a r ec t angu la r  aper ture .  

w r i t e  t he  argument of t h e  sinc func t ion  of eqs. (10.68) and (10.69) i n  t e r m s  of small angular  

displacements from t h e  beam d i r e c t i o n  B o .  I f  we write 

The p a t t e r n  is centered  a t  x' = R*sinBo, y '  = 0. It i s  u s e f u l  t o  

s ine  = x'/R 

and a = e - e  

2a we have * *  (" - s ineo )  = x . ( s i n e  - s ineo ) .  A R  (10.72) 

We can expand s ine  i n  a Taylor series about eo t o  permit approximating s i n e  by 

s i n e  = s ineo  + (e-eo).coseo + . . . 
0' 

= s ineo  + a.cos8 

Thus eq. (10.72) becomes 

2a-cosOo 
2- h ($ - s ineo)  = A . a  

and t h e  f luence  r a t e ,  eq. (10.69) can be w r i t t e n  

F (a,B) = 42 2' 2 * 16a b * * s i n c  (2a*coseo - a ) * s i n c  2 2  (x - 6 ) .  x R X  t , A  

(10.73) 

(10.74) 

(10.75) 

where w e  have def ined  t h e  angle  6 by 6 = y'/R. I n  t h i s  form t h e  equat ion  shows that t h e  

angular  d i s t r i b u t i o n  of r a d i a t i o n  i s  t h e  same as i f  an a p e r t u r e  of dimensions 

were i r r a d i a t e d  a t  normal incidence.  Thus, a t  least f o r  s m a l l  angular  d e v i a t i o n s  from t h e  

u n d i f f r a c t e d  beam, we may r ep lace  t i l t e d  a p e r t u r e s  by t h e i r  p ro j ec t ions  normal t o  t h e  beam. 

2a.cosBo by 2b 

lSpeckle i s  t h e  random i n t e r f e r e n c e  p a t t e r n  produced by coherent r a d i a t i o n  r e f l e c t e d  from a 
s u r f a c e  which i s  rough over d i s t a n c e s  of wavelengths. 

d i f f e r  from one another  i n  electric f i e l d  d i r e c t i o n  (which we ignore  i n  t h i s  scalar theo ry ) ,  

amplitude,  r e l a t i v e  phase of t h e  s i n u s o i d a l  e l e c t r i c  f i e l d  v i b r a t i o n ,  and, of course ,  s i z e  and 

shape. 

Ind iv idua l  s p o t s  of t h e  speckle  p a t t e r n  
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MODELS for the CROSS-SPECTRAL DENSITY FUNCTION -- QUASIHOMOGENEITY. In principle it is 

possible to measure the cross-spectral density function. 
some information about it. For example, the expression [eq. (10.20)] for the spectral radi- 
ance as a function of cross-spectral density can be inverted to give 

Any radiometric measurement provides 

(10.76) 

This shows how spectral radiance measurements can be employed to calculate the cross-spectral 

density. All that is needed is to measure the spectral radiance at a point (x,y) from a 
great distance' as a function of direction (e,$) from that point and then evaluate the 

integrals for any desired pair of points symmetrically placed around (x,y). By varying 5 
and q all such pairs of points can be covered. Finally, by remeasuring at other points 

(x,y) the entire field can be mapped out. From a practical point of view this requires an 
almost prohibitive number of measurements and, moreover, because of the dependence of the 
integrand upon sine the measurements at high angles become most important. As far as we are 
aware this technique has never been applied. More commonly the cross-spectral density is 

obtained from the measurement of more conventional interference effects. A number of ref- 
erences to such measurements are given in part 11 of reference r10.51. 

Usually, if the cross-spectral density must be known, a reasonable functional form is 
assumed and then a small number of measurements of diffraction or interference effects will 
establish the values of any unknown parameters of the functional form. We have already seen a 

couple of functional forms which are commonly used for the cross-spectral density function: 
the delta function for incoherent radiation [eq. (10.28)] and models for completely coherent 

radiation [eqs. (10.32) and (10.5913. All common models f10.31 , [10.8] , and [10.13] for the 
cross-spectral density function of partially coherent fields assume that the complex degree of 
coherence is a stationary function, depending only upon the distance between the points 

and P2. That is, it is assumed that I-I(P~,P~) can be written' as a function g(5,q) where 
5 and r) are difference coordinates defined by 

P1 

5 = x1 - x2 and r) = Y1 - Y2- 

Thus we would write 

This is known as the Schell model. A common form for 

where 

p 2 = C 2 + n  2 0 

LSee footnote on page 4 8 .  

(10.77) 

g is given by 

(10.78) 

(10.79) 

'In general u and g will depend upon X as well as upon the coordinates of the two points. 

For simplicity we don't explicitly indicate this dependence in our notation. 
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In this expression the parameter a is to be adjusted for best agreement with measured 

diffraction or interference effects. This form for g, with a taken as - X/2, provides 
a model for a real 'incoherent' source which will be lambertian and thus will describe the 
field over wide angles more realistically than the delta function model can. Another com- 

monly used form for the degree of coherence is the Gaussian: 

As in the previous expression the adjustable parameter u is approximately equal to the 
coherence interval. 

p1 If in the Schell model, p(P1,P2) decreases to zero with increasing separation of 

and P2 sufficiently rapidly that FtIX(P1) - FtIX(P2) over the region where p differs 
significantly from zero, or, putting it another way, if F (P) changes very slowly with 
position compared with p r  then, in the expression (10.78) for cross-spectral density, we 
can approximate 

t,X 

where the average coordinates x and y are defined by 

and Y = (Y1 + Y2)/2- (10.82) x = (xl + x2)/2 

Then the cross-spectral density can be expressed as the product of the spectral fluence rate 

by a complex degree of coherence: 

(10.83) 

This is known as the quasihomogeneous model. This model is important because most of the 

radiometric properties of a quasihomogeneous source are in accord with the ideas of classical 
(geometrical optics) radiometry. (For example, radiance is never negative and is, to a good 

approximation, invariant along a ray [10.14]). This is because, although a quasihomogeneous 

source may be highly coherent locally, the coherence areas are small compared to any bright- 

ness features on the surface so that the source, taken in its entirety, in many respects 
still behaves like a classical (incoherent) source. 

Another useful feature of the quasihomogeneous model is that if a source is quasihomo- 
geneous then the distant field from that source is also approximately quasihomogeneous. To 
show this let us consider eq. (10.42). We must, however, remark before doing this that the 

validity of the Fraunhofer approximation is even more strained here than in many coherence 

calculations because, in addition to requiring that a be large compared to the source 
dimension, we require that the source dimension be large compared to the coherence interval 
which, itself, can be taken as larger than h (otherwise we could simply treat the source as 

incoherent). We will assume that the points Pi and Pi lie near the z-axis on the surface 
of a large sphere centered at the origin so that we may take zi = z; = z'. 
Then we solve eqs. (10.77) and (10.82) for x1 and x2 in terms of x and 5 ,  etc. 

R1 = R2 = R and 

x1 = x + 5/2 
x2 = x - 5/2 

y1 = y + Q/2 
y2 = y - Q/2 (10.84) 
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and substitute into eq. (10.42), making analogous substitutions for the primed variables': 

2ai *exp [-- ( Sx'+S I x+ny'+n ' y )] dx dy-dg-dn 

(10.88) 

source 

where we have used eq. (10.83) for the explicit representation of the quasihomogeneous source. 

The limits of integration in the space of the average and difference coordinates are different 

than in the xl, ylr x2r y2 
x1 and x2 are ?a we could have [from eqs. ( 1 0 . 7 7 )  and (10.8211 5 run from 21x1-2a 
to 2a-21~1 and x run from -a to +a. For a quasihomogeneous source the range over 

which g differs significantly from zero is so small compared to the source dimensions that 
no appreciable error is introduced by replacing the 5 and n integration limits by the 
same limits that x1 and y1 are subject to or even possibly by +m if convenient. In 
other words, in comparison to the size of the source, g resembles roughly a delta function 

space. For example, for a rectangular source where the limits on 

~ 

'It is not obvious that the elements of integration are related by 

dxl.dylodx 2-dy2 = dx*dy-dS*dq. (10.85) 

This equality follows from the fact that the Jacobian of the coordinate transformation given 

by eqs. (10.77) and (10.82) is 1. The Jacobian of a transformation such as this is the 
determinant 

ax2 ax2 ax2 ax, 
ax ay as an 

ay2 ay2 ay2 ay2 
ax ay as an 

- - - -  

- - - -  

(10.86) 

This expresses how the multidimensional element of integration transforms under the coordinate 

transformation, i.e., 

(10.87) 

[For more details see any text on advanced calculus.] 
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so that, beyond a certain point, the limits of integration of any integral involving it are 

largely irrelevant. In our rectangular source example, then, we could take the limits of the 
5 integration also to be +a, for instance, without significant error. Allowing further 
approximations of this sort then, we see that the left hand side of eq. (10.88) is a product 

of two independent functions defined by double integrals: the first, a function only of the 
difference coordinates 5' and n' in the observation surface, and the second, a function 

only of the average coordinates x' and y' in the observation surface. So we evidently 

can write 

where 

and 

(10.90) 

source 

This shows that the cross-spectral density in the observation surface is also approximately 

quasihomogeneous at least within the validity of the Fraunhofer approximation. In deriving 

this result we assumed that 
still be good approximations and our conclusions valid for field points near the z-axis in 

any plane parallel to the x-y plane provided the distance, z ' ,  from the source is large 
compared to the coherence intervals there. The field from a quasihomogeneous source will not 
be quasihomogeneous beyond an aperture which is not large compared to the coherence area at 
that aperture. At such an aperture the condition that F (P) be slowly changing compared 
to p is not fulfilled and this aperture then constitutes a non-quasihomogeneous source for 

the field points beyond it. 

R1 = R2 = R and zi = zi = z ' .  We assume that these will 

t,A 

Equations (10.90) represent a simplified propagation law for quasihomogeneous fields. 

We notice that the complex degree of coherence in the source determines the spectral fluence 

rate and hence the directionality of the distant field. Conversely, the distribution of 
spectral fluence rate or radiance in the source determines the degree of coherence in the 

field. Frequently only the second of eqs. (10.90) will be required and this results in a 
further simplification of the propagation law. For example, a rectangular, uniform, incohe- 

rent source [eq. (10.43)] is quasihomogeneous. If, within the rectangle of the source, we 
identify 

(10.91) 

Then, from the second of eqs. (10.90), we immediately obtain eq. (10.50) for the spectral 
fluence rate at a distance from such a source: 
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(10.92) 
= 4ab*A;*cos 2 2  O/R . 

We will not make much use of the quasihomogeneous approximation in this chapter because 

we will normally wish to present calculations covering the entire range from incoherent to 

coherent to the same degree of approximation. However, it should be apparent that this model 

is extremely useful in many problems involving fields originating in thermal sources. 

The EFFECTS of IMAGING or FOCUSING OPTICS. The preceding examples of the propagation of the 
cross-spectral density function illustrate the meanings of the variables and the kinds of 

approximations which are frequently made in evaluating the integrals. Usually, of course, 
one is not interested in simple, unobstructed propagation from a source to a detector but 

rather propagation through a series of lenses and apertures and what-not to a final detector. 

To handle such a situation one must sequentially apply the propagation equation [eq. (10.3611 
from the plane of each aperture which might restrict the beam to the plane of the next one so 

that the cross-spectral density calculated for one surface becomes the source for the next 

calculation, and so on until finally the detector is reached. Clearly, for a complicated 

optical system, evaluating the multiple integrals involved will become a chore. Fortunately, 

one of the most important optical systems -- a simple source-lens-image system -- is not 
significantly more difficult than the surface irradiation examples we have just treated so we 

will turn now to that problem. 

We will consider the propagation of the cross-spectral density from the X-Y source 

plane to a spherical surface of radius R centered at the origin (figure 10.6a). We can 

think of this surface, for example, as a spherical mirror. Then we will consider the further 
propagation of the cross-spectral density from this surface to the image plane. The first 

part of this task is accomplished by setting R1 = R2 = R in eq. (10.42): 

(10.93) 

In the integrations, points P1(xl,yl) and P2(x2,y2) each independently cover the entire 
source area in the X-Y plane. The points Pi and Pi, for which the new cross-spectral 

density on the left is calculated, lie in the spherical surface of radius R. Actually the 

surface need not be spherical. All we require is that the o p t i c a l  p a t h  l e n g t h  from the 
origin along all geometrical optic rays to the surface be constant. Therefore this surface 

could be the plane through the center of a lens (figure 10.6~). On the image side of this 

"spherical" surface we shall assume the radius is R", thus allowing for the possibility of 
imaging with a magnification other than one. For the propagation from this surface to the 

image plane, then, we start with eq. (10.36) and approximate the distance s" (figure 10.6b) 

from the surface to points P" in the image plane by [see eq. (10.39)l 
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Figure 10.6. (a) Cross-spectral density propagation from source 
plane to intermediate optical element (mirror). 

(b) Cross-spectral density propagation from inter- 
mediate optical element (mirror) to detector plane. 

(c) Cross-spectral density propagation from source 
plane through intermediate optical element (lens) 
to detector plane. 
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and finally obtain 

(10.95) 
1 

2 where we have, as usual, approximated s;*si in the denominator by R" . In the integra- 

tions of eq. (10 .95 )  each point Pi(xi,yi) and P;(x;,y;) covers the entire spherical 
surface independently. We will assume that there is a rectangular aperture at this focusing 

optic which limits this integration to a 2a' by 2b' area. The points P; and P i  of 
the cross-spectral density function on the left are points in the image plane. 

The next task is to substitute eq. (10.93) into eq. ( 1 0 . 9 5 ) .  First we will drop the 
exponential factor outside the integral in eq. ( 1 0 . 9 5 ) .  The points of primary interest in 
the image plane lie near the image of the source and since source points in the Fraunhofer 

approximation satisfy the points of interest in the image plane will 

satisfy: 
(x2 + y2)/(XR) < <  1 

where R"/R is the optical system magnification. Thus, the quadratic 

(10 .96 )  

phase factor 

(10 .97 )  

will be unity except for very large system magnifications or image plane points very distant 

from the Z-axis. Second, the cosine factors, cosell  COS^^^ cosei, and cos8; will prove to 
be a nuisance in what is to follow so we will now make one final approximation and set all 

these factors equal to 1. The angles and O 2  are the angles at the object plane 
between the Z-axis and the directions to the points Pi and P; in the spherical surface, 
and similarly 8; and e; are the corresponding angles at the spherical surface between the 

normals to the spherical surface at Pi and Pi and the directions to P; and P;, respec- 

tively. So replacing these factors by 1 means that we are assuming a small aperture at the 
lens or mirror, i.e., a' and b' are small compared to R and R". With these approxi- 

mations, and reversing the order to integrate first over the aperture and then over the 
source, we obtain: 

aperture 

(10.98) 
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Thanks to our having chosen a rectangular aperture and having eliminated all the other 
factors which depend upon 

variables can be carried out and (Surprise!) lead again to sinc functions: 
xi, yi, xi, and y; the integrations over these singly primed 

(10.99) 

Y" - sinc [F (2 + z)] sinc [y -(g + $)] - dxl *dyl -dx2 *dy2. 
Thus, the cross-spectral density in the image plane is given by an integral over the object 
plane of the cross-spectral density of the object weighted by a product of sinc functions. 

Equations (10.98) and (10.99) have been derived in the Fraunhofer approximation which is 

perhaps rarely applicable in practical imaging situations. Fortunately, some of the higher 

order terms which we have neglected actually cancel out in the case of image formation so the 
approximation is not as bad as it might be. We will return later to a more general considera- 
tion of imaging and discuss a more exact equivalent of these equations which, in principle, 
can be applied to other aperture shapes and includes lens aberrations and focusing errors. 

The present approximation is generally suitable for very small sources such as pinholes and 
narrow slits but overstates diffraction effects for larger sources. For example, if the 

radiances at the centers of two circular sources of different sizes are to be measured by 
imaging them in turn onto a small detector located at the center of the image then the esti- 
mate of the contribution to the detector signal of the larger source caused by diffraction 

from the extra source size will be too large in this approximation. Usually, in relative 
measurements, such errors will be small and calculations in the Fraunhofer approximation will 
be adequate to establish the negligibility of the error or to indicate the measurement modi- 

fications required to make it negligible. 

If the same derivation is carried out for a quasihomogeneous source using the propagation 

law of eqs. (10.90) and assuming that the 2a' by 2b' intermediate aperture at the focusYng 
optic is large compared to the coherence area, then we find that the image is quasihomogeneous 
with cross-spectral density given by 

+ 5"/2,y" + q'*/2;x" -5"/2,y" - 0"/2)  w;; (x;,y;;xp;, = wx 

where 

(10.100) 

source 

(10 .lo21 

and 
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2a'5 2b'n G = 11 g ( 5  , n )  2a sinc (r) 2b I sinc (x) dc *dn. (10.103) 
source 

In these equations x", y", E " ,  and q" are the average and difference coordinates in the 
image plane analogous to those defined in eqs. (10.77) and (10.82) for the source plane. The 

condition that the intermediate lens aperture be large compared to the coherence area at the 

aperture is almost invariably fulfilled in optical radiometry if the imagery is good and the 

source is quasihomogeneous. We can calculate the coherence area from the degree of coherence 
in the aperture which, in turn, is obtained by eq. ( 1 0 . 9 0 )  from the fluence rate distribution 
in the source. Assuming a roughly uniform source of dimensions 2a by 2b we find that 

gl(cl,n') is proportional to 

sinc(2aE1/XR) .sinc(2bq1/AR) (10.104) 

and hence the coherence area is roughly 0.4X R /ab. [See eqs. (10.56) and (10.57)l. The 
condition on the aperture then becomes 4a'b' > >  0.41 R /ab or w >>  1.6X /(4ab) where w 

is the solid angle subtended at the source by the aperture, typically 0.01 [sr] or larger, 

and 4ab is the source area. 

2 2  

2 2  2 

We w i l l  now i l l u s t r a t e  t h e  use  of eq. (10.99) by applying it  t o  t h e  problem of imaging t h e  

same two sources  w e  t r e a t e d  before ,  namely, a uniform rec tangular  incoherent  source and a uniform 

r e c t a n g u l a r  coherent  source.  W e  have a l r e a d y  seen [eqs.  (10.47) and (10.68)] what t h e  c ross -  

s p e c t r a l  d e n s i t y  produced by t h e s e  sources  looks l i k e  i n  t h e  p lane  of t h e  imaging o p t i c s .  Now w e  

w i l l  see what happens when t h i s  r a d i a t i o n  is  brought t o  a focus.  Since t h e  equat ions  are r a p i d l y  

becoming inconvenient ly  long w e  w i l l  t reat  only t h e  x-component of t h e  problem, r e c a l l i n g  t h a t  i n  

t h e  Fraunhofer approximation wi th  rec tangular  sources  and a p e r t u r e s ,  t h e  x and y p a r t s  of t h e  

i n t e g r a l s  are e n t i r e l y  s e p a r a t e  f a c t o r s  which can be eva lua ted  independent ly  of one another .  

we w i l l  w r i t e  j u s t  t h e  x-component of eq. (10.99) a s  

Thus 

(10.105) 

There is  an analogous y-dependent f a c t o r  conta in ing  b and y i n s t e a d  of a and x and t h e  

complete c ross -spec t ra l  d e n s i t y  is  understood t o  be a product of t h e  two f a c t o r s :  

wx(x1'Y1;x2'Y2) = w A ~ x ~ ~ x l ; x 2 ~ . w A ~ ~ ~ ~ Y , ; Y 2 ~ .  (10.106) 

I n  o t h e r  coord ina te  systems.such as p o l a r  coord ina tes  t h e  i n t e g r a l s  do not  f a c t o r  t h i s  way and i t  

i s  necessary t o  s tar t  from t h e  complete equat ion  ( 1 0 . 9 8 ) .  

For t h e  incoherent  uniform rec tangular  source,  we have from eq. (10.28) 

(10.107) 
= o  f o r  lxll 2 a 

and a f t e r  s u b s t i t u t i o n  of t h i s  express ion  i n t o  eq. (10.105) and car ry ing  o u t  t h e  i n t e g r a t i o n  over  

x2 w e  are l e f t  wi th  
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-a 
(10.108) 

This integral, if needed, can be evaluatedl but frequently the fluence rate is of more interest: 

4aI2-A a 

RR"X -a 
= I sinc2[y * (5 + $)] -dxl. 

(10.115) 

The integral appearing in this equation can be evaluated in terms of tabulated functions with the 

result 

lWhen the integration is carried out, the result is 

w;(X)(Xll.Xll) = - ( L - C + S )  
2a 

where 

(10.109) 

(10.110) 

cos [F 2aa' qx; - x;;] 
c =  .(Ci[U,(+)] - Ci[U2(-)] - Ci[U1(+)] + Ci[U1(-)] } (10.111) x; - x;' 

and 

Uk(+) = 4na'. (3 + ;) x 

4aa' ;) UkC) = h* - - . 

(10.113) 

(10.114) 

Most of  the integrals which arise in diffraction problems with simple rectangular and circular 

sources and apertures can be evaluated with the help of any of the references [10.15], [10.16] or 

[10-171. 

arise in these problems, such as Ci(x) and Si(x). These tabulations are useful for isolated 

calculations. Of probably more value, however, are the rational approximations presented in this 

reference which permit efficient computer evaluation of these functions with good accuracy. 

brute force computer evaluation of multiple integrals is often sufficiently slow and uncertain as 

to warrant the expenditure of considerable effort to find physical idealizations and mathematical 

approximations which permit reduction of the integrals to a form which can be evaluated in terms 

of well-known functions with rational approximations. 

Reference f10.151 also includes tables of numerical values of many of the functions which 

The 
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(l.0.116) 

X 

*dt sin t The function Si(x) = Io 7 
where rational fraction approximations suitable for computer calculations are also given. 

complete fluence rate, of course, i s  the product of the x-component of eq. (10.116) and a similar 

y-component in which x and a have been replaced by y and b. The quantities a and b 

are the object half-dimensions and a' and b' are the aperture half-dimensions at the imaging 

optic. The quantity R is the object-to-lens distance and R" is the lens-to-image distance. 

The coordinates of the point of interest in the image plane are x" and y". In figure 10.7 we 

show some graphs of eq. (10.116) for several values of the lens aperture halfwidth a'. This 

figure illustrates how the image, which ideally would be constant from x" = -aR"/R 

x" = aR"/R and zero elsewhere, broadens by diffraction as the aperture is decreased. 

we have assumed no imaging errors other than diffraction in eqs. (10.98) to (10.116). 

is known as the sine integral and is tabulated in [10.151, 
The 

to 

Of course 

To the extent that spectral fluence rate approximates spectral irradiance this is the dis- 

tribution of spectral irradiance we would expect to find, for example, in the image of a tungsten 

strip filament lamp. 

At the other extreme -- a coherent uniform rectangular source -- we have for the source 
cross-spectral density [eq. (10.59)l 

= 0 otherwise 

and (10.117) 

= o  otherwise. 

These can be substituted into eq. 

spectral fluence rate in the image planel, which is obtained by setting 

y; = y; = y" 

(10.105) and its y-dependent analog. Again let us consider the 

x;I = x;' = x" and 

and carrying out the integrations. The result is 

lThe cross spectral density function is: 

(10.118) 

W;(y)(yy;y;) in this example is obtained by replacing XI', a and a' by y", b and b' and 

by setting B o  = 0. The functions Su(x) and Cu(x) are defined in eq. (10.120). 
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Figure 

1 0-3 

1 0-4 
-100 0 

XI '  Cyml 
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.7. Relative distribution in the x-direction of fluence rate in the 

image of a 50 [pml-wide, uniform, incoherent source for various 
lens aperture widths. Plots of the part of eq. (10.116) within 

curly brackets for A = 514 [nm], a = 25 [pm], R = R" = 0.8 [ml I 

and - a' = 0.01 [ml; -- a' = 0.02 [m]; -- a' = 0.04 [ml; 

- -- a' = 0.08 [ml. 



(10.119) 

where 

SU(X") = 4 (Si[U(++)I - Si[U(-+)l + Si[U(+-)I - Si[U(--)I I 

cU(x'') = 4 (Ci[U(+-)l - Ci[U(--)I - Ci[U(i+)] + Ci[U(-+)]\ 
(10.120) 

and 

U(*) = - 2a A * ( -+- XI' R" :).(a' + R-sinBo) 

(10.121) 

In these expressions the source has dimensions 2a by 2b and the aperture at the imaging optic 

has dimensions 2a' by 2b'. The distance from the source to the aperture is R and from the 

aperture to the image is R". The function Ci(x) is the cosine integral, which, for our 

.dt and is tabulated in r10.151. cos t purposes, can be defined by Ci(b) - Ci(a) = - t 

COHERENCE EFFECTS on a MONOCHROMATOR SLIT-SCATTERING FUNCTION. The expression for the 
fluence rate distribution in the image of a monochromatic rectangular coherent source [eq. 
(10.119) above] is of some interest because it is a model for calculating the slit-scattering 
function to be observed by laser irradiation of the entrance slit of a monochromator. In this 
application the source plane is the rectangular monochromatically irradiated entrance slit and 

a single image of the entrance slit is formed somewhere in the exit plane. The detector then 

collects the radiation passing through the exit slit as the slit is scanned across this image 

either by motion of the exit slit or by rotation of the dispersing element. To illustrate 

this calculation of a slit-scattering function we show in figure 10.8 curves of F (x") 

for several values of B o ,  the angle of incidence of the laser beam on the entrance slit. 
The calculation gives the value of the spectral fluence rate at each point of the exit plane. 

This, of course, would theoretically be observable only with an infinitesimally narrow exit 
slit. In practice one usually has entrance and exit slits of nearly the same width so that an 
observed slit-scattering function would correspond to a running average (integral) of one of 

the curves in figure 10.8 where the width of the average would be comparable to the width of 
the entrance slit image -- 50 [vm] in this example. The resulting smoothing would greatly 

reduce most of the finer structure of the curves. But it would not eliminate the high level 

of the far wings of the slit-scattering function when the angle of incidence corresponds to 
pointing the laser at the edge of the imaging aperture (the edge of the grating, 

[rad] in figure 10.8) or the splitting of the slit-scattering function into twin peaks at 

larger angles of incidence. 
to those of a moderately high resolution single monochromator (monochromator focal length 
R = R" = 0.8 [m] , slit halfwidth a = 25 [pm] , grating projected halfwidth a' = 0.0375 [ml , 
and wavelength A = 514 [nm] . )  

t,X 

eo = 0.047 

The values of the parameters chosen for this example correspond 
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Figure 10.8. Relat-ire distribut->n in the x-direction of fluence rate in the 

image of a 50 [pml-wide, uniform, coherent source for various 
angles of incidence of the beam. Plots of the double integral 
of eq. (10.119) for the same parameter values as in figure 10.7 

except a' = 0.0375 [ml and A. = 1. - eo = 0.00 [rad]; 

eo = 0.03 [rad]; -- eo = 0.04 [radl; --- 8, = 0.05 [rad]. -d 
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These curves show that the measurement of the slit-scattering function with a laser beam 
requires careful attention to the angle of incidence. 
doesn't arise because there is no particular direction associated with incoherent light aside 
from the obvious dependence upon the projected size of the source. This point is illustrated 

if we imagine trying to produce incoherent light in the entrance slit of a monochromator. 
This can be done by replacing the slit by an incandescent filament or by illuminating the 

slit by an infinite incoherent source (an integrating sphere with one port being the entrance 
slit would probably do). In neither case is there any defined direction of the sort exhib- 

ited by the laser. 

With incoherent light this problem 

So far we have limited our examples to the two extreme cases of complete incoherence and 

complete coherence. The reason for this is that these are the two cases for which the 

integrations are most easily carried out -- incoherence, because of the delta function -- and 
coherence, because of the factorization into the product of a simpler integral and its 
complex conjugate. The theory, however, is perfectly general and applies to any expression 
for the cross-spectral density with any degree of coherence. 

As a final numerical example of the application of the propagation of coherence to 

practical radiometry we will calculate for partially coherent radiation the slit-scattering 

function of the monochromator of the last example (see also reference [lO.lE]). We will 

assume that the entrance slit is irradiated by a monochromatic incoherent source of width 2a0 
located on the optic axis at a distance 

distribution of spectral fluence rate in the exit plane. As we have seen [eq. (10.5211 the X- 

dependent part of the degree of coherence of the light at the plane of the entrance slit 
depends upon the ratio and can be varied from total coherence to total incoherence by 

changing this ratio from 0 to m. Based upon eq. (10.471, we see that we can write the x- 
dependent factor of the cross-spectral density function in the plane of the entrance slit as 

Ro 
in front of the slit and will calculate the 

ao/Ro 

2ao (xl-x2) w y  (xi;x2) = - 2aoAo esinc [ 
iRo ] - RO 

(10.122) 

Now, using eq. 
slit: 

(10.105), we obtain for the cross spectral density in the plane of the exit 

- I  L J J  L C -a -a R ~ R R ~ ~  x 

(10.123) 
X" 

sinc [ F a ( ?  + &)] -sine [%-(? + g)] *dxl*dx2. 
In this expression 2a' is the width of the instrument aperture -- usually this is the width 
of the grating -- and R and R" are the distances from the entrance and exit slits to the 
collimating optics. If we confine our attention to the spectral fluence rate in the exit 
plane we can set to give the x-component as xi = XI = x" 

2 a a  8 a I aoAo 

-a -a R ~ R R  t t  A 

(10.124) 

sinc[y- (2 + ,)] XI' -sinc[F. (2 + F)].dxl.dx2. X" 
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The results of performing the indicated integrations numerically for the monochromator 

of the previous example (R = R" = 0.8 [ml , a' = 0.0375 [ml , a = 25 [pml , X = 514 [nml) 
are shown in figure 10.9. The two solid curves are the extremes of complete coherence and 

complete incoherence: the incoherent curve possesses the highest slit-scattering function in 
the far wings and is quite flat and structureless in the middle. The dashed curves show 
cases of partial coherence and lie generally between the two extremes. The curves in this 
figure have been area normalized in order to emphasize the changing shape of the slit-scat- 
tering function. Again the figure shows the distribution of fluence rate in the exit plane 

of the monochromator. This would be observable with a very narrow exit slit. For a normal 

exit slit the finer structure would be largely smoothed out and only the average far-wing 
behavior would distinguish the cases of differing coherence. 

Clearly, if the slit-scattering function of a spectroradiometer must be measured accu- 
rately for later use (deconvolution) with an unknown source it is necessary that the state of 
coherence of the calibration beam be similar to that of the unknown to be measured. For many 

situations this requirement may not be as restrictive as it appears. In figure 10.9, for 
example, the transition from slit-scattering functions which are barely distinguishable from 

completely coherent to those which are barely distinguishable from completely incoherent 
occurs as ao/Ro changes from about 0.03 to 0.06. Thus many radiation fields could probably 

be treated as one extreme or the other. In addition, by changing some parameter of the 
measurement environment such as Ro, 

shift the slit-scattering functions for both sources to the same side of the transition 
region, so that for that particular pair of measurements, at least, a common slit-scattering 

function will be satisfactory. 

the source-radiometer distance, it may be possible to 

More generally, we can say that for an imaging system, if the coherence interval in the 

object plane is very much greater than the width of the point spread function of the optical 

system in the object plane, then the image will resemble the coherent limit. If the coher- 
ence interval is very much smaller than the width of the point spread function then the image 
will resemble the incoherent limit. The point spread function of an imaging system is the 
distribution of fluence rate in the image of a point source. Ideally a point source should 
be imaged into a point.image but due to diffraction, aberrations, and focusing errors it 

never will be. Here we are only interested in the scattering by diffraction. For perfect 
imagery and rectangular apertures we can calculate the point spread function from eq. (10.105) 
Imagine the source shrinking to a very small area around 

spectral density Wix) (x, : x2 ) 
factor of the image cross-spectral density function will be proportional to: 

x1 = x = 0. The source cross- 2 
will then approach a constant , F t, ( 0 ) .  Thus, the x-dependent 

' 

sinc (2a 'x;/AR") sinc (2a x$/XR" ) (10.125) 

2 and the fluence rate in the image will be proportional to sinc (2a'x"/XR"). There is, of 
course, a similar y-dependent factor and the complete point spread function for a rectangular 

aperture contains the product of these two factors. In one dimension the point spread 
function is just the slit-scattering function for an infinitesimal slit. To obtaln the point 
spread function in the object plane we interchange the roles of image and object and write 

. the point spread function as proportional to sinc (2a'x/hR). The width of this function is 
then, say, twice the value of x at which the function is reduced to half its peak value. 

Actually, with sinc functions it is more common to use the width between zeros of the function, 

but to be consistent with our choice for coherence interval [eq. (10.56)J we will continue to 
2 use the full width at half height. Since sinc (u) = 0.5 for u = 0.44, we find that the 

width of the point spread function is about 0.4XR/a1. This can also be interpreted as the 

resolution limit of the imaging system; two objects lying closer together than this will not 

2 
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Figure 10.9. Relative distribution in the x-direction of fluence rate 

in the image of a 
source at normal incidence for various degrees of partial 

coherence. Plots of the double integral of eq. (10.124) 
for the same parameter values as in figure 10.8 and area 
normalized, in the interval shown, to the area under the 

Bo = 0 
-- ao/Ro = 0.04 : 
- ao/Ro = OD (incoherent). 

5 0  [pml-wide, unifcrm, partially coherent 

curve in figure 10.8. - ao/Ro = 0.00 (coherent) : 
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be resolved in the image. For our present purpose of considering the effects of coherence in 

radiometry, the significance of the point spread function width is that if, for two different 

sources, the characteristic coherence intervals at the entrance slit of a monochromator 
radiometer are either both very much greater than XR/a' or both very much smaller than 
XR/a' then the monochromator slit-scattering function will be similar for both sources. If 

one or both coherence intervals are comparable to h R / a '  or, worse, if one is large and the 
other small, then the slit-scattering functions may differ considerably for the two sources, 

and, depending upon their spectral distributions, this may significantly affect the accuracy 
of any direct comparison of the two sources with this radiometer. To test if this is a 
problem or to ameliorate the problem if it exists one can usually increase the point spread 

function width by decreasing the imaging aperture halfwidth a' or, as mentioned above, one 
may be able to change the coherence interval by changing the distance from the source to the 
slit. 

Any time high resolution is sought in any dimension of the measurement situation -- 
spectral, temporal, angular, or spatial -- the coherence state of the radiation can affect 
the measurement results. In the present example spectral resolution is achieved by means of 
spatial and angular resolution of an image within the monochromator. This image resolution 

is limited by the distortion caused by diffraction, and the magnitude and nature of the 
distortion due to diffraction are dependent upon the coherence state of the radiation entering 
the radiometer. As a further example let us consider the image formed by a lens of a slit 

upon which a laser speckle pattern falls. If we assume that the speckles consist of homo- 
geneous regions all of the same size but with random electromagnetic field amplitudes and 
phases then the fluence rate in the image may be distributed somewhat like one of the curves 

in figure 10.10. The curves in this figure were computed for the same monochromator as in 
the previous examples, but with the slit coherently irradiated with a cross-spectral density 
given by: 

WX (x  : x ) = A-cos [ a  (xl) 1 'cos [ a  (x,) I Wexp [ig (xl) -i6 (x,)  1 (10.126) 1 2  

where a(x) and B(x) are angles between -n and n which are constant within each 
interval of 1 [pm] but random from interval to interval across the width of the slit. The 

two curves are for two different samples of random a(x) and B(x) values. Now suppose 
that the speckle pattern moves with time (e.g., is generated by a rotating ground glass) or, 

equivalently, suppose that the primary source is polychromatic in such a way that the phase 

in each speckle changes in time randomly with respect to its neighbors, Then the distribu- 
tion of fluence rate in the image will evolve continuously from curve to curve among the 
family of curves of which those of figure 10.10 are representative. If a small detector in 
the image plane possesses sufficient temporal resolution and if the speckle pattern evolves 

sufficiently slowly then the detector will follow this evolution and an erratic signal output 
will result. On the other hand, if the detector in the image plane has poor temporal resolu- 

tion and if the speckle pattern changes rapidly then a steady average signal output will 
result and, in fact, the average distribution of fluence rate in the image will be exactly 

that of an incoherently irradiated slit: the average of a large number of random speckle 
pattern image distributions such as those of figure 10.10 approaches the shape of the inco- 
herent curve of figure 10.9. Thus, a rapidly changing, fine, speckle pattern is a model for 
incoherent light and we see that with high temporal resolution the results of a single 
radiometric measurement can depend upon the coherence state of the radiation. Although in 

this example we have employed the time averaging of an evolving speckle pattern to simulate 

'natural' incoherent light, the average in the y-direction -- along the height of the slit -- 
of a stationary speckle pattern can produce the same effect. We have assumed, in the 
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Figure 10.10. Two samples of the relative distribution in the x-direction 
of fluence rate in the image of a 
source consisting of 1 [pm] cells with amplitude and phase 
constant within each cell but random from cell to cell. 
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calculations of figure 10.10, that the height of the slit spans one speckle width or less and 
have ignored the y-dimension of the problem. If the slit and detector cover many speckles in 

the vertical direction then again the detector will integrate over many random speckle 

patterns in this direction and the observed fluence rate distribution in the image plane will 
agree with that of an incoherently irradiated slit even when the speckle pattern is stationary 
and the irradiation is monochromatic. 

MORE on IMAGING -- PUPIL FUNCTIONS and ABERRATIONS. In deriving eq. (10.98) for the cross- 
spectral density function in the image of a source we made two applications of eq. (10.36) -- 
the law of propagation of cross-spectral density. This gives, among other factors in the 

integrand, a phase factor 

(10.127) 

The distance s1 + sl" is the total optical path length from point (xl,yl) in the source 

plane to point (xi,y;) in the image plane via a point (xi,yi) in the intermediate aperture 
plane. 
and image points via a second point in the aperture. In that derivation we made some approx- 
imations for this phase factor and then, in passing to eq. (10.99), we integrated over all 

pairs of points in the aperture. It is not necessary, of course, that there be any focusing 
optic in the aperture plane or that there be a recognizable image; the "source", "aperture", 

and "image" planes may be any three consecutive cross-sections of the beam and the sequential 
application of eq. (10.36) is still valid. The particular simplifications which led to eq. 
(10.98) will no longer apply in the absence of perfect imagery. Instead, the second four- 

fold integral in eq. (10.98) will be replaced by 

Similarly s2 + s; is the total optical path length between a second pair of source 

*(sl + s; - s2 - s~)].dxi.dyi*dx;*dy~ 
aperture 

(10.128) 

where the integrations cover the aperture twice. Starting from expression (10.128) we now 
want to discuss a generalization of eq. (10.98) which can include arbitrary apertures and 

departures from perfect imagery. 

First of all, instead of limiting the integrations to the aperture we can introduce a 
pupil function' p(x',y') whose value is 1 inside the aperture and 0 outside the aper- 

ture and then let the integrations cover the entire aperture plane: 

m m  

For our rectangular aperture, for example, we would have 

(10.129) 

(10.130) 

= 0 otherwise. 

'Strictly speaking the pupil function p(x',y') will also depend upon the source point 
(x,y) and the destination point (x",y") of the radiation passing through the aperture. 
This dependence is generally neglected and we don't explicitly show it in our notation. 
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So far this is exactly equivalent to expression (10.128). However, we can generalize this 

expression by allowing P(x',y') to take on values other than 0 and 1. Intermediate 

values of p(x',y') can describe optical systems involving partially absorbing media such as 
the "aperture" formed by the slide in a slide projector. If the aperture introduces phase 

variations, such as a slide made of wavy glass, then this can either be put into the pupil 
function by making p(x',y') complex or be accounted for in the calculation of s + s " .  

The four-fold integral in expression (10.129) can be seen to be the  product of two 
similar integrals: 

(10.131) 
- W  

where 

and s + s "  is the optical path length between (x,y) and (x",y") via (x',y'). R is the 

perpendicular optical path length from the source plane to the aperture plane and R" that from 

the aperture plane to the image plane. The exponential factors involving R and R" which we 

have introduced in eq. (10.132) cancel out in forming eq. (10.131). The function K(x,y;x",y") 
is the transmission function [10.2] , [10.3] , and [10.5] of the system. The transmission func- 

tion is similar to those functions variously known as point-spread function, impulse function, 

Green's function, etc.: if we think of K(x,y;x"y") as a function of the position O f  the 

point 
a unit point source of fixed phase at the source point 

function we can now write the cross-spectral density function in the image plane as 

(x",y") in the image plane, then it describes the field in the image plane caused by 
(x,y). In terms of the transmission 

(10.133) 

This is the generalization of eq. (10.98) which applies whatever the aperture and whether or 
not imagery is good. Of course, it requires being able to express the optical path lengths 
s + s" in terms of the coordinates of the source, aperture, and image points. 

When the aberrations or focusing errors are small we can write 

+ A  x'x" f y'y" 
R" + R" - R s + s "  = R -  (10.134) 

where the first four terms on the right come from the approximations which lead to eq. 

(10.98) [see also eq. (10.39)] and A is a correction term. Notice that if A is zero 
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there exists a point in the image plane at x" = -x -R" /R ,  y" = -y.R"/R for which s + s" 
is independent of the aperture point (x',y'). This means that for each source point (x,y) 

there is a conjugate image point for which all rays through the aperture travel the same optical 
path length. Thus, eq. (10.134) with A = 0, and consequently also eqs. (10.98) and (10.99) 
correspond to perfect, aberration-free focusing.' 

Equation (10.133) with the transmission function defined by eq. (10.132) is always valid 

provided only that the optical path lengths s1 and s2 (and s; and s;) which appear in 
the denominator of the propagation law [eq. (10.36)] are sufficiently constant to be approxi- 

mated by R (and R").* If the departures from perfect imagery are small the approximation 
of eq. (10.134) may be useful. As an example of this approximation suppose that although the 
true focal plane is located at the distance R" from the aperture the "image" plane of 
interest is a parallel plane a small distance 5 beyond the focal plane. Then a first 
approximation to A is given r10.21 by 

A =  

Focus errors are treated 
in Chapter 9 of the same 

(10.137) 

in full in reference [10.2], Chapter 8 ,  and aberrations are treated 
reference. It will rarely be possible to evaluate in terms of 

convenient, known functions the integrals which result from the inclusion of focus errors, 
aberrations or exotic pupil functions. Usually, the numerical evaluation of the transmission 

functions from eq. (10.132) with sl, s;, s2 and s; calculated directly, will be prefer- 
able to trying to identify and work with the terms of the expansion of eq. (10.134). By 
writing complex exponentials as the sum of a cosine term and i times a sine term, the 

integrals of eqs. (10.132) and (10.133) can ultimately be expressed as a sum of two integrals 
one real and one imaginary -- which can be computed independently. Eventually, in the chain 
of calculations when an observable such as fluence rate or radiant intensity is computed, 

these components will combine to produce a single, real, result. 

2niA exp - A , into the pupil function 'In this case [or if we put any phase error factor, 

p(x' ,yo) J we can write the transmission function as 

Now by letting 5 = x/R + x"/R" and n = y/R + y"/R" this integral can be cast in the form 

of a two-dimensional Fourier transform of the pupil function (as modified by including any 

phase factors for aberrations or focus error): 

(10.136) 

Many of the equations of this chapter can be expressed somewhat more compactly by employing 
Fourier transform shorthand. However, we make no use of this because we suspect that many 
readers never really feel comfortable with Fourier transforms and we fear that their use 

sometimes tends to obscure the simple physics and the essential approximations involved. 

.- 

'All lengths, including R (and R"), must of course be >>  A. 
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The CLASSICAL RADIOMETRIC QUANTITIES. So far in this chapter we have avoided saying much 
about spectral radiance and this, no doubt, seems curious since spectral radiance lies at the 
heart of all the rest of the chapters of this Manual. The reason is that the classical 
concept of spectral radiance is inconsistent with a wave theory of light because the very 

limiting process required to define a ray and, hence, radiance (letting the areas of two 
apertures go to zero -- see Chapter 2 [10.19]) guarantees such severe diffraction in the 
presence of coherence that the direction the "ray" came from is totally indeterminate. In 

consequence, no function of the cross-spectral density can possess a l l  the properties of the 
classically defined spectral radiance for all fields [10.14]. Functions which possess many of 

the properties of spectral radiance can be defined and that given in eq. (10.20) is commonly 
used. 

Equation (10.20) can be inferred from eq. (10.36) for the propagation of the cross-spectral 

density function using the classical relationship between spectral radiance and spectral 
fluence rate. Consider a source plane z = 0 where the spectral radiance is desired. In 
this plane we assume that the cross-spectral density WA(xl,y1;x2,y2) is known. To measure 
the spectral radiance we would place a spectroradiometer at some distance R away from the 

source, pointing from the direction e , $  to the point x,y where the spectral radiance is 
desired. At the entrance aperture of the radiometer the cross-spectral density is given by 
eq. (10.36). Let us express eq. (10.36) in terms of the average and difference coordinates 

introduced in eqs. (10.77) and (10.82): 

1 + x2) Y = 4(y, + y,) x = +(x 

5 = x1 - x2 n = Y1 - Y2' 
(10.138) 

Then 
elements becomes' dx*dy*dc*dq. We also make similar substitutions for the primed coordi- 
nates in the X' - Y' plane and define R as the distance between the source point P(x,y,O) 
and the distant point P'(x',y',z') where the radiometer is located: 

x1 = x + 45, y1 = y + 417, x2 = x - 45, y2 = y - + n ,  and the product of the area 

R2 = (XI - x)2 + ( y '  - Yl2 + 2'2. 

In terms of these variables the distances s1 and s2 of eq. (10.36) become 

(10.139) 

(10.140) 

and we can write eq. (10.36) as 

wi (X'+?iS', y'+$q'; x'-JiC' , y'-+n') = 

source 
(10.141) 

-dx.dy-dS-dn. Zf2 
2 2A2 
s2 

'See footnote on page 27. 
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Now we make the usual approximations; we expand the square roots in eqs. (10.140) in powers of 
1/R as in going from eq. (10.38) to eq. (10.41)r keeping only the lowest order terms to give 

(10.142) 

(10.143) 

The contribution to the fluence rate from the element of solid angle dw = edx-dy is just 
R2 

(10.144) 

Therefore, from the classical relation (eq. (4.19) [10.9])' 

we obtain 

(10.146) 

'If the expression for spectral radiance were derived from eq. 

large-distance approximation of eq. (10.142) the formula would depend upon R. Since this is 

incompatible with classical radiometry it is, strictly speaking, necessary to define radiance 
as the far field limit of the derivative of the fluence rate: 

(10.141) without making the 

where R, as given by eq. (10.139), is the distance from the source point (x,y) to the 

detector point (x',~'), and F;rX(x'rY') = Wi(x'rY'ix',Y') as usual. In this way LA will 
depend only upon the direction ( e r $ )  from the point (x,y). In our derivation we have 

effectively taken this limit when we make the approximation leading to eq. (10,142). 
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. _  
source 

(10.147) 

In this equation, 0 and $ specify the direction from the source point ( x , y )  to the 

detector point (x' ,y' 1 : 

case = Z'/R 

sine*cos$ = (XI-x)/R 

sine sin$ = (ye-y) /R. 

(10.148) 

If we use these relations to eliminate the primed coordinates and remember that geometrically 
radiance is invariant along a ray we obtain eq. (10.20) 

(10.149) 

This is the spectral radiance at the source point (x,y) in the direction ( 0 , $ ) .  The 

integration covers the entire source plane, or beam cross-section if the "source" plane is not 
a primary source. We see that the cross-spectral density over the entire source plane con- 

tributes to the spectral radiance at any one point of the source. This is consistent with the 
idea that, by diffraction, all points in the source can contribute something to the signal 
received by a radiometer nominally aimed at a single point. 

The spectral irradiance at the point (x',y',z'), irradiated by a source centered at the 

origin can be obtained similarly from the relation {eq. ( 4 . 2 0 )  
fluence rate: 

[10.9]) between irradiance and 

(10.150) 

Using eq. (10.144) for the element of spectral fluence rate we obtain 

(10.151) 

which differs from eq. (10.143) for spectral fluence rate only by the extra factor coskl,. 
The angle er is the angle between the normal to the irradiated surface at (x',y') and the 

direction to the source point (x,y). If the irradiated plane is parallel to the source 
plane then case, = cos0 = z'/R. In both eqs. (10.143) and (10.151) R is a function of x 
and y [eq. (10.139)] which makes the integrals difficult. If we can assume that the source 

dimensions are small compared with 6 
R = (x'~+Y'~+z'~)' 

-- the Fraunhofer approximation -- then 
and these equations become: 
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(10.152) 

and 

where cos0 = z'/R and both the x,y and 5 , q  integrations independently cover the source 

plane. 

The rest of the common radiometric quantities can now be easily expressed in terns of the 
cross-spectral density. From eqs. (10.16), (10.143) I and (10.148) we find 

(10.154) 

for the spectral radiant intensity of the source in the direction ( e l $ ) .  The spectral 

radiant exitance from the source plane is obtained by integrating the spectral radiance [eq. 

(10.149)l over the hemisphere with respect to projected solid angle 
The integrations over 0 and 9 can be carried out to give 

cose.dw = cose-sine.de.dI$. 

(10.155) 

For highly incoherent fields, these expressions for the radiometric quantities possess 

all the properties of the corresponding classically defined radiometric quantities. However, 
for fields possessing significant coherence they possess all the right properties except that 
the spectral radiance and spectral radiant exitance in some circumstances can be negative and 

can be non-zero in regions of a source plane outside of the physically defined source area 
itself. AS we've indicated these quirks arise because these are classical geometrical optics 
concepts which are not strictly definable in the real world of wave optics. Fortunately it 
appears that these deficiencies aren't likely to arise in most cases of interest [10.14] so 
that eq. (10.149) and eqs. (10.152) to (10.155) can be accepted as the appropriate extension 
of classical radiometry to include coherence. 

We illustrate the calculation of the classical radiometric quantities from the cross- 
spectral density by an example of a source whose cross-spectral density function is given by 

(10.156) 
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where x, y, 5 and rl are the average and difference coordinates defined in eqs. (10.138). 
The spectral fluence rate in the source plane is a Gaussian function of the distance from the 
origin: 

F (x,y) = ~ ~ . e x p  2 (-r2/2a 2 ) (10.157) t, 

2 where 
distance between the two points whose coherence is being considered: 

r2 = x2 + y . The degree of coherence in the source plane is a sinc function of the 

u(x1,y1;x2,y2) = sinc (r 2 8  - p )  (10.158) 

2 2 where p2 = c 2  + n2 -- (x1-x2) + (y,-y2) . We see that the parameter 8 determines the 
coherence interval in the source and the parameter u is a measure of the size of the source. 
Since this is clearly a quasihomogeneous source, because the cross-spectral density is a prod- 
uct of a function of the average coordinates, x and y, and a function of the difference 

coordinates, 5 and n ,  (this implies that u >>  X / B ) ,  let us first simplify the expres- 
sions for the classical radiometric quantities by applying them to a quasihomogeneous source. 

Upon substituting Ft,X(~ly) * g ( < , q )  for the cross-spectral density in eqs. (10.149) , (10.152) I 
and (10.155) we obtain: 

where 

(10.159) 

(10.160) 

(10.161) 

@ = tan -1 (Y/x) 

-1 and 0 = cos (z'/R). The incident spectral ir sdiance at a dista ce R from the source and 
the spectral radiant intensity of that source are obtained from the spectral fluence rate at 

2 
that distance by multiplying by cos0 and R , respectively [eqs. (10.153) and (10.16)], where 

Or 
and the direction 

r 
is the angle between the normal to the irradiated surface at (x',y') 
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to the origin in the source plane. 
then Or = 8 .  The spectral flux is obtained by integrating the spectral exitance MX(xly) 
over the source area to give: 

If the irradiated surface is parallel to the source plane 

Now with FtIA(xly) given by eq. (10.157) and g ( S , n )  = 11 given by eq. (10.158) the evalua- 

tion of the integrals occurring in eqs. (10.159) to (10.162) can be carried out with the help 
of a table of integrals [10.15], [10.161, [10.171). We find: 

NX = 2nAE*02, (10.163) 

the integral appearing in eqs. (10.159) and (10.160) I s  

for sinWB, and 0 otherwise, A2 

and the integral in eqs. (10.161) and (10.162) is 

(10.164) 

(10.165) 

Thus we finally obtain the following radiometric quantities for the source whose cross-spectral 

density is given by eq. (10.156): 

( 0 otherwise 
(10.166) 

2 2  for (1-21 /R ) < B ~  

(10.167 

(10.168 

(10.169) 
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1 O Otherwise 

(10.170) 

for sin8<$ 

(10.171) 

When $ = 1 the expression for spectral radiance [eq. (10.166)] becomes independent of 

direction: 

(10.166a) 2 2 2  ~~(x,y,e,$) = Ao*exp(-r /2a )/(27r). 

This, then. is a Lambertian source and we see that the degree of coherence of a Lambertian 

source, such as a blackbody, must resemble [from eq. (10.158) with $ = 11 

= sin(21~p/h)/(2~p/A) (10.172) 

with coherence interval (if we use the criterion l u l = $ )  of the order of 0.3X. This is 

presumably about as incoherent as any real source can be. Notice that the coherence interval 
of a Lambertian source depends upon the observing wavelength rather than upon any parameter 

characteristic of the source. The other radiometric quantities for a quasihomogeneous 

Lambertian source are readily obtained from eqs. (10.167) to (10.171) by setting 8 = 1: 

MX(x,y) = A:-exp(-r2/2u2)/2 

(10.167a) 

(10.168a) 

(10.169a) 

(10.170a) 

(10.171a) 

2 2 2 2  -1 In these expressions R = x' +Y'~+z'~, r2 = x +y , and 8 = cos (z'/R). 

Although in pursuing this example we have made no mathematical approximations there is 
an inconsistency in that we have treated a source of infinite extent using equations derived 

for a finite source [(eqs. (10.149) to (10.15511. Fortunately the Gaussian approaches zero 
so fast as r increases that the error is negligible as long as u is very much smaller 
than the observation distance R. 

POLARIZATION. The theory of partial coherence given in this chapter is known as a scalar 

theory because it treats a single component of the electric field vector as though the field 
in other directions didn't exist. A more complete theory includes consideration of the 
coherence between, say, the x-component of the field at point 
field at point P2. Thus, one replaces the cross-spectral density function with a 2 x 2  
matrix of four such functions: 

P1 and the y-component of the 
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1 w X  ( j r k )  (p 1’ p 2 = n .<V*. 3 (Pl+AP,t) .Vk(p2+AP t)> (10.173) 

where j and k can each be either x or y and V. P , t )  is the complex representation of 

the j component of the electric field at the point P as seen through a narrow ( A x )  
pass-band spectral filter or monochromator. The angular brackets again denote an average over 

time and over identical small areas around P1 and P2 as the small displacement AP covers 
the measurement resolution area. In terms of these cross-spectral density matrix elements the 

Stokes-vector components [10.20] of spectral fluence rate are: 

3 

(10.174) 

w:y ( P , P ) 

V.(P,t) = A.(P,t).exp[iy.(P,t) - 21~ivtl 
3 7 3 

(10.175) 

(10.176) 

and the Stokes components of spectral fluence rate become: 

1 (P) = a *<Ax2 + A 2> 
Ft,X,O Y 

(P) = 1 Ft,X,l Y 
*<Ax2 - A 2> 

(10.177) 

(P) = hx 2 ~ < A ~ - A  .sin(yx-yy)>. tIhl3 Y 
F 

These equations are equivalent to eq. (6.3) [10.201. Thus, polarization is included as an 
essential aspect of a more general coherence theory with the Stokes parameters being one 
possible set of four linear combinations of the four cross-spectral density function matrix 

elements. Although there are circumstances involving polarization in which the scalar theory 
of coherence is clearly inadequate [10.213, it appears that a complete theory would probably 
only be required in exceptional radiometric situations where precise calculations of signifi- 
cant coherence effects are needed. 
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SUMMARY of CHAPTER 10. The field quantity which, in partially coherent fields, plays a basic 

role somewhat analogous to that of spectral radiance in incoherent fields is the cross-spectral 

density, WA(x1,y1,z1;x2,y2,z2). 
field points. The only direct interest radiometrists have in this function is in the special 

case where both sets of coordinates describe the same point. Then the cross-spectral density 
reduces to the spectral fluence rate at that point (Chapter 4 ,  page 17 i10.91): 

It is a complex-valued function of the coordinates of two 

Otherwise its importance for radiometry is that if one follows the propagation of cross- 

spectral density from a source through an optical system with the calculation of fluence rate 
or one of the other radiometric quantities of geometric optics only at the final detector, 

then all coherence effects such as diffraction will be properly accounted for. 

- law for cross-spectral density is: 

The propagation 

exp [2.rri. (s1-s2) / X I  -cosel-cosB2 
2 dP1 *dP2. (10.36) 

Sl'S2'X source 

Thus if the cross-spectral density function WA(P1,P2) is known for all pairs of points P1 

and P2 
the optical path length s1 for a ray from P1 to Pi and the optical path length s2 from 
P2 to P; are known for all points P1 and P2 in the source, then this multiple integral 

over the source surface permits the cross-spectral density to be calculated at the point pair 
Pi,P;. The angles Bi are the angles between the normal to the source surface at Pi and 
the direction to Pi, where i is either 1 or 2. For a complicated optical system this 

equation must be applied sequentially between each successive pair of beam limiting apertures 
with the results of one calculation serving as the source for the next stage of the calcula- 
tion. The only approximation of any consequence made in deriving this equation is that the 
source dimensions as well as all distances s1 and s2 involved must be much larger than the 
wavelength A. 

in one surface or cross-section of a beam, which we can regard as a source, and if 

In the evaluation of the propagation integrals [eq. (10.36)], it is desirable to perform 
as much of the integration analytically as possible. To this end it is usual to restrict the 

surface containing P1 and P2 to the X-Y plane (z = 0) and to expand the expressions for 
s1 and s2 in power series in l/R1 and 1/R2 where R1 is the distance from the origin 
to Pi, and R2 is the distance from the origin to Pi. If we assume that,the source 

dimensions are small compared to 

expansions we obtain the result: 
ai and retain only the most important terms of these 

(10.42) 

Although this condition on the source size is often not fulfilled, the approximation 
(Fraunhofer approximation) may be useful anyway in radiometry if the goal is merely to esti- 
mate the magnitude of small measurement errors which diffraction may introduce. 
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One situation in which the sequential application of the propagation equation (10.36) is 
not overly difficult is in simple lens (or focusing mirror) image formation. If the cross- 
spectral density function WA(P1,P2) 
cross-spectral density in the image plane is given by: 

is known at all point pairs in the object plane then the 

(10.133) 

K A  (xllyl;x~ly~) . K k  (x2,y2;x:,y~) *dxl-dyl*dx2*dy2. 

In this expression R is the distance from the object to the lens and R" from the lens to 
the image. The function K A ( P , P " )  is the transmission function of the optical system. It is 
given by an integral over the lens aperture plane: 

(10.132) 

Here s is the optical path length for a ray from point (x,y) in the object plane to point 
(x',y') in the lens aperture plane and s" is, similarly, the optical path length €or a ray 
from the point (x',y') to the image plane point (x",y"). Since s and s" depend upon 

these points, to be complete we should write them as s(x,y;x',y') and ~"(x'~y';x",y"). 
The factor p(x',y') 

indicates where the aperture is transparent and where it is opaque by taking on the value 1 
within the aperture and the value 0 elsewhere. In more complicated situations the pupil 
function can indicate regions of partial transparency by assuming intermediate values between 
0 and 1 and it can indicate regions of phase retardation by assuming complex values, 
although this latter condition can alternatively be accounted for in the calculations of s 
and s". For perfect imagery and a transparent rectangular aperture, K A ( P , P " )  reduces to 

is the pupil function for the aperture. In its simplest form it merely 

(10.178) 

where the aperture width is 2a' in the x-direction and 2b' in the y-direction. Eq. 
(10.178) substituted into eq. (10.133) yields eq. (10.99), the equation for perfect imaging 

with a transparent rectangular lens aperture. 

All of the classical radiometric quantities can be expressed in terms of the cross- 

spectral density. Equation (10.15a) illustrates the simplest of these relationships -- that 
for spectral fluence rate. Some of the others are: 

Spectral radiance: 

(10.149) 
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Spectral irradiance: 

. . . .  
source 

(10.151) 

Spectral radiant intensity: 

(10.154) 

exp[- -sin@. (E*cos@ + q*sin@)] *dx*dy-dS*dn. 

Spectral radiant exitance: 

(10.155) 

In these equations the point (x,y) is a point in a plane (which we call a source but may be 

any cross-section of the beam) where the cross-spectral density is assumed completely known. 
5 and iq are displacements from this point. The primed coordinates refer to a point, which 

is irradiated by the source, at a distance R from the source point (x,y), and 8, is the 
angle between the normal to the irradiated surface at 

(x,y). It is possible to imagine coherent fields for which L A  calculated from the expres- 
sion above will not agree with our classical ideas of acceptable behavior for spectral radi- 
ance -- by being negative, for example. The reason for this is that spectral radiance is 
inherently a geometrical optics concept: its definition is equivalent to requiring that the 
position and momentum of a photon be simultaneously determinable with arbitrary accuracy, 

which, of course, is forbidden by the Heisenberg uncertainty principle. Fortunately such non- 

classical behavior of LA should rarely occur in practice. Although the above expressions 
for spectral radiant intensity and spectral radiant exitance are both derived from that for 

spectral radiance, only the latter suffers from this same deficiency. 

(x',y') and the direction to the point 

The cross-spectral density of a uniform rectangular incoherent source is usually taken to 

be something like: 

(10.43) 

and WA (xl , y1 ; x2 , y2 = 0 otherwise. 
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This expression lends itself to easy evaluation of integrals such as eq. (10.42) or 

eq. (10.133) and thereforeiis widely used in spite of some shortcomings (e.y., it implies that 
Ft,A = m ) .  

density given by: 
The opposite extreme of a uniform rectangular coherent source has a cross-spectral 

(10.59a) 

= 0 otherwise, 

where, for simplicity, uniform phase across the source is assumed [eo = 0 in eq. (10.59)l. 
An idea of the consequences of coherence in a radiometric measurement may usually be obtained 

by considering these two source cross-spectral density functions in the sequence of expressions 
Of the form of eqs. (10.42) and (10.133) which describe the measurement geometry up to the 
detector. At the detector the irradiance (or, simpler, and almost equivalently, the fluence 
rate) can be calculated, and if the results for both kinds of sources when considered in the 

over-all measurement process (e.g., including calibrations) show the same behavior over the 
range of source sizes and distances, spectral distributions, etc., to be encountered then it 

is safe to assume that coherence will not affect these measurements. On the other hand if the 

results show that the two types of sources behave differently over some sub-range of source 

characteristics then it may be possible to change the measurement geometry to avoid the 

problem or, as a last resort, it may be possible by more elaborate measurements and careful 
calculations to correct the radiometer results for coherence. 

Another expression for the cross-spectral density function, which is frequently intro- 
duced as an approximate description of many fields encountered in radiometry -- especially 
those originating in incandescent sources, is 

(10.83a) 

This is known as the quasihomogeneous model and is appropriate for regions of a field where 

the fluence rate Ft,,(x,y) 
area. The function g(c,rl) is simply the (complex) degree of coherence of the field. The 
use of this model considerably simplifies the propagation integral eq. (10.42) and, conse- 
quently, also the integrals for the classical radiometric quantities [eqs. (10.149, 10.151, 
10.154, and 10.155) 1. 

can be assumed constant over areas the size of the coherence 
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