Evaluation of commercial surge suppressors

François Martzloff
General Electric Company
Schenectady NY

Reprint, with permission, of declassified GE Report 67-C-06

Significance
Part 7 – Protection Techniques

While all the “commercial surge suppressors” evaluated in the original 1963 report have most likely disappeared from the market, this report provides some historical perspective on the intense quest for effective “suppression” of the transient overvoltages occurring in AC power circuits, transients that were belatedly identified as the cause of the in-field failures of the novel solid-state devices that were being introduced at that time.

Nine available candidate commercial surge suppressors had been secured and subjected to breakdown or turn-on tests in order to compare their performance. Gap types exhibited the expected volt-time lag characteristics with or without self-clearing, while semiconductor types offered fast turn-on, but no self-clearing.

Quote from the report: “There is a definite need to develop and promote a less expensive surge suppressor, which could receive more acceptance than the devices covered in this report.”

Historical Notes:
1. This report was formerly issued as GE ATL TIS Report.64GL174 (work performed in 1963).
2. Some devices were priced over $8.00 (1963 dollars), severely restricting their application.
3. Some other early sixties GE reports on related subjects are cited in this report, which are no longer available but certainly represent obsolete information. The present report is sufficient for the purpose of giving a historical perspective on the quest for a solution to the problems of transients-related field failures.
4. The introduction of metal-oxide varistors was still ten long years away ...
Evaluation of commercial surge suppressors

François Martzloff
General Electric Company
Schenectady NY

Reprint, with permission, of declassified GE Report 67-C-06

Significance
Part 7 – Protection Techniques

While all the "commercial surge suppressors" evaluated in the original 1963 report have most likely disappeared from the market, this report provides some historical perspective on the intense quest for effective "suppression" of the transient overvoltages occurring in AC power circuits, transients that were belatedly identified as the cause of the in-field failures of the novel solid-state devices that were being introduced at that time.

Nine available candidate commercial surge suppressors had been secured and subjected to breakdown or turn-on tests in order to compare their performance. Gap types exhibited the expected volt-time lag characteristics with or without self-clearing, while semiconductor types offered fast turn-on, but no self-clearing.

Quote from the report: “There is a definite need to develop and promote a less expensive surge suppressor, which could receive more acceptance than the devices covered in this report.”

Historical Notes:
1. This report was formerly issued as GE ATL TIS Report.64GL174 (work performed in 1963).
2. Some devices were priced over $8.00 (1963 dollars), severely restricting their application.
3. Some other early sixties GE reports on related subjects are cited in this report, which are no longer available but certainly represent obsolete information. The present report is sufficient for the purpose of giving a historical perspective on the quest for a solution to the of transients-related field failures.
4. The introduction of metal-oxide varistors was still ten long years away ...
<table>
<thead>
<tr>
<th>AUTHOR</th>
<th>SUBJECT</th>
<th>NO.</th>
<th>DATE</th>
<th>G.E. CLASS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Martzloff, FD</td>
<td>surge suppressors</td>
<td>67-C-067</td>
<td>March 1967</td>
<td>2</td>
</tr>
</tbody>
</table>

TITLE
Evaluations of Commercial Surge Suppressors

ADDITIONAL COPIES AVAILABLE AT
Distribution Unit, Bldg. 5, Room 345
Research and Development Center
P.O. Box 8, Schenectady, New York 12301

SUMMARY
Nine commercial surge suppressors have been secured and subjected to breakdown or turn-on tests in order to compare their performance.

Gap types exhibit the expected volt-time lag characteristics with or without self-clearing, while semiconductor types offer fast turn-on, but no self-clearing.

Most devices are priced above $8, which severely restricts their application.

There is a definite need to develop and promote a less expensive surge suppressor, which could receive more acceptance than the devices covered in this report.

This report was formerly issued as Advanced Technology Laboratories Rept. No. 64GL174.

KEY WORDS
overvoltages, transients, surges, gaps, arresters, suppressors

INFORMATION PREPARED FOR:
Electronic Physics Laboratory
Table of Contents

Introduction 1
Test Results and Discussion 3
Conclusions 5
References 5

Detailed Device Evaluation

General Electric Series 730B Spark Gap 7
Cerberus UAl Surge Arrester 11
EG&G Fenotron 15
Dale Surge Arrester 19
Bell Gap 23
Mark I Engineering Semiconductor Protector 25
T.I. Klixon Semiconductor Protector 29
Dressen-Barnes Overvoltage Load Protector 33
Hunt SSS Switch (Power Device) 36
General Electric Thyrector 39
Introduction

A number of surge suppressors which were advertised in the trade magazines were purchased for a limited evaluation of their performance. In the course of attempting to order several of these, it was found that some of the companies advertising these devices had either dropped the line or gone out of business altogether.

Furthermore, in the course of discussing device performance or availability with representatives from companies still offering devices for sale, a distinct impression was gathered that these devices did not meet the acceptance which their makers had expected. This is not too surprising in view of the prices which were quoted, even for volume purchasing.

In some cases, rather fundamental questions such as the existence of a volt-time characteristic for the breakdown seemed rather startling to the company representative who answered the telephone inquiry, although he allegedly was a technical representative. Others, on the other hand, gave the impression of being quite sophisticated in this technology.

Those devices which could be purchased were subjected to a consistent test for volt-time characteristic, which was the most conspicuously absent data from manufacturers' specifications. Other characteristics are generally well defined in the manufacturers specification sheets, which are reproduced in this report when available.

The test circuit, consisting of a capacitor discharge circuit, is shown on the following page.

All the devices which were tested are covered in separate sections of this report, grouping manufacturers specifications if any, general description, typical performance oscillograms and a brief discussion of the device capabilities.

References are also made to other devices which were previously tested and reviewed in this program.
Open switch for no-load waveshape
Suppressor under test

To CRO
Test Results and Discussion

The detailed performance results will be found in separate sections which follow. For the purpose of presenting a general comparison, the most significant characteristics are tabulated below, including the Thyrector and Westinghouse device which were investigated in earlier reports.

<table>
<thead>
<tr>
<th>Manufacturer and Type</th>
<th>Type of Device</th>
<th>Ratio of 0.1 μs breakdown to min. breakdown</th>
<th>Permissible Dissipation</th>
<th>Self Clearing</th>
<th>Typical Price $</th>
</tr>
</thead>
<tbody>
<tr>
<td>GE 730B Gap</td>
<td>Gap</td>
<td>160%</td>
<td>4 to 5 μsec.</td>
<td>No</td>
<td>8 to 16</td>
</tr>
<tr>
<td>Cerberus UA1</td>
<td>Gap</td>
<td>250%</td>
<td>2000 amp.</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>EG&G Fenotron</td>
<td>Gap</td>
<td>Not defined</td>
<td>3000 amp.</td>
<td>No</td>
<td>5</td>
</tr>
<tr>
<td>Dale LA9</td>
<td>Gap</td>
<td>600%</td>
<td>300 amp.</td>
<td>Yes</td>
<td>15</td>
</tr>
<tr>
<td>Bell</td>
<td>Gap</td>
<td>140%</td>
<td>?</td>
<td>No</td>
<td>Not av.</td>
</tr>
<tr>
<td>Westinghouse Ap*</td>
<td>Gap & Varistor</td>
<td>over 400%</td>
<td>1500 amp (?)</td>
<td>Yes</td>
<td>2 to 3</td>
</tr>
<tr>
<td>Mark I SCP</td>
<td>Solid State</td>
<td>Turn on in 40 ns</td>
<td>150</td>
<td>No</td>
<td>12</td>
</tr>
<tr>
<td>TI Klixon</td>
<td>Solid State</td>
<td>Turn on in 60 ns</td>
<td>?</td>
<td>Yes</td>
<td>18</td>
</tr>
<tr>
<td>Dressen-Barnes</td>
<td>Solid State</td>
<td>Turn on in 90 ns</td>
<td>100 amp.</td>
<td>No</td>
<td>14</td>
</tr>
<tr>
<td>Hunt SSS</td>
<td>Solid State</td>
<td>Turn on in 50 ns</td>
<td>100 amp.(?)</td>
<td>No</td>
<td>2</td>
</tr>
<tr>
<td>Thyrector*</td>
<td>nonlinear Solid State</td>
<td>No time lag</td>
<td>5 to 100 amp.</td>
<td>Yes</td>
<td>.75 to 5</td>
</tr>
</tbody>
</table>

The gaps are characterized by their volt-time performance; some are quite successful in producing a "flat" curve, i.e., the breakdown voltage at short times (0.1 μs) is not a large multiple of the breakdown voltage at DC. The Dale device has combined an interesting arc-interrupting feature, which has not been

*See TIS 64GL118 and references
investigated, however. On the other hand, this Dale gap has the worst volt-time characteristic. The General Electric series 730B gaps exhibit a relatively flat characteristic which make them quite attractive. The Westinghouse device, although self-clearing, was found to have questionable reliability, and also has a poor volt-time characteristic.*

Semiconductor devices are generally characterized by a fast turn-on time, which appears to be practically independent of the surge voltage. With increasing steepness of the applied surge, this means that an increasing voltage peak will be allowed to exist for a short time, while for surges with rise times longer than 0.1 \(\mu \text{s} \), the clipping effect of the device will be near perfect. On the other hand, all these devices are latching. The Klixon is combined with a circuit breaker which will interrupt the power follow current (as well as overloads), with the corresponding added cost. The Dressen-Barnes and Mark I packages do not seem to offer for $14 any more features than the $2 Hunt device with the exception of a wide range of turn-on voltages. On the other hand, the Hunt device is not polarized and it is conceivable that it could be obtained, by selective grading, in a wide range of turn-on voltages.

The Thyrector and other non-linear semiconductors (Zener diodes or selenium plates) offer interesting characteristics which were discussed earlier.*

RC networks are also effective surge suppressors, but their performance is intimately tied to the circuit parameters of the system in which they are applied. Under some circumstances, they can produce system oscillations so that caution is required in their use, while the other devices discussed here generally can be added to the system without unexpected interaction.

*See TIS 64GL118 and references
Conclusions

The devices now offered for sale fall within two categories: gaps, with or without associated arc-extinguishing features, and semiconductor devices.

Gaps exhibit their typical time-lag characteristic. Some designs appear more successful than others in reducing this undesirable limitation.

Semiconductor suppressors have fast turn-on characteristics, often with no volt-time effect but rather with a constant time to turn-on. Their price is generally higher and not within attractive ranges for consumer type appliances.

A number of firms which at one time advertised a line of suppressors have either dropped the line or gone out of business, indicating the difficulty of marketing suppressor components at the present prices. This indicates that there is a need to develop a low price suppressor.

References

Other devices than those reported here have been discussed in earlier reports written for this Program. These devices include:

<table>
<thead>
<tr>
<th>Device Description</th>
<th>Reference</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bendix Gap Cat TG98</td>
<td>TIS 62GL191</td>
</tr>
<tr>
<td>W Lightning Arrester Cat 632A189A01</td>
<td>"</td>
</tr>
<tr>
<td>GE Signal Arrester Cat 9LA4C4</td>
<td>"</td>
</tr>
<tr>
<td>GE Secondary Arrester Cat 9L15CCB001</td>
<td>"</td>
</tr>
<tr>
<td>Ledex Transient Control A-46800-001</td>
<td>"</td>
</tr>
<tr>
<td>Amperex Gap Cat 4369</td>
<td>"</td>
</tr>
<tr>
<td>Hunt SSS 5 Layer Switch</td>
<td>63GL97, 64GL118</td>
</tr>
<tr>
<td>GE DIAC</td>
<td>63GL197</td>
</tr>
<tr>
<td>W Appliance Lightning Protector</td>
<td>64GL118</td>
</tr>
<tr>
<td>GE Thyrectors</td>
<td>63GL97, 63GL144, 64GL118</td>
</tr>
<tr>
<td></td>
<td>Also, see RCD application note 200.5; section 180, RCD spec. sheets.</td>
</tr>
</tbody>
</table>
SERIES 730B SPARK GAPS
WITH STAINLESS STEEL OR TUNGSTEN ELECTRODES

Rating:
60 Cycle Peak Breakdown Voltage from 250 Volts to 6000 Volts.

FOR A, B AND C DIMENSIONS—SEE REVERSE SIDE

FEATURES

Small in size the sealed break-down gaps protect costly electronic equipment over a large range of voltage conditions.

The gaps are hermetically sealed—unaffected by humidity, atmospheric conditions, or foreign particles.

Stainless steel electrodes are for normal applications. Tungsten electrodes available for heavy duty applications.

Device acts as an open circuit switch, until the rated voltage is exceeded, or at which time the gap breaks down, providing an open circuit path to an appropriate source. It prevents excess voltage from building up on an electrical equipment connected to the circuit following the gap.

Arc is broken in arc suppression gap.

Application: Where any transient voltage protection is required for the electrical safety of units such as control condensers, transformers, tubes and other electrical equipment.

By use of such a protective device, other components may be utilized at maximum ratings or their smaller sizes.

Stainless steel electrode gaps can tolerate continuous discharges of 1 watt seconds of energy. A similar figure for Tungsten gaps is 25 watts.

ALL DATA SUBJECT TO CHANGE WITHOUT NOTICE

GENERAL ELECTRIC

SERIES 730B—SPARK GAPS—DETAILED DATA

<table>
<thead>
<tr>
<th>CATALOG NO.</th>
<th>VOLTAGE</th>
<th>A (Max.)</th>
<th>B (Max.)</th>
<th>C (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>919212</td>
<td>250-600</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>929212</td>
<td>325-175</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>939212</td>
<td>430-100</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>959212</td>
<td>500-150</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>902942</td>
<td>600-100</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>902943</td>
<td>700-150</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>919446</td>
<td>1300-1200</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>902975</td>
<td>1500-1200</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>919406</td>
<td>1600-1600</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>959711</td>
<td>1900-1900</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904666</td>
<td>2000-4000</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>959714</td>
<td>3000-9000</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904667</td>
<td>3200-1400</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904668</td>
<td>3500-2000</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904669</td>
<td>4000-2000</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>903901</td>
<td>4300-4300</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>903949</td>
<td>4500-4500</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>903950</td>
<td>5000-5000</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>903981</td>
<td>6000-13000</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
</tbody>
</table>

TUNGSTEN ELECTRODE

<table>
<thead>
<tr>
<th>CATALOG NO.</th>
<th>VOLTAGE</th>
<th>A (Max.)</th>
<th>B (Max.)</th>
<th>C (Approx.)</th>
</tr>
</thead>
<tbody>
<tr>
<td>903966</td>
<td>300-180</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904600-01</td>
<td>600-180</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904600-02</td>
<td>700-180</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904700-02</td>
<td>790-180</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904864</td>
<td>1200-1200</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904866</td>
<td>1300-1300</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904868</td>
<td>1400-1400</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904869</td>
<td>1500-1500</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904870</td>
<td>1600-1600</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904871</td>
<td>1700-1700</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904872</td>
<td>1800-1800</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904873</td>
<td>1900-1900</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904874</td>
<td>2000-2000</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904875</td>
<td>2100-2100</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904876</td>
<td>2200-2200</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
<tr>
<td>904877</td>
<td>2300-2300</td>
<td>0.255</td>
<td>0.250</td>
<td>0.65</td>
</tr>
</tbody>
</table>

ALL DATA SUBJECT TO CHANGE WITHOUT NOTICE

GENERAL ELECTRIC
GENERAL ELECTRIC SERIES 730B SPARK GAP

Manufacturer: Accessory Equipment & Wiring Device Departments

Specifications: See AE-7305 sheets reproduced on opposite page

Device principle: Hydrogen-filled gap, stainless steel or tungsten electrodes

Available voltage ratings: 250 to 6000 volts

Permissible surge current: Not specified—Total permissible energy per discharge is 4 watts-sec. for stainless steel and 25 watts-sec. for tungsten

Will interrupt power follow current: No

December 1964 price: Stainless steel $8 to $9 depending on quantities
 Tungsten $16 to $17 depending on quantities
1100 volts applied surge
Breakdown in 7 μs
500 volts/div.
1.0 μs/div.

1500 volts applied surge
Breakdown in 800 ns
500 volts/div.
0.2 μs/div.

2000 volts applied surge
Breakdown in 80 ns
with 1800 volts peak
500 volts/div.
0.1 μs/div.

4000 volts applied surge
Breakdown in 30 ns
with 2900 volts peak
1000 volts/div.
0.1 μs/div.

Performance of 500 volts GE Gap
Oscillograms showing applied surge with and without gap
Performance of the GE Gap

The volt-time characteristic of a 500 volt gap is plotted below; typical oscillograms shown on the opposite page were recorded during tests for plotting this characteristic.

The discharge capacity is stated as "continuous" 4 watt-seconds or 25 watt-seconds, which is somewhat ambiguous as a watt-second rating would rather imply a discrete total energy than a continuous rating. Actually, what is meant is that a number of single discharges at these energy levels may be applied without changing the breakdown characteristics.

In spite of the statement "arc is broken in arc suppressing gas", the device is not self cleaning.

No breakdown could be produced with a single shot impulse below 1100 volts, however the breakdown voltage at 60 cps is 500 volts (crest).

The 0.1 μs breakdown is 160% of the minimum breakdown voltage.
Edelgasefillter Uberspannungsableiter mit kleiner Stoss-Ansprechspannung.
Tube para-surtenion à basse tension d'amorçage.
Rare gas filled surge arrester with especially low response time.

Technical Data

<table>
<thead>
<tr>
<th>Category</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Breakdown voltage</td>
<td>220 - 270 V =</td>
</tr>
<tr>
<td>Dynamic Breakdown voltage (Voltage rising with 2 kV / μs)</td>
<td>650 V</td>
</tr>
<tr>
<td>Charge admisible</td>
<td>2 kA (50 μs)</td>
</tr>
<tr>
<td>Load</td>
<td>10 A (1 s)</td>
</tr>
<tr>
<td>Isolation at 60 V =</td>
<td>min. 1000 Mu</td>
</tr>
</tbody>
</table>

Typical Application:

Protection of low-current installations and cables against overvoltages lightning, atmospheric, overvoltages, etc. (Schutz von Schwachstromanlagen und -Kabeln gegen Überspannungen (Blitzschlag, atmosphärische Aufladungen, Kontakt mit Hochspannungsleitungen etc.).)
CERBERUS UA1 SURGE ARRESTER

Manufacturer's Distributor: AMARK Corporation

Specifications: See manufacturer's data sheet opposite page

Device principle: Rare gas filled gap

Available voltage rating: One rating, 220 - 270 V DC

Permissible surge current: 2000A (50 μs)

 10A (1 sec)

Will interrupt power follow current: No

December 1964 price: $2.44 each 25-49

 $1.95 each 100-up
Performance of CERBERUS Gap

Oscillograms showing applied surge with and without gap
Performance of UA1 Arrester

The device exhibits the typical gap breakdown characteristic, i.e., rising breakdown voltages at short times.

Typical oscillograms recorded during tests performed for plotting this volt-time characteristics are shown on the opposite page.

The current discharge capacity for relatively long pulse duration (50 \(\mu s \)) is substantial, but only one breakdown voltage rating is offered, so that the device is not very flexible.

Furthermore, the device is not self-clearing, so that power follow current will have to be interrupted by other means such as fuses or circuit breakers.

The volt time curve of the device is plotted below.

There is good agreement between the test point and the manufacturer's specified breakdown levels. The 0.1 \(\mu s \) breakdown voltage is 250\% of the minimum breakdown voltage.
FENOTRON®
High Voltage Spark Gap for Protecting
Silicon Diode Stacks from Over-Voltage

The Fenotron is an encapsulated, miniature, high voltage protective spark gap. The Fenotron's dependability and long-life make it especially suited for use in protecting silicon stacks from over-voltage. The device is a reliable, fast switching (40 nanoseconds) spark gap requiring no keep-alive voltage or trigger voltage. It operates at 800 V minimum with a voltage pulse rise time of 100 kv/usec with 3000 amperes maximum peak current switching capability.

A typical application for Fenotrons is to protect silicon diode stacks used in clamping a trigger input voltage for Traveling Wave Tubes. Life of thousands of operations has already been realized.

*EG&G Trade Mark

EDGERTON, GERMESHAUSEN & GRIER, INC.
160 Brookline Avenue
Boston 15, Mass.
COpley 7-9700

3-13-63
EG&G FENOTRON

Manufacturer Edgerton, Germeshausen and Grier, Inc.

Specifications See tentative data sheet on next page.

Device principle Sealed gap, flat brass electrodes with ceramic spacer.

Available voltage rating One rating, not specified in terms of steady-state

Permissible surge current 3000 ampere crest

Will interrupt power

follow current No

December 1964 prices $25 for samples - no large orders accepted at this time. Manufacturer estimated $5 for quantities if production were to start
1500 volts applied surge
Breakdown in 400 ns
500 volts/div.
0.1 μs/div.

2000 volts applied surge
Breakdown in 50 ns at 1100 volts
500 volts/div.
0.1 μs/div.

4000 volts applied surge
Breakdown in 30 ns at 1500 volts
1000 volts/div.
0.1 μs/div.

Performance of EGG Fenotron Suppressor
Oscillograms showing applied surge with and without suppressor
Performance of Fenotron Gap

No breakdown could be produced below 1500 volts applied surge; however, as the crest of the surge was raised, so that the front of the wave was steeper, breakdown occurred as low as 1100 volts. This particular point was obtained with a 20 KV/μs rise time (second oscillogram). With 40 KV/μs (third oscillogram), a step closer to the 100 KV/μs quoted on the data sheet as producing a "800 volt minimum" breakdown, the actual voltage at breakdown was 1500 volts.

From the size of the electrodes, the current discharge ability seems rather limited, therefore the quoted 3000 amperes must be of rather short duration.

Typical oscillograms are shown on the opposite page. Test points are plotted below; there is no apparent volt-time trend in these points and they do not correspond to the manufacturer's claims.
NEW PRODUCT TEMPORARY DATA SHEET

SURGE ARRESTER

DALE TYPES LA-8 AND LA-9

The device has a very significant application in power supplies to protect against surges. In addition, the same protection is afforded to underground cables and other devices where transient surges are a problem.

INSULATION RESISTANCE:

In excess of 1000 megohms and will not drop below 10 megohms during or after repeated number of conduction cycles.

CURRENT SURGE BY-PASS CAPABILITY:

LA-9: Will by-pass 150 current surges consisting of a current ranging to 6000 amperes in 6 microseconds and carrying a total charge of 50 coulombs without damage to the arrester or equipment attached and with less than 15% change in the original DC breakdown voltage.

LA-8: Will by-pass 100 current surges of 500 ampere peak with 3% to 5000 microsecond wave shape with less than 20% change in the original DC breakdown voltage.

REAL:

LA-9—Exhausted and disassembled, but not functionally tested.

LA-8—Exhausted and disassembled with no solder with a melting point in excess of 285°C.

SPARK GAP ARC-OVER VOLTAGE:

LA-9: Factory adjustable from 1000 to 2000 VDC = 30%.
LA-8: Factory adjustable from 800 to 1500 VDC = 30%.
(Exclusive of 10% tolerance at slight additional cost.)

MOUNTING:

LA-9: May be mounted in any position. Wires can be connected directly to the case with 80-10 or 80-87 alloy solder.

LA-8: May be mounted in any position. Recommended mounting clips: Allen E-E Clip #1000-30-12A-13. Where very heavy by-pass current may be encountered, wires can be attached directly to the case with 80-10 or 80-87 alloy solder.

SPECIFICATIONS AND DIMENSIONAL DIMENSIONS

<table>
<thead>
<tr>
<th>Type</th>
<th>Current</th>
<th>Voltage</th>
<th>Diameter</th>
<th>Weight</th>
</tr>
</thead>
<tbody>
<tr>
<td>LA-9</td>
<td>500A</td>
<td>1000</td>
<td>1 3/4</td>
<td>1 oz</td>
</tr>
<tr>
<td>LA-8</td>
<td>300A</td>
<td>800</td>
<td>1 1/2</td>
<td>1 oz</td>
</tr>
</tbody>
</table>

HERE'S WHAT HAPPENS WHEN OLD FASHIONED SPARK GAP IS USED AS A SURGE ARRESTER:

1. Transient or surge may start on a power line.
2. Surge may cause power line to fail and spark may be generated.
3. Spark may be extinguished by current flow through a surge arrester.

HERE'S WHAT HAPPENS WHEN A DALE SURGE ARRESTER IS USED:

1. Surge may start on a power line.
2. Surge may cause power line to fail and spark may be generated.
3. Spark may be extinguished by current flow through a surge arrester.

DALE ELECTRONICS INC.

Columbus, Nebraska
DALE SURGE ARRESTER

Manufacturer: Dale Electronics, Inc.
Columbus, Nebraska

Specifications: See manufacturer's data sheet on opposite page

Device principle: Air gap with magnetic arc blow-out for follow-current interruption

Available voltage ratings: Factory adjustable 500 to 4000 volts DC (LA-8)
or 1500 to 5000 volts DC (LA-9)

Permissible surge current: 15,000 amperes (LA-8)
300 amperes (LA-9)

Will interrupt power follow current: Yes

December 1964 price: LA-9, 500 volts ±10%
$16.90 ea. in quantities of 25
$13.20 ea. in quantities of 200
Performance of DALE Surge Arrester

Oscillograms showing applied surge with arrester in, single or multiple shot
Performance of DALE LA-9 Surge Arrester

The device suffers from the inherent problem of all gaps, i.e., a substantial time-lag characteristic, as can be seen in the volt-time curve.

Typical oscillograms recorded during tests performed for plotting the volt time are shown on the opposite page.

On the other hand, the current discharge capacity of the LA-9 is substantial (300 amperes) and the device is self-clearing, in contrast to many of the suppressors covered in this report, which remain on after a surge-triggered turn-on.

A small detail on the specification sheet: The device has two threaded studs which might be construed as the two terminals; inspection of the drawings, however, shows that the case is one terminal while the two studs are connected together. The author found at least one case where the user started to complain of shorted devices, while using the two threaded studs as the two terminals of the device!

The volt-time curve of the device is plotted below. The 0.1 μs breakdown voltage is 600% of the minimum, with large variations between test points.
Performance of BELL Gap

Oscillograms showing applied surge with and without gap
BELL GAP

This gap was loaned by Mr. E. R. Uhlig of the High Voltage Laboratory, as a gap obtained from the Bell Laboratories. No specifications were available, but it was implied that this was a "fast" gap.

Typical oscillograms recorded during the tests made to plot the volt-time characteristic are shown on the opposite page; the characteristic is plotted below; the very small rise in breakdown voltage for times as short as 0.1 μs is remarkable, with the 0.1 μs voltage only 140% of the minimum breakdown voltage.
The SCP is a high speed, high current, solid state switch. It is specifically designed to protect semi-conductor equipment and sensitive instrumentation against over-voltage line transients, that would normally damage or destroy semi-conductors.

With a time response of less than 1 micro-second, the SCP will handle voltage ratings, depending on model, 6 to 400 volts 0.0 to 150 amps, with ± 5% firing voltage tolerance.

The SCP is extremely small in size and weight. It can be mounted in any position, and is completely unaffected by shock or vibration. It will operate in a temperature range of -55°C to +100°C, with a life expectancy of greater than 1 million cycles. SCP modules can also be fired by a remote signal.

The SCP is normally used in conjunction with a standard fuse or a magnetic reset circuit breaker. There is no additional reset circuit necessary to reset the SCP. It automatically resets itself upon the replacement of the fuse, or the reactivation of the circuit breaker.

When used without a fuse or circuit breaker, power supply must be turned off momentarily to allow the SCP to reset.

Designed and priced for commercial use, the SCP is applicable to MIL Specs.

(BASIC CIRCUIT OF OPERATION)

\[F_1 \]

DC Voltage Input

From Supply

SCP

To Semi-Conductors

\[F_2 \] Standard fuse or magnetic circuit breaker.

When an over-voltage condition exists, the SCP fires and shorts the output to the semi-conductor. Upon this activation, the voltage drops to approximately zero on the output, and allows the SCP to draw excessive current to blow the fuse or activate the circuit breaker (F₂).
MARK I ENGINEERING SEMICONDUCTOR PROTECTOR

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Mark I Engineering, Glendale, California</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications:</td>
<td>See manufacturer's specifications on opposite page</td>
</tr>
<tr>
<td>Device principle:</td>
<td>Three-terminal semiconductor turned on by zener diode-resistor network in gate circuit -- device is polarized.</td>
</tr>
<tr>
<td>Available voltage ratings:</td>
<td>.6 to 400 volts</td>
</tr>
<tr>
<td>Permissible surge current:</td>
<td>150 amperes</td>
</tr>
<tr>
<td>Will interrupt power follow current:</td>
<td>No</td>
</tr>
<tr>
<td>December 1964 price:</td>
<td>$14.10 for quantities up to 24 $11.28 for quantities 100 and up.</td>
</tr>
</tbody>
</table>
100 volts applied surge
Turn-on in 40 ns with 80 volt peak
20 volts/div.
0.1 μs/div.

300 volts applied surge
Turn-on in 30 ns with 120 volt peak
50 volts/div.
0.1 μs/div.

1500 volts applied surge
Turn-on in 30 ns with 750 volt peak
500 volts/div.
0.1 μs/div.

4000 volts applied surge
Turn-on in 30 ns with 1600 volts peak
1000 volts/div.
0.1 μs/div.

Performance of MARK I ENGINEERING Semi-Conductor Protector
Oscillograms showing applied surge with and without protector
PERFORMANCE OF THE MARK I SCP

The device exhibits a remarkable consistency in the turn on time, as well as a sharp firing point. The device tested had a 30 volt steady state rating, and began firing with as little as 50 volts. The oscillograms reproduced on the opposite page show that, over a wide range of voltages, the time required for turn on varies only from 40 to 30 ns. Following turn on, where the voltage across the device begins to depart from the no-load surge, the voltage continues to rise for a short time to reach a peak in less than 50 ns. The value of this peak is then determined by the rate of rise of the voltage since it appears that the time to peak is essentially constant for this device.

A volt-time characteristic would essentially be drawn as an almost vertical line at 30 or 50 ns, depending upon the definition of the "volt at breakdown" which is the ordinate of this characteristic.

Thus, this device offers an extremely fast and effective voltage limiting, although high voltages will still be reached if the front of the surge is steep enough. For many practical circuits, however, 50 to 100 ns represents an extremely short rise time.

On the other hand, the device is not self-clearing, and will depend on fuses or breakers to clear power follow current.

Furthermore, the device in its present form is polarized, so that application to AC circuits might require two back-to-back units or two units with two reverse diodes in series. The manufacturer does not make any statement on the performance of this device with reverse polarity over-voltages.
METALS & CONTROLS INC.

Texas Instruments

COMMUNITY PROTECTION

OVERCOUNTER AND OVERVOLTAGE PROTECTION

SMC1 and SMC2 - The semiconductor element in the S M C 1 and S M C 2 is a fast-acting thermistor. When the semiconductor element, changes from a non-protective state to a protective state, the output voltage is held in a protective state and the protective element is protected against overvoltage and overcurrent.

SMOT and SMCT - The output voltage level is the semiconductor element in the SMOT and SMCT circuit breaker may be connected with an L E D T N . The circuit breaker is shown in Fig. 1. The input voltage is the semiconductor element in the circuit breaker and the protective element is protected against overvoltage and overcurrent.

OVERRIDE-TEMPERATURE PROTECTION OF POWER CIRCUIT BREAKERS WITH 0 OR 6 CIRCUIT-BREAKER COMBINATION

Note

- **CONSTRUCTION**
 - All semiconductor circuit breakers are held in a protective state by the semiconductor element in the circuit breaker. The semiconductor element is protected against overvoltage and overcurrent.
- **OPERATING TEMPERATURE RANGE**
 - The semiconductor element in the circuit breaker is held in a protective state by the semiconductor element in the circuit breaker. The semiconductor element is protected against overvoltage and overcurrent.
- **Note**
 - The semiconductor element in the circuit breaker is held in a protective state by the semiconductor element in the circuit breaker. The semiconductor element is protected against overvoltage and overcurrent.

For additional details on the BPT and BTT see data bulletin BPT 3.

<table>
<thead>
<tr>
<th>Component</th>
<th>BPT</th>
<th>BTT</th>
</tr>
</thead>
<tbody>
<tr>
<td>BPT1</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BPT2</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BTP1</td>
<td>✓</td>
<td>✓</td>
</tr>
<tr>
<td>BTP2</td>
<td>✓</td>
<td>✓</td>
</tr>
</tbody>
</table>

For additional details on the BPT and BTT see data bulletin BPT 3.
T.I. KLIxon SEMICONDUCTOR PROTECTOR

<table>
<thead>
<tr>
<th>Manufacturer:</th>
<th>Metals and Controls of Texas Instruments, Inc.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Specifications:</td>
<td>See manufacturer's specifications opposite page</td>
</tr>
<tr>
<td>Device principle:</td>
<td>Two-terminal semiconductor turns on and clamps voltage; integral mechanical circuit breaker interrupts power follow current.</td>
</tr>
<tr>
<td>Available voltage ratings:</td>
<td>12 - 60 volts; 115 volts might be available</td>
</tr>
<tr>
<td>Permissible surge current:</td>
<td>Not specified</td>
</tr>
<tr>
<td>Will interrupt power follow current:</td>
<td>Yes</td>
</tr>
</tbody>
</table>
| December 1964 price: | $20.40 in quantities up to 100
 | $16.85 in quantities 500 and up. |
280 volts applied surge
Turn-on in 60 ns with 150 volts peak

600 volts applied surge
Turn-on in 40 ns with 300 volts peak

2000 volts applied surge
Turn-on in 40 ns with 1100 volts peak

4000 volts applied surge
Turn-on in 40 ns with 2500 volts peak

Performance of T.I. KLIXON Semiconductor Protector
Oscillograms showing applied surge with and without protector
Performance of Klixon SCP

An overvoltage protector (type MC1) rated 30 volts DC was subjected to the test surges, as seen on the oscillogram on the opposite page. Turn-on occurred in less than 60 ns for all applied surges above 280 volts, which was the minimum surge voltage producing a firing, a rather high ratio to the rated DC voltage.

A voltage peak followed the turn-on in a short time, with increasing values as the steepness of the surge front was increased.

This device is combined with a circuit breaker which can also protect the load against overcurrents, in addition to tripping out the power-follow current after firing on a surge. In that respect, it offers attractive features for an otherwise unattractive price, but still a bargain compared to the voltage limiting only Dresser-Barnes units.

The device is again polarized, with no comment from the manufacturer on the performance with reverse polarity surges.
Protection of load against overvoltage transients from d-c source is application of Overvoltage Load Protector. It features 3-400v firing voltage, ±5% tolerance, surge current capacity of up to 100-amp for 8ms, and standby current drain of 3ma. Ambient temp range is 0-100°C on standard models and -55 to 100°C on special models. Dressen-Barnes Electronics Corp., Dept. EE, 250 N. Vinedo Ave., Pasadena, Calif.
DRESSEN-BARNES Overvoltage Load Protector

<table>
<thead>
<tr>
<th>Manufacturer</th>
<th>Dressen-Barnes Electronics Corp.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pasadena, California</td>
</tr>
<tr>
<td>Specifications</td>
<td>See advertisement next page</td>
</tr>
<tr>
<td>Device principle</td>
<td>Semiconductor circuit turned on by surge. (2 semiconductors, several resistors and capacitors in encapsulated housing)</td>
</tr>
<tr>
<td>Available voltage rating</td>
<td>3 to 400 volts</td>
</tr>
<tr>
<td>Permissible surge current</td>
<td>100 amperes for 8 ms</td>
</tr>
<tr>
<td>Will interrupt power follow current</td>
<td>no--maximum continuous power follow current is 3 mA.</td>
</tr>
<tr>
<td>December 1964 prices</td>
<td>$14.50 in quantities up to 25</td>
</tr>
<tr>
<td></td>
<td>$13.50 in quantities above 100</td>
</tr>
</tbody>
</table>
Performance of DRESSEN-BARNES OLP suppressor

Oscillograms showing applied surge with or without suppressor
Performance of Dressen-Barnes OLP Suppressor

The device under test was rated 200 volts DC; firing or turn-on occurred with a minimum surge of 280 volts, with a relatively slow turn-on, as seen in the first oscillogram on the opposite page. Increasing the crest of the surge to 400 volts and above produced turn-on in decreasing time, from 90 to 30 ns, followed by a peak voltage occurring in less than 50 ns.

The device exhibits remarkable speed in turning on; however, as the steepness of the applied surge is increased, the turn-on time decreases only very little, so that increasing voltage peaks will occur. The minimum surge which will trigger the suppressor is only 140% of the rated maximum voltage, a ratio comparable to that of the less complex and slightly less expensive Mark I suppressor.

The device is also implicitly polarized, and the manufacturer makes no comment on the performance with reverse polarity. It will probably withstand a certain level of reverse polarity, but another unit will be required to obtain protection in both directions.
HUNT SSS SWITCH (Power Device)

This device has been investigated in earlier reports;* as it exhibits a
definite turn-on action similar to some of the other devices covered in this
report, it has been subjected to the same test series, in order to allow direct
comparison. While earlier references were made under the name of SSS switch,
this particular device is now called "power device" by the manufacturer.

There are no specification sheets available from the manufacturer; their
general catalog lists assembled hardware rather than components.

This switch consists of a 5 layer, 2 terminal device, somewhat similar
in operation to the DIAC.

Prices quoted in 1964 were $2 each in quantities above 100.

*See Tis 63GL97, 63GL144, and 64GL118
Performance of HUNT SSS Switch

Oscillograms showing applied surge with and without switch

140 volts applied surge
Slow Turn-on
50 volts/div.
0.2 μs/div.

280 volts applied surge
Turn-on in 80 ns with 200 volt peak
100 volts/div.
0.1 μs/div.

1100 volts applied surge
Turn-on in 50 ns with 400 volt peak
500 volts/div.
0.1 μs/div.

4000 volts applied surge
Turn-on in 50 ns with 1200 volts peak
1000 volts/div.
0.1 μs/div.
PERFORMANCE OF HUNT DEVICE

The turn-on of the device occurs very rapidly for voltages above the rated turn-on. The oscillograms on the opposite page show how the turn-on, at first rather slow (1 μs), soon takes less than 50 ns when the applied voltage is raised beyond 500 volts. The turn-on starts as the voltage trace departs from the no-load trace, and is complete, i.e., the voltage is essentially clamped to zero, in less than 100 ns after the start of the turn-on.

In contrast to some of the other semiconductor devices covered in this report, this one is not polarized. It is also very small and consists of a single component. The price is about 20% of that of the SCP and OLP semiconductor protectors, which are polarized.

On the other hand, this device is not self clearing, power follow current will be established and will have to be interrupted by external means. However, the device can be quickly turned off by applying a reverse polarity for a short time, so that it is conceivable that a small oscillatory circuit could be added to the device; the oscillations of this circuit following the "chop" action of the device could then be used to turn it off. But this is a conjecture and not an existing device, which is what this report is intended to cover.

In AC systems, of course, natural clearing will occur at the end of the first half cycle, so that power follow current is limited to the balance of the half cycle following the surge. This is discussed in detail in the reference reports.
GENERAL ELECTRIC THYRECTOR

This device does not exhibit a turn-on effect similar to the devices evaluated in this report and therefore cannot be directly compared to them as an individual component. Earlier reports* have presented its attractive characteristics through a comparison in a complete system such as the laboratory house model. The most significant characteristics are re-stated here for the convenience of the reader, while complete details will be found in the reference reports.

While there is some limitation in the ability to suppress surges close to the steady-state voltage, the Thyrector and other non-linear semiconductors offer attractive characteristics such as the absence of any time lag, in contrast to the volt-time effect of gaps and the turn-on time of switching semiconductors, plus the natural self-clearing action after disappearance of the surge so that there is no power-follow current. In addition, selenium devices have the unique possibility of self-healing after application of current pulses in moderate excess of their rating.

Typical prices range from $.75 to $5 depending on ratings.

* See TIS 63GL97, 63GL144, 63GL118.