Silicidation and Strain Analysis of Silicon Nanowires

NaMLab, DCN– TU Dresden, Fraunhofer IKTS-MD, CfAED

April 15, 2015 FCMN - Dresden
Towards nanowire electronics & nanometer scale silicidesc
Aim of scaling is to **increase value** each generation
The **scaling path** requires new geometries to reduce short channel effects

Planar metal gate / high-k
![Chipworks / IBM (45nm)]

SOI-FET
![EECS Berkeley]

Trigate finFET
![Intel Corp. 22 nm]

Omega / multi-gate
![Rustagi, EDL 28, 2007]

Nanowire FET

Metal silicidesc are contact materials to source, drain and gate
![Source: Bit-tech.net]

Source: IBM
Silicidation and Strain Analysis of Silicon Nanowires

Outline

- Metal / silicon nanowire heterostructures
- Strained nanowires
- Transistor applications
- Summary
Silicidation and Strain Analysis of Silicon Nanowires

Outline

- Metal / silicon nanowire heterostructures
- Strained nanowires
- Transistor applications
- Summary
Nanowire and SOI systems employed

Top down

D. Deb, A. Erbe, M. Grube, W. Weber
NANONET-HZDR & namlab

• SOI (10nm d_{Si} on 100nm BOX)
• Defined by lithography & RIE
• Front-end process up to 200 mm wafers
• Prone to surface roughness

Bottom up

Catalyst particle

• Diameter down to 5nm defined by seed size
• Controlled crystal orientation: $<110>$, $<112>$, $<111>$ Si NW
 $<110>$, $<111>$ Ge NW
• Low surface roughness
• Transfer to test-chip needed
• Simple test vehicle for demonstrators

Si nanowires

J. Trommer
Namlab

W. Weber, M. Grube
namlab

SiO$_x$ hardmask

10 nm SOI

BOX

W. Weber, M. Grube
namlab

20 nm

1 µm

Ge nanowires

J. Trommer
Namlab

Catalyst particle

200nm
Basic nanowire growth mechanism

Growth: Vapor-Liquid-Solid (VLS) mechanism

Wagner, R.S.; Ellis W.C. Appl. Phys. Lett. 4, 89 (1964)

SiH$_4$ (g) → Si-nanowire (s) → Au/Si (l)

Si supersaturation

Au/Si eutectic diagram

- Size of clusters define the nanowire's thickness

W. Weber
Intrinsic Si-nanowires (NW) Growth on amorphous SiO$_2$

- $d_{\text{Au}} = 0.5$ nm
- $p_{\text{SiH}_4} = 5$ Torr
- $T = 450^\circ$C
- $g \sim 7\mu$m / min

T. Mikolajick, RRL 7, 793 2014
Intrinsic $<110>$ Si-nanowires

Growth on crystalline-Si (100)

\Rightarrow 0.5 nm Au

\Rightarrow Oriented growth in $<110>$

Ge Nanowire growth

⇒ Nominally intrinsic Ge NWs on Ge / Si substrates
⇒ Pick & place w. manipulator, cross section preparation in ultra-low voltage FIB
⇒ <111> axis w. 6-fold sidewall facetting
Longitudinal silicidation:
Deposition of Ni reservoir

- Contact NWs with Ni reservoirs (plated or deposition)
- Diffusion from an unexhaustible Ni reservoir
Longitudinal Ni-silicidation over long range

First observation of:

- Longitudinal intrusion of Ni over long distances ~ 1µm Ni-diffusion length
- Formation of sharp interfaces
- Different phase formation in different NWs

![Image of Ni-silicidation](image)

Anisotropic Ni silicidation in nanowires

Case 1. - <110> Si nanowires

Process
- RTP at 480°C with inexhaustible Ni source.
- <110> Si nanowire diameter.

Properties:
- Direct NiSi₂ formation without intermediate phases
- Single crystal cubic CaF₂ structure of NiSi₂ grown epitaxially on <110> Si
- Sharp NiSi₂ / Si interface
- - 0.4 % lattice mismatch to Si <111>

Reaction kinetics from in-situ TEM at ~420°C

Volume interstitial diffusion of Ni

A) Long range >> 1μm length, **diffusion limited:** \(d \sim \sqrt{t} \)

B) Short range < 1μm length, **reaction limited:** \(d \sim t \)

Case 2: Ni silicidation of <112> Si nanowires

Elongation of NWs by ~ 30% Sequential evolution of 3 different phases

⇒ Different segments are formed
⇒ Apparently NiSi₂ forms first, followed by two other phases
⇒ A sequence of phases form, similar to that of bulk and thin films

⇒ However: In flash anneal no evident formation of different phases

W. Weber
Ni silicidation of bulk Si with inexhaustible Ni source
Anneal at 480°C

D. Deb, M. Grube, A. Erbe, M. Helm Nanonet

B) NiSi₂ zone axis (1-10)
A) Ni₃₇Si₂₃ complex zone axis (1-10)

S. Banerjee, E. Zschech, M. Löffler DCN TU-Dresden

Nickel silicide reactions in Si nanowires w. radial compressive strain

Process:

Thermally grown SiO₂ prior to silicidation (875°C).

Oxidation induces radially compressive strain ~ 1.3 GPa into Si core

Case 1. - $<110>$ nanowires

- **NiSi₂** formation, no fracturing of shell even for long $> 1\mu m$ silicide length

Case 2. - $<112>$ nanowires

- Cracking of oxide shell near the Ni pad

$=>$ Follows similar phase behavior than without shell
Summary – NixSi_y nanowire heterostructures

• Phase formation dependent on crystal orientation:

 \(<110>\) --> Direct cubic NiSi_2 lattice matched nucleation
 - \(0.4\%\) lattice mismatch to Si \(<111>\)

 \(<112>\) --> Sequence: Ni_2Si / NiSi / NiSi_2

-> Phase formation and kinetics of silicidation given by crystal orientation and related facets of outer walls

Adapted from K.N. Tu
Nickel germanide reactions in Ge nanowires

Process:

\(<111>\) Ge nanowires
RTP at different temperatures 300-400°C

- **Uncapped Ge nanowire**
 - Strong surface diffusion on Ge nanowires results in void formation

- **Capped Ge nanowire**
 - Capping in ALD Al₂O₃ or Si prevents surface diffusion: no voids formed

Jens Trommer
Ni$_2$Ge nanowire segments at the Si junction

TEM EDX profile on longitudinal lift-out lamella
Silicidation and Strain Analysis of Silicon Nanowires

Outline

- Metal / silicon nanowire heterostructures
- Strained nanowires
- Transistor applications
- Summary
Influence of Strain on Electronic properties of $<$110$>$Si NWs

$<$110$>$ highly sensitive to strain
Radial compressive strain by oxidation
Ec: lowering of light Γ valleys (~ 50 meV)
Split Δz m^* drops from 0.19 to ~ 0.076 m_0^*

Population of low mass Γ valley

André Heinzig
Strain mapping of \(<112>\) Si nanowire

Strain extracted from lattice spacing at different positions for different illuminations. Strain relaxation in the nanowire center. Strongest compressive strain at nanowire surface.

Analysis: Sayanti Banerjee, Sample: André Heinzig
Cross-section analysis oxidized $<110>$ Si nanowires

- Oxidation converts part of the nanowire to SiO_2
- Resulting crystalline nanowire diameter is reduced
- Typically, this leads to compressive strain
- Size has to be known for device modeling due to size effects

S. Banerjee, M. Löffler DCN

Analysis: Sayanti Banerjee, Sample: André Heinzig
Outlook: mechanical in-situ testing in the TEM

Using the Hysitron PI95 Indenter holder with push-to-pull MEMS chips

- Sample preparation with micromanipulation in the (FIB)SEM
- Measure strain-dependent bandgap and maximum tolerable strain
Radial compressive strain in Si nanowires

- Process simulation

(100) \(t_{ox} = 6 \) nm

(111) \(t_{ox} = 8 \) nm

- Same trend in strain distribution between HRTEM vs. process simulations
- Relaxation in nanowire center, highest compressive strain @ nanowire top surface
- Mean stress extracted from microRaman: -1.3 GPa (radial compressive)
Silicidation and Strain Analysis of Silicon Nanowires

Outline

Metal / silicon nanowire heterostructures

Strained nanowires

Transistor applications

Summary
What we use silicide and strain for: Reconfigurable Transistors

Doping free silicon technology, giving unipolar p- and n-FET behavior from the same device as programmed electrically.

Conventional CMOS inverter

- Doping profiles needed
- Different width
- Different stressors for p- and n-FET
- STI needed to isolate p- n-FETs

Reconfigurable FET inverter

- No doping needed
- Single stressor
- Identical device for p- and n-FET
- No STI needed
- Two gates per device needed (self-aligned)

Adapted from TU Wien / Selberherr

A. Heinzig
Working principle Schottky FETs

- Intrinsic-Si: depletion / accumulation
- Field induced band bending at junctions
- Injection of both electrons and holes -> ambipolar behavior

Reference: bulk NiSi₂/Si

\[e\Phi_B \text{ holes} = 0.39 - 0.48 \text{ eV} \]
\[e\Phi_B \text{ electrons} = 0.66 - 0.75 \text{ eV} \]

How can we manipulate electron and hole injection?
Transport alteration in metal / Si / metal nanowires

- Turn device on with electron tunnel current
- Enhance on-current by flushing holes at drain
- Non-volatile program through charge trapping

In contrast to a MOSFET a point potential selectively controls electron / hole transport

Reconfigurable Si nanowire FETs

- Same FETs provide p- and n-type transport: leaner complexity
- Higher device functionality -> reprogrammable logic

\[
I_{on} / I_{off} > 5 \times 10^7 \quad ; \quad J_{on} = 6 \times 10^5 \text{ A/cm}^2 \quad @ \quad V_d=1\text{V} \quad ; \quad g_m = 130 \mu S/\mu \text{m}
\]

Strain to adjust tunneling currents

\[T \propto e \]

\[-4w \frac{2m^*_{n,p}}{3qhV} \phi_{n,p}^{3/2} \]

- \(V_{PG} \) filters undesired carriers in intrinsic channel; \(V_{CG} \) acts as regular gate

- Full symmetry, \(I_{on} \), \(V_t \) by strain engineering

Complementary inverters integrated in 1-D

- Complementary operation with single V_{dd}
- Switching at $V_{dd}/2$
- n/p fully exchangable
- Capable of driving next stage -> Ultralow capacitances $C_L = 0.03 \text{ fF}$ -> 78 ps delay

Mixed mode simul.
Benefit of reconfigurability at circuit level

Reduction of transistor count and delay for main boolean functions

Example: 1bit full adder (needed for calculations and address decoders)

In CMOS 28 T needed

6T NAND / NOR

XOR/XNOR parity function

Basic 1 D cell

\[\text{CMOS CARRY} \]

\[\text{RFET CARRY} \]

\[\text{CMOS SUM} \]

\[\text{RFET SUM} \]

\[\text{-> 1-bit full adder with 14-T and up to 50\% reduced structural delay} \]

J. Trommer, A. Heinzig

Summary

Formation of metal / silicon nanowire heterostructures

Reactions depend on size and crystal direction

Strain analysis in nanowires

Strain distribution is uneven along nanowire cross section and length

Transport properties

carrier type injected controlled by point potential

Reconfigurable electronics

p- and n-type behavior on the same devices

NAND \rightarrow NOR reconfigurable circuit string