Directed Self Assembly of Block Copolymers

- Template Patterning
- Directed Self Assembly

- Potential solution for sub-10 nm patterning
- Template pitch can be amplified 4x
- Current metrologies focus on registration with template and surface structure

- Need to develop a metrology capable of evaluating the internal 3D structure of DSA BCP's!!

Stresses on the DSA BCP

Stresses on the DSA BCP can lead to the formation of complex buried features that may adversely affect the etch process!

- Surface enrichment of component A
- Lamellar oscillations due to stresses at the substrate and surface
- Substrate enrichment of component B

Surface Morphology may not reflect internal morphology

- Good DSA
- Floating Lines above Template
- Floating Lines above Substrate

Critical Dimension Small Angle X-ray Scattering

Measurement Geometry

- Vertical (qz) cuts taken around each peak

Enhanced Contrast via Soft X-rays

- Contrast is enhanced by using energies near the absorption edge (~285 eV for Carbon)
- Exact location of Carbon absorption edge shifts as a function of component composition (π vs σ bonds). Scattering contrast becomes bond specific.

Inverse Fitting Approach

The BCP lamella shape is approximated by a stack of trapezoids. The simulated intensity is compared to experimental intensity and the structure is iterated until a satisfactory χ^2 is achieved.

$$I(q) = \int \int \rho(r) \ast S(r) e^{-i q r} dr$$

$$DW = Debye Waller Factor, accounts for interfacial roughness$$

Diagram:

- 400+ images converted to $I(q_x,q_z)$
- $I(q_x,q_z) \rightarrow I(q_x,q_z)$
- Vertical (q_z) cuts taken around each peak
Hard vs Soft X-rays

1:1 Template : BCP Pitch

Hard X-rays (17 KeV)

![Hard X-ray image](image1)

- Small number of peaks and poor differentiation from background results in a poorly defined fit, large uncertainty

Soft X-rays (282 eV)

![Soft X-ray image](image2)

- Additional peaks and improved peak definition in soft x-ray measurements result in dramatic decrease in fit uncertainty

Complex Chemical and Topographical Template

4:1 Template : BCP Pitch

5 Primary peaks @ ~25 nm pitch

Satellites @ ~100 nm superlattice pitch

I(q_x,q_z)

- PS enriched at surface
- 70% PS at surface confirmed via NEXAFS
- On-Template lamellar shapes remain consistent
- PMMA segregates to substrate

- Increasing template width results in the disruption of the lamellar structure and the formation of undesirable features

Sampled Prepared by Joy Cheng (IBM)

Sampled Prepared by Gila Stein (University of Houston)