Dosimetry: devices used

Larry DeWerd, PhD, FAAPM University of Wisconsin

Disclosure

 Larry DeWerd has a partial interest in Standard Imaging – manufacturer of Exradin chambers

Dosimetry

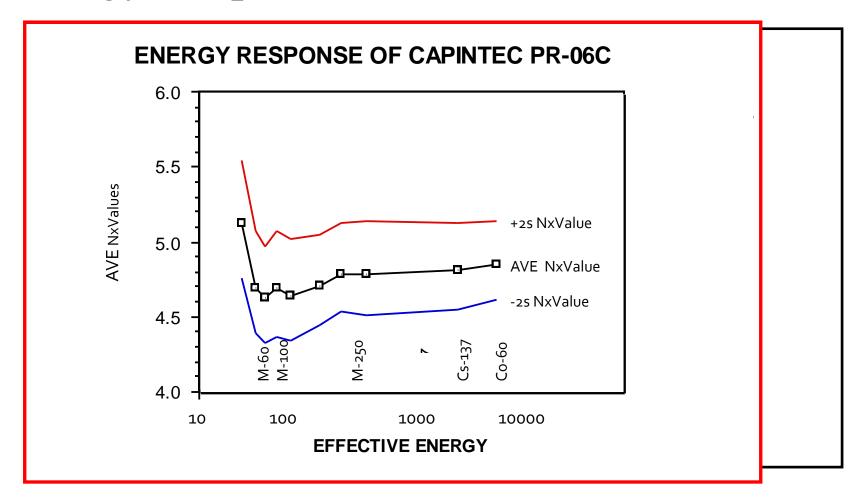
- The accuracy and application of dosimetry depends on the devices in use.
- Brief overview of some of the instruments in use to determine dosimetry.
- Will Hanson discussed the quantities needed for dosimetric determination.

Importance for Dosimetry

- Masterson and Febo, Med Phys 19:649
 (1992) measured in blood irradiators
 (sometimes used for cell irradiation)
- Results indicate differences of +5% to 13% with manufacturer supplied calibrations and variations in relative dose rate over the irradiation volume from 70% to 180%.
- About 15% across the diameter

Devices

- The three devices in majority use to measure and calibrate the x-ray or cesium sources are ionization chambers, film and TLD (OSL).
- Each of these need calibration
- Ionization chambers have less variation and their calibration can be interpolated
- TLDs can have a great variation with energy if calibrated at Cs or Co and used at x-rays. OSL even worse


Devices

- The calibration of Ionization chambers is a part of a later talk
- This talk will address the measurement of HVL using an ionization chamber
- Characteristics of TLD affecting the measurement will also be discussed.
- Film should not be used for dosimetry since there is a great variation with it. Use it for relative or spatial measurements.

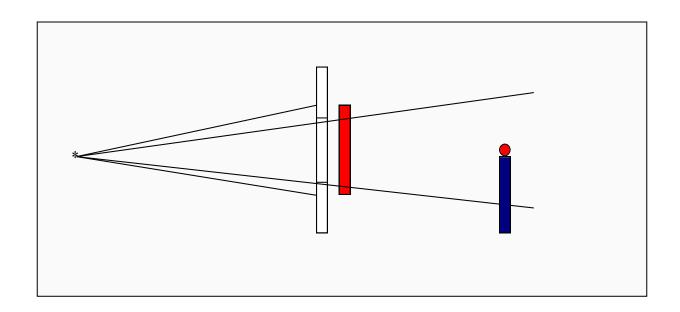
Variation of response with Energy

- As shown in the next slide, Ion chambers have relatively little variation with energy across the range of x-ray energies.
 However at low energies, the change can be significant.
- Attention should be given to make a correct measurement of beam (HVL) using an ionization chamber.

Energy Response of 0.6cc Farmer

To measure HVL

- Since the ionization chamber has a "flat response" (little variation with energy) it is appropriate to use.
- If it wasn't flat then a correction would need to be made to determine the correct HVL. Depending on the flatness of the energy response (or non-flatness) corrections of 5 % or more would be necessary


Importance of HVL

- Each of the x-ray energy beams would have different characteristics
- A measurement of HVL and HC can be used for characterization

Methodology to Measure HVL

- Setup so absorbers half way between focal spot and chamber, by collimation-absorbers away from source
- Limit x-ray field (Best to limit to size of chamber if possible.) because of things like scatter from collimators
- Amount of impurity in absorbers affects HVL measurement, especially for mammography
- Mammo 99.9% pure, Diagnostic 99% pure

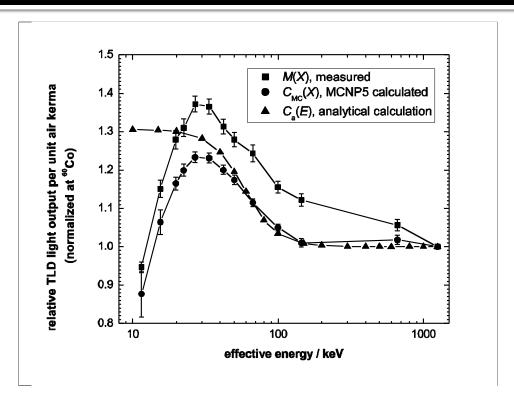
Schematic for HVL

Procedure

- Determine First and Second HVL
- First HVL (HVL₁) when exposure is 50% of no absorber exposure
- Quarter Value Layer (QVL) (Where exposure is 25% of value with no absorber)
- Determine second HVL (HVL₂)

Second HVL =50% of exposure with First HVL

$$HVL_2 = QVL - HVL_1$$


Homogeneity Coefficient (HC) is ratio of First HVL
 / Second HVL

$$HC = \frac{HVL_1}{HVL_2}$$

TLDs

- The use of TLDs are advantageous especially for small fields or small places – depends on your irradiator
- For best precision, heat first to eliminate residual TL for best results: 400 °C for 1 hour and then 80 °C for 24 hours.
- Cool for half hour on aluminum block. This will rezero the TLDs. Keep track of calibration of individual chips for best precision.

Energy Response

 Measured TL output per unit air kerma as a function of photon energy normalized at the average ⁶⁰Co energy. All measurements were made in the linear region of the TLD output (Nunn et αl 2008).

Variation of Response with Energy

- If the TLDs are calibrated at a higher energy
 - generally cesium or cobalt, there will be an overresponse at lower x-ray energies.
- Maximum over response is about 1.4 to 1.6 at about 100 kVp
- You think you have 40 % or more dose than you really have given it.
- Energy of calibration point is important
- OSL which is Al_2O_3 is more ~6 x

Summary of Devices

Device	Use	Ranking
Ion chamber	General – all dosimetry	+
TLDs	Relative dosimetry	0
Film	Spatial dosimetry	-

Other Devices

- There are other devices (diodes, mosfets, etc) but they all have their individual characteristics.
- They also can have greater variation in energy response and worse reproducible results.
- Basically know your instrument and what you are measuring.