Optimizing Automated Particle Analysis for Forensic Applications

Nicholas W. M. Ritchie Materials Measurement Science Division Materials Measurement Lab 29-Nov-2012

The Big Picture

- X-ray Microanalysis
 - Electron Probe Microanalysis (EPMA)
 - Energy Dispersive X-ray Microanalysis (XEDS)
 - Microanalysis of challenging samples
 - Particles, fibers, films, inclusions, ...
 - Microanalysis of particle data sets
- Customers
 - Material science, forensics, manufacturing,

HIGH SPEED AUTOMATED ANALYSIS OF PARTICLES USING SEM/EDS

- High Speed 10,000+ particle data sets
 - Moderate quality analyses of many particles
 - Search for a needle-in-a-haystack
- Automated Configure, start then no operator intervention
 - Minimize operator bias
 - Reduce tedium
- Analysis -

– Images and quantitative elemental analysis

MAJOR TIME SINKS

- Stage motion Tiling, stage speed
- Searching Search pixel size, pixel dwell
- Measuring Accuracy & pixel dwell
- Compositional Analysis Limits-of-detection
- Mapping Pixel dwell, area
- Overhead

- QC

Strategies for Optimizing Stage Movement

- Speed up the stage
 - Particularly backlash removal jogs, post-move vibration
- Minimize stage movement
 - Move in serpentine
 - Subsets

- Fixed size Order frames to produce shortest path
- Unknown size Can't optimize path
- Electronic fields Move beam not stage

Optimizing the Backscatter Detector

- Consider a probe current of 1 nA and a dwell of 1 μs

- $(1 \text{ nA})(1 \mu \text{s}) = (6.241 \times 10^{18} \text{ e}^{-/\text{s}})(10^{-9})(10^{-6} \text{ s}) = 6,200 \text{ e}^{-1}$

- Typical backscatter coefficients range from 5% to 50%
- If we could collect every electron from

- $\Delta I/I = (3,100)^{1/2}/(3,100) = 1.8\%$

• We actually collect about 14%

$$-\Delta I/I = (430)^{1/2}/(430) = 4.8\%$$

$$-\Delta I/I = (43)^{1/2}/(43) = 15\%$$

1 nA on Cu

Optimizing EDS

- Maximize solid angle
 - Large area
 - In close
- Many angles better than one
 - Multiple detectors
- Many pulse processors better than one
 - Multiple pulse processors

Oxygen in Iron Oxide Particles

Detector 2

Sum

Detector 3

Detector 4

Detector 1

An SEM:

- Collects images pixel-by-pixel, row-by-row
- Can stop the raster anywhere
- Can change directions

• We can size a particle quickly regardless of whether it is large or small.

• The "coord-raster" can be used to keep the beam on the particle while collecting EDS.

An SEM:

- Collects images pixel-by-pixel, row-by-row
- Can stop the raster anywhere
- Can change directions

• We can size a particle quickly regardless of whether it is large or small.

• The "coord-raster" can be used to keep the beam on the particle while collecting EDS.

An SEM:

- Collects images pixel-by-pixel, row-by-row
- Can stop the raster anywhere
- Can change directions

• We can size a particle quickly regardless of whether it is large or small.

• The "coord-raster" can be used to keep the beam on the particle while collecting EDS.

An SEM:

- Collects images pixel-by-pixel, row-by-row
- Can stop the raster anywhere
- Can change directions

- We can size a particle quickly regardless of whether it is large or small.
- The "coord-raster" can be used to keep the beam on the particle while collecting EDS.

An SEM:

- Collects images pixel-by-pixel, row-by-row
- Can stop the raster anywhere
- Can change directions

• We can size a particle quickly regardless of whether it is large or small.

• The "coord-raster" can be used to keep the beam on the particle while collecting EDS.

AN SEM IS NOT A CAMERA – PART 2

An SEM can:

• Dynamically change pixel spacing

• Search on a large pixel spacing

• Measure on a fine pixel spacing

Search Measure

An SEM can:

- Raster the beam outside the nominal field-of-view
- Naturally handle particles that fall on a field edge.

Search Measure

DOES IT MATTER?

	Dimensions		Timing	Precision		
						Time for
					Overhead	100 particle
	Search	Measure	Search		per particle	field
	Pixels	Pixels	(seconds)		(seconds)	(seconds)
Naive	2048	2048	4.194	1 part in 2048	0	4.19
Optimized	256	2048	0.066	1 part in 2048	~0.025	2.57

OptimizedParticles are sized and a spectrum collected as soon as discoveredNaiveParticles are sized and spectrum collected at the end-of-frame

Fewer small particles are lost during analysis using the optimized algorithm.

Does it work?

OLD

- 1,000 particle / hour
- Search: 99.4 mm² in 42 minutes at 1 µm pixel spacing
- Size: 10 particles / s
 - Quantify: 0.3 particles / s

NEW

- 7,500 particles / hour
- Search: 100 mm² in 13 minutes at 1 µm pixel spacing
- Size: 18 particles / s
- Quantify: 2.5 particles / s

TYING IT ALL TOGETHER

A Final Word on QC

1) EDS

2) Imaging detectors

3) Magnification

2'0

4) Probe current