Manufacturing: Future Characteristics/Vision/Goals

- Understanding of structure-function relationship (and correlation with performance and properties)
 - Raw materials and impacts
 - Quality
 - Each stage of manufacturing
 - Performance correlated to properties
 - Design based on knowledge
- Faster product/process modification in development and manufacture of licensed products.
- Personalized biotherapeutics (design, development, delivery); customization of niche products for personalized medicine
- Flexible continuous manufacturing with short turnaround
Manufacturing: Future Characteristics/Vision/Goals

- Transparent process and product endpoints (know what you made)
- In-line/in process real time representative sampling.
- Consider (include) more complex manufacturing scenarios:
 - Integrated (combination or hybrid) products, e.g. biologics-devices
 - Cell based products: e.g. differentiated stem cells into cellular, tissue, or organ based regenerative therapies
- Controlling and understanding variations in order to deliver quality for “P4 medicine” markets.

Manufacturing: Highlights of Broad Challenges and Barriers

- Drivers for Innovation
 - Biologics manufacturing is a fundamentally lousy manufacturing process: poor/limited understanding of manufacturing science
 - R&D costs associated with technology solutions
 - Negative environment (lack of education and research, static regulatory structure, capacity/or lack of, size of challenge, and competing global efforts) begs solutions
 - Inability to communicate value of innovative concepts

- Knowledge
 - Inadequate systems biology knowledge
 - Lack of manufacturing science knowledge
 - Variability and relevance of material attributes
 - Trained bioengineers and Interdisciplinary communications
Manufacturing: Highlights of Broad Challenges and Barriers

- **Enabling Technologies**
 - Lack of measurements for functionality, in-process and end-products
 - Lack of relevance of measurements in production to predict product performance, as in a clinical trial (no system similar to engineered products)

- **Other**
 - Lack of *continuous* improvement models in current manufacturing paradigm
 - Zero-risk demands – and inadequate tools to assess risk

Manufacturing: What We Need to Measure and Why

- **Cell Manufacturing (Process/Platform)**
 - Genotypic and phenotypic drift of the platform organism – leading to product drift.
 - Rapid glycol-profiling of therapeutic proteins
 - In process assessment (bioreactor environment, e.g. nutrients, wastes, pH, O₂/CO₂, etc)
 - Scale-up: transfer of measurements from lab to larger scale

- **Raw Material Inputs**
 - Raw (starting) material components, impurities, etc.
 - Acceptable limits of variability (starting materials, product)
 - Feed stock characteristics, impact on organism growth
 - Feed streams for purity, concentration to increase control
Manufacturing: What We Need to Measure and Why

- **Biopharmaceutical Production/Product**
 - Adoption of consensus standards of product definition (which ones?, how many are enough?)
 - Physiochemical attributes, biophysical and biological attributes, material attributes.
 - Protein identification (specific protein, concentration, purity/safety, contaminants etc.)
 - In-line product potency evaluation, immunogenicity, etc.
 - Acceptable limits of variability (starting materials, product)
 - Efficiency of purification and effect of such on the product properties.

Manufacturing: Selected Priority Measurement & Standards Barriers

- **Process**
 - Not clear how to use the data to improve the process.
 - Specific measurements in complex matrices – interference in in-process environments
 - Cross platform compatibility, comparable methodology.
 - Getting representative samples online

- **Product**
 - Inadequate understanding of sources of product variability
 - Bioassays (potency) in face of inherent variability
 - Mimicking complex systems in simpler ways. (e.g. immune system assay)
Manufacturing: Selected Priority Measurement & Standards Barriers

- **Tools/Methods**
 - Alternatives to MS as a measurement tool for protein/biomarker in complex fluids
 - Sensitivity, specificity, objectivity of measurement
 - Lack of generally applicable data pre-processing tools to incorporate more info into models.

- **Fundamental Knowledge**
 - Safety and efficacy is determined by different processes and procedures – not necessarily matched to criteria of acceptability within the manufacturing process. Thus risk analysis is not rational (e.g. drug related or physician error).

Manufacturing: Approaches to Selected Priority Measurement & Standards Barriers

- **Systems Biology of Production Platforms**
 - Objectives: Commonly available, fully described set of cell culture and production/product reference systems
 - Rationale: Allows us to assess relevance and risk associated with new measurement tools/technologies, and enables identification of sources and effects of variability; leads to better predictive outcomes
 - Impacts: Accelerates innovation (high), provides “UL” concept for biomanufacturing, increases speed of process, lowers cost of development and production; increase production efficiencies (and reduces waste and contaminants, etc)
Manufacturing: Approaches to Selected Priority Measurement & Standards Barriers

- Optimal Sampling Methods
 - Objectives: Design criteria, such as representative sample size, sterility requirements, utility and disposal considerations, sample preservation; characterization of reactor performance.
 - Rationale: Enables quality assurance, optimization which provided flexibility, and better control
 - Impacts: Accelerates innovation (high) in process development; enhances competitiveness (high) if data used for optimization.

Manufacturing: Approaches to Selected Priority Measurement & Standards Barriers

- Standards for Improving Biomanufacturing
 - Objectives: Standards to improve processes which accelerate delivery of good medical products to end users (reduces measurement uncertainty – reduces manufacturing costs, lead to high product consistency, better manufacturing predictability.
 - Rationale: Lean, mean and green – enhances predictable biomanufacturing processes, delivery, and costs and end user benefits
 - Impacts: Accelerates innovation (high), provides better medicines faster,
Manufacturing: Approaches to Selected Priority Measurement & Standards Barriers

- Next Generation Tools for Biomanufacturing
 - Objectives: Orthogonal methodology for glycosylation, aggregation, oxidation, folding, and other aspects; assessing or establishing comparability of methods, determining what to measure; capability for data analysis, multi-variant analysis for performance
 - Rationale: Enables predictive biotechnology, understanding of structure/function relationships, enhances quality and consistency, safe and effective products, with high yields
 - Impacts: Accelerates innovation and competitiveness (high), societal benefits via safer more effective products