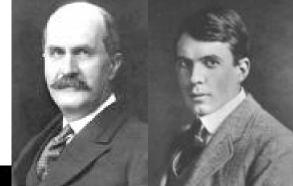

Complex Modeling: towards more robust nanostructure refinements

S.J.L. Billinge


Department of Applied Physics and Applied Mathematics Columbia University, CMPMS, Brookhaven National Laboratory

W. Henry Bragg's notebook

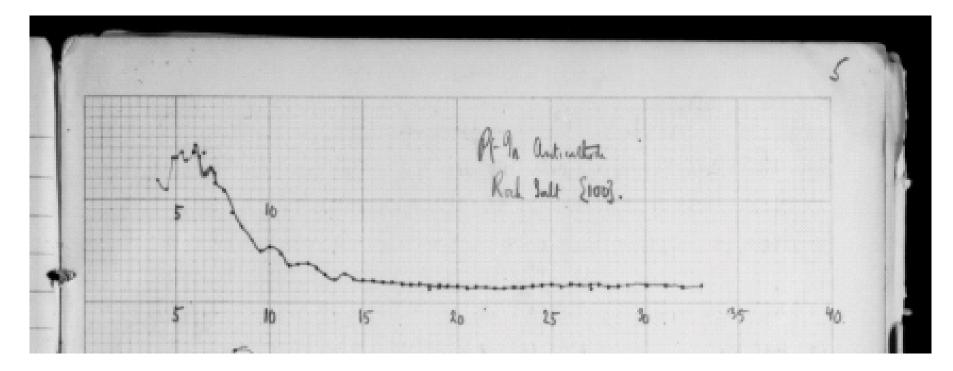
P abagen of Shaken lay 21	Polladam Buts Spirin So. 13		July no 1953	Diamond	•			1
and states the second strength	Platin Julia Wes	4-7	-barn shit					
American ildride - 88 54	Potosen abrile 42.43		0 0 - N'1 241 221 40			194 296		
augente 74 75.	11- 1	2.21	81 295 205 H 92 207 202 5 89 290 206 12		79	129 297	105 m	
	Pyretto 16-10, 72		1.0 M2 M0 4 4 KT M1 201 12			1. m. 291	1 200 15. 1 200 15 1 100 15	
Colute 55-55. Coludition. 75-55			47 No 20 20 20				-	
Chapter 91-92	ques 393, 2697, 1	59-73,	17 244 294 6	in.	1		HU -	
Cat. To an	he	ĸ	12 dy 40 19 41				ar.	ų
Diannel. He 1-3, 12-15, 21-27, for aloged Spece. 1- 15.	Lavar b 1	11	6+ 3+7 322 25 6\$ 202 312 104				Ea.	
Udnik 90.94	Sumate 3. 54		168 399 308 69 168 396 400 100 6. 400 241 91					

• Available at U. Leeds website:

http://www.leeds.ac.uk/library/spcoll/bragg-notebook/

D [110] Koch Salt. darge alits. 10 sus. Keadings taken on poper as not forth wound available angles. + 26.7 : +31.3 + 37.4 B Dink 1° : 2710 - (28.9) -33.5 -(39.6) + 15 A. 11-6 = . 2011 Rots 1.39. 32 . Means 27.8 32.4 38.5 13.9 19.2. 16.2 -17-5 -16.7 When taking these reading the brill was bleve work all over the + 15.2 141. -172 antication apor being very large and a blue fine stratcher from cathole to anticothode quarty goor abolate no reflection, exposently lah al Snol. Gotal. 10 20 Canto 2

• Page 11, he has moved from diamond to rock-salt....the first appearance of something looking like a Bragg peak


(cell it the 'block') imagine aface centred lettice anos, edges a, b, c. and that 16 atoms of supplus are ne cash, block. S. G = 2:07 hat of block = 16 × 32 × 164 × 10 = 838 × 10 = 4 Volg block = 205 538 × 10 2.07 = 405 × 10 . abc = 1.545 x 63 = 405 x 10 - 24 a = . 813, at = . 661 1 = 1513 6° = 262 × 10 -24 c= 1903 c'= 3.612 1= 276 6 = 6.4 × 10 - 8. Va. 46. 4 2. 789 187 - 5988 × 6 = 3.83 Sterres I from 000 on 111 plane = $\frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}{2} \frac{1}{2} \frac{1}{6} \frac{1}{2} \frac{1}$ 000 m 001 1-903 6 = 7.903 6. = 12.18 P = .577 × 10 000 m 010. - 56 = .500 6.= 3.20 000 on 100 = . 8136 = 406 6. = 2.60, Hence reflections should occur at the following anytes. (b, law smo = 2) . (011) (001) (010) 100 (110) (101) LIII) .0754 ·071 ·119. -1019 ·0233. '0902 .1109 4.3° 6:35 4 41 . 6.82. 5.85 (1.33 5-2 5.90 10:5 6.7 5.15. 6.2. 407 7.0: pus 415 143 . (1+37)(04) - 12 39 C 5° on 110 = 1 = 635 x 6 = 4.06. NO. 139-10.8 126(017) . 161)601) 425 $\frac{1}{2^{10}} = \frac{1}{2^{10}} = \frac{1}{2^{10}} = \frac{1}{750} \times \frac{2^{12}}{10^{10}} = \frac{1}{100}$ 14 Sun 1:33 = .0233 1849 = 10281. am 10.65 = 1849

Apparently the first structure solution

Page 43

Diffuse Scattering

- The Braggs discovered Bragg scattering on Page 11
- But apparently they discovered diffuse scattering on Page 5!

Overview of talk

- 1. Scientific need: to understand complex materials for next generation technologies
- 2. Scientific problem: they are complex!
- 3. Example: the nanostructure problem
- 4. Generic solution
- 5. Summary and outlook

Complex materials

- Photovoltaics with improved efficiency
 - Nanoparticles in the light collecting layer
- High energy density batteries
 - Electrodes
 - Electrolytes
- Fuel cells for transportation applications
 - Electrodes
 - Electrolytes
 - Catalysts
 - Hydrogen storage
- Sequestration
 - Functionalized mesoporous materials

BROOKHAVEN

COLUMBIA UNIVERSITY

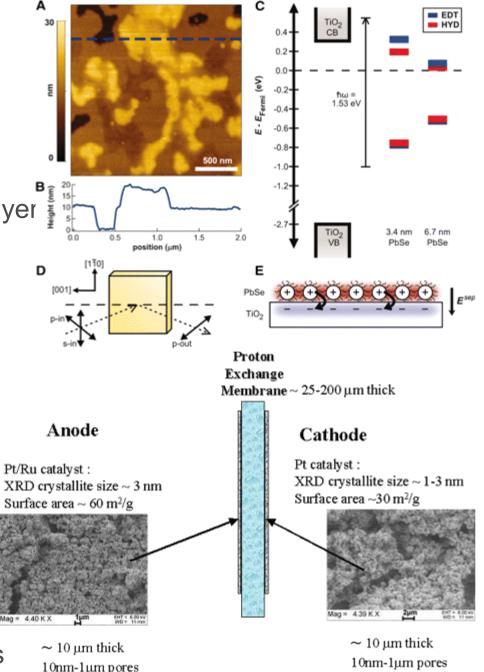


Image credits: 10.1126/science.1185509 U. Uppsala

Recurring themes in Complex Materials:

They have

- Structure at the nanoscale
 - E.g., just about everything
- Complicated structures, large unit cells, multiple elements
 - E.g., thermoelectrics, next generation battery materials, etc..

• Sub-micron heterogeneities

- E.g., core-shell nanoparticles, supported catalysts, real devices

Enormous experimental and theoretical challenges in Complex Materials

The Complexity Problem

To solve todays technological problems we need to study materials systems at the frontier of complexity.

An example of the complexity problem:

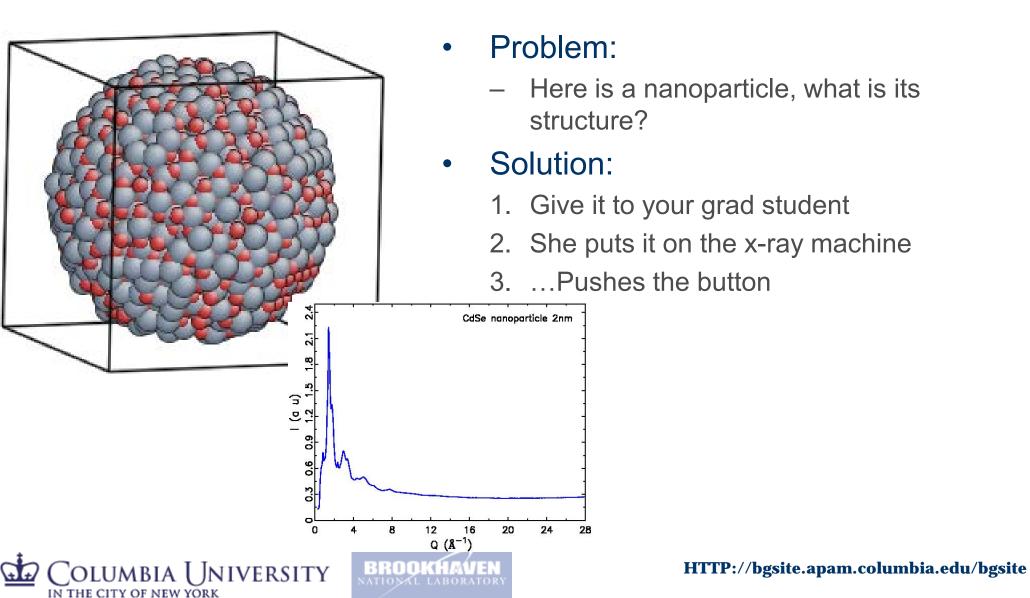
The nanostructure problem

The Crystal Structure Problem

From LiGaTe2: A New Highly Nonlinear Chalcopyrite Optical Crystal for the Mid-IR L. Isaenko, et al., J. Crystal Growth, 5, 1325 – 1329 (2005)

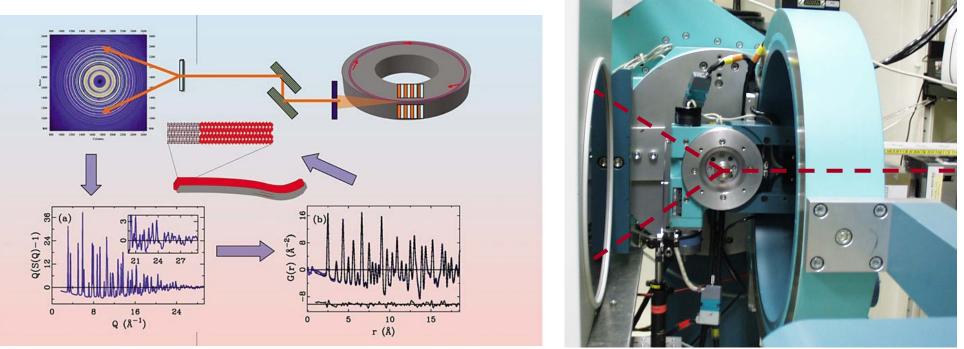
• Problem:

– Here is a crystal, what is its structure?


Solution:

- 1. Give it to your grad student
- 2. She puts it on the x-ray machine
- 3. ...Pushes the button
 - 1. Machine tells you the structure
 - 2. Or Machine gets stuck
 - 1. Throw away the crystal
 - 2. Make it the subject of her thesis

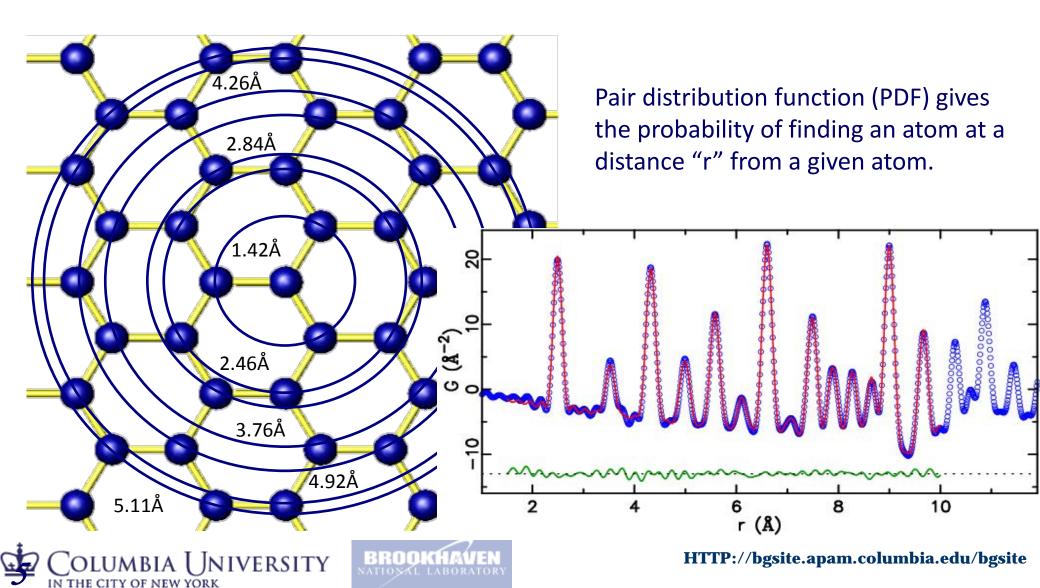
Crystallography is largely a solved problem


The Nanostructure Problem

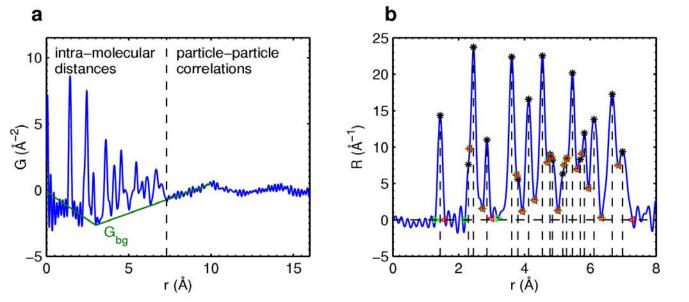
X-ray PDF Experiment

RAPDF – Rapid Acquisition PDF

few second measurement time



- Chupas et al., J. Appl. Crystallogr. (2003)
- Billinge-group, BNL, SUNY-SB, APS collaboration
- Main developments thanks to Pete Chupas and Xiangyun Qiu


Nanostructure refinement

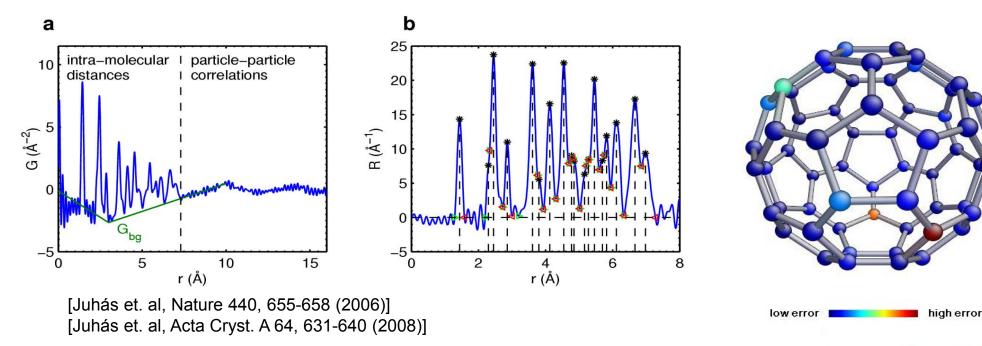
Structure Solution from PDF

Example: C60

- 60 atoms => n(n-1)/2 = 1770 pair-vectors
- We know the lengths (not the directions) of ~18 unique distances
- We have an imperfect measure of the multiplicities of those distances
- We don't have any symmetry information to help us

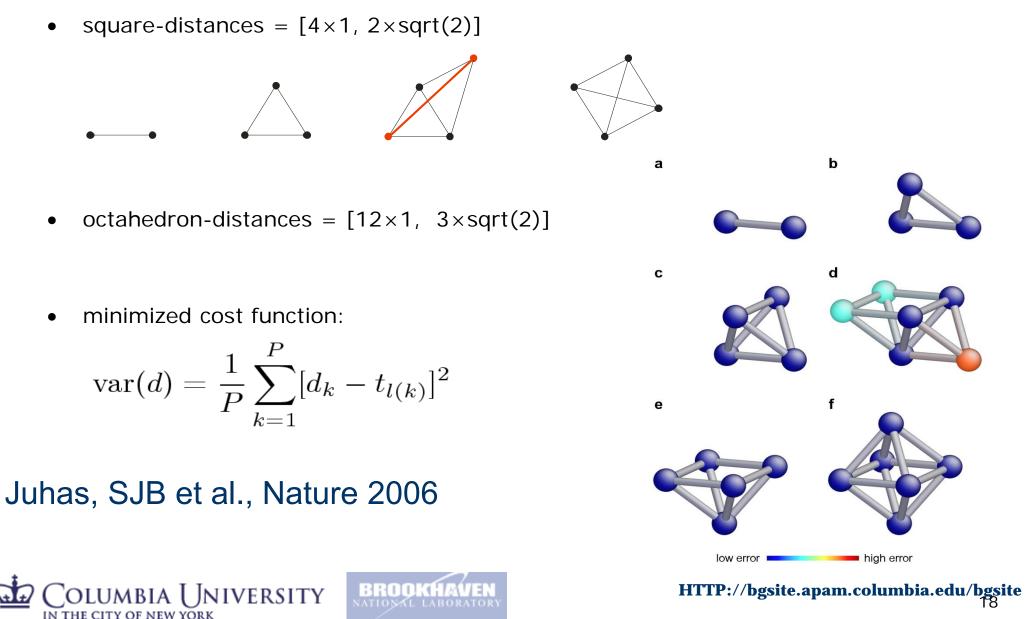
Is the problem well conditioned or ill conditioned? Is there a unique solution?

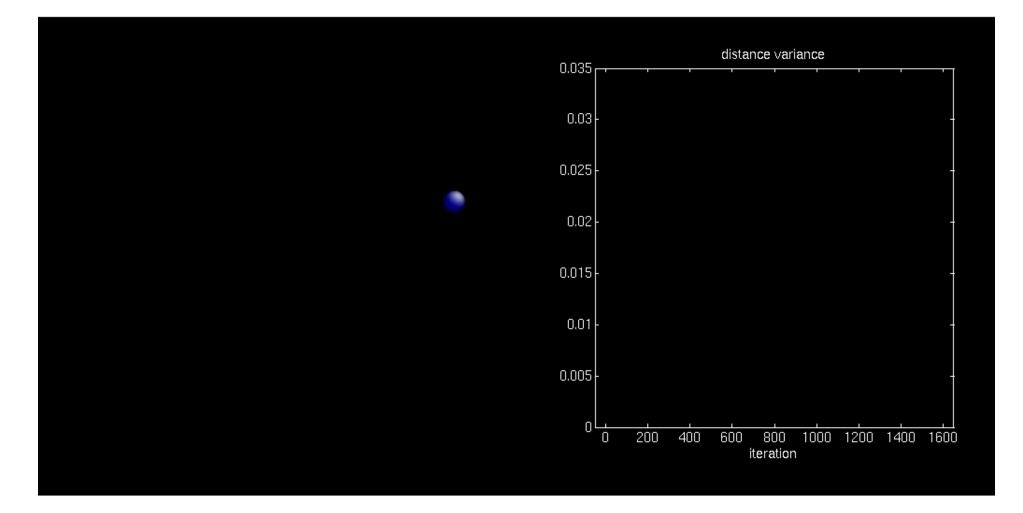
Structure Solution



Structure determination from PDF

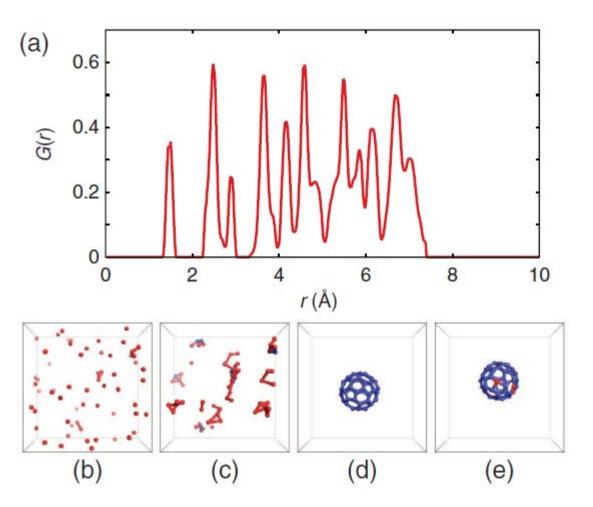
- neutron diffraction PDF data from C₆₀
- 60 atoms, 1770 distances
- extracted 18 out of 21 unique distance values
- structure determination still successful


algorithm extended for multiple atom-types and periodic boundary conditions



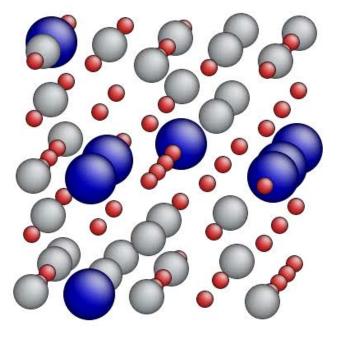
HTTP://bgsite.apai

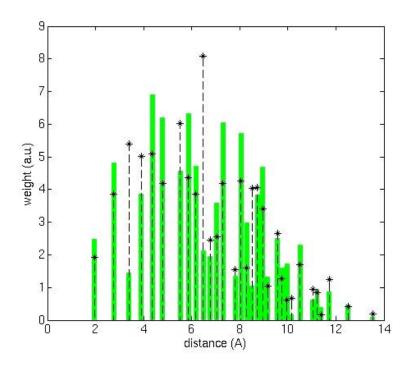
Illustration of cluster buildup


ab-initio structure solution directly from PDF data

C60 structure from RMC + similarity constraint

Olumbia University


IN THE CITY OF NEW YORK


- Simulated annealing could solve the C60 problem only with the addition of an extra "similarity" constraint (all carbon atoms have the same environment).
- This example shows that adding constraints not only regularizes inverse problems but also can increase efficiency of regression algorithms.
- Cliffe, Andrew L. Goodwin et al. Structure determination of disordered materials from diffraction data, *Phys. Rev. Lett.* 104, 125501 (2010).

Multi-element structure solutions from the PDF

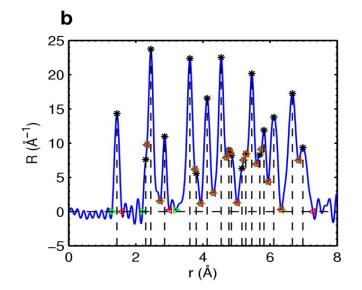
• Crystal structure solution from the PDF

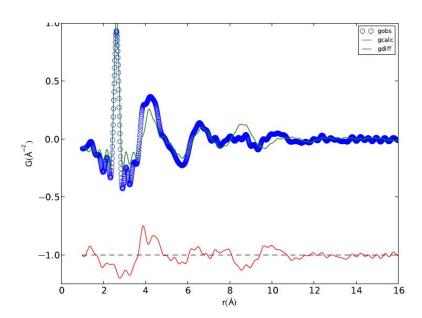
- start with random site arrangement
- flip sites which improve match between model and ideal peak weights

Journal of Applied Crystallography

Received 20 October 2009 Accepted 16 March 2010

ISSN 0021-8898


Crystal structure solution from experimentally determined atomic pair distribution functions


P. Juhás,^a* L. Granlund,^b S. R. Gujarathi,^b P. M. Duxbury^b and S. J. L. Billinge^{a,c}

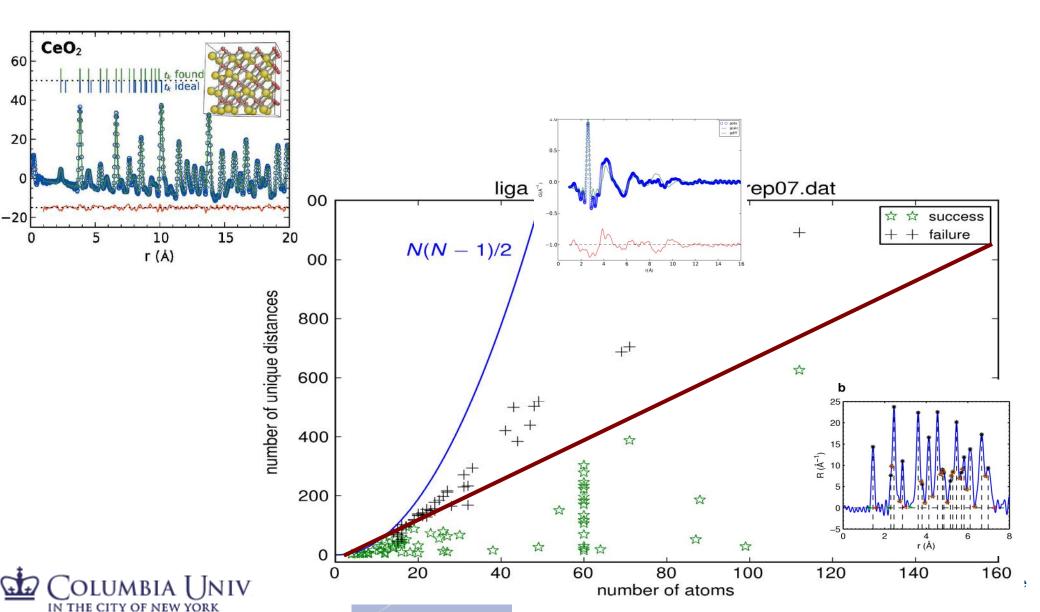
^aDepartment of Applied Physics and Applied Mathematics, Columbia University, New York, NY 10027, USA, ^bDepartment of Physics and Astronomy, Michigan State University, East Lansing, MI 48824, USA, and ^cCondensed Matter Physics and Materials Science Department. Brookbaven

 $C_{\rm d}$ and $C_{\rm c}$ are the distance and atom-overlap costs, as defined in equations (3) and (4). s_x , s_y and s_z are the standard deviations in the formula (4) is the standard deviation of the standard deviation o

normalized to a simple [111] cell. s_r (Å) is the root mean-square displacement of the solved sites from the reference CIF positions.						the reference (
Sample Ato		Cost C _d ((Cost Cc	$(Å^2)$	Deviation	of coordinates	
(supercell)		Liga	CIF	Liga	CIF	Sx	Sy	- 60-
Successful solutions								
Ag [111]	4	0.0232	0.136	0	0.001	0	0	
Ag [222]	32	0.0097	0.136	0	0.001	0.00025	0.00024	
BaTiO ₃ [111]	5	0.370	0.394	0.040	0.042	0.0057	0.0066	t_k ideal
BaTiO ₃ [112]	10	0.392	0.394	0.058	0.042	0.00023	0.039	
C graphite [111]	4	0.396	0.574	0.010	0.016	0.0029	0.0029	40
C graphite [221]	16	0.420	0.574	0.010	0.016	0.0086	0.0065	
CdSe [111]	4	0.107	0.138	0	0.001	0	0	
CdSe [221]	16	0.0856	0.138	0	0.001	0.00010	0.00013	
CeO ₂ [111]	12	0.515	0.554	0	0	0	0	
NaCl [111]	8	1.75	1.71	0	0	0	0	
NaCl [222]	64	1.20	1.71	0	0	0.00031	0.00031	
Ni [111]	4	0.0024	0.0024	0	0	0	0	
Ni [222]	32	0.0025	0.0024	0	0	0.00015	0.00013	
PbS [111]	8	0.0125	0.0104	0.010	0.011	0	0	
PbS [222]	64	0.0140	0.0104	0.010	0.011	0.00005	0.00004	
PbTe [111]	8	0.0024	0.0127	0.097	0.090	0	0	
PbTe [222]	64	0.0022	0.0127	0.097	0.090	0.00011	0.00011	
Si [111]	8	0.0045	0.0045	0	0	0	0	
Si [222]	64	0.0048	0.0045	0	0	0.00010	0.00009	
SrTiO ₃ [111]	5	0.437	0.437	0.002	0.002	0	0	
Zn [111]	2	0.495	0.470	0	0	0	0	
Zn [222]	16	0.564	0.470	0	0	0.00010	0.00006	- man and a second of the and the and the and the and the second of the
ZnS sphalerite [111]	8	0.150	0.0647	0	0	0	0	-20-
ZnS sphalerite [222]	64	0.160	0.0647	0	0	0.00029	0.00033	-20
ZnS wurtzite [111]	4	0.141	0.152	0	0	0	0	
ZnS wurtzite [221]	16	0.165	0.152	0	0	0.00003	0.00002	
[]				1000	1.5			0 5 10 15 20
Failed solutions								and a second
CaTiO ₃ [111]	20	0.4967	0.902	0.52	0.072	0.16	0.14	r (Å)
TiO ₂ rutile [111]	6	0.5358	0.758	0.40	0.009	0.081	0.24	r (Á)
and find	SOLL C			1000			000000	

60 atoms

~64 atoms


Ultra-small CdSe NPs

Successology

Problem

Well posed problem:

Information in the PDF data

Degrees of freedom in the model

Problem

As the complexity of the structural solution increases:

Information in the PDF data

Degrees of freedom in the model

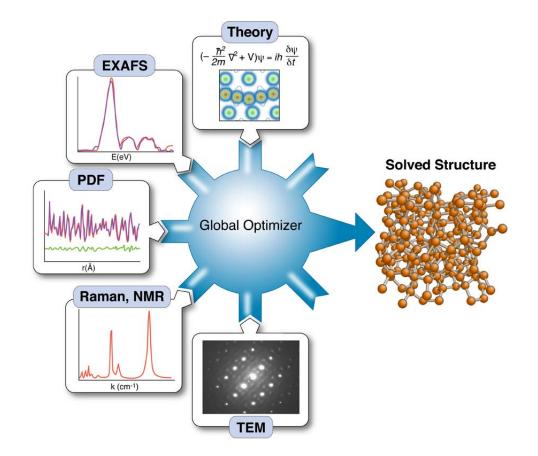
Problem

Solution is ill-posed:

Degrees of freedom in the model

Information in the PDF data

Structure Solution



Complex Modeling

- c = a + ib complex number mixes real and imaginary parts
- m = e + it complex modeling mixes experiment and theory in a coherent computational framework
- Billinge and Levin, Science 2007

Columbia University

IN THE CITY OF NEW YORK

Complex modeling (CM) is a continuous spectrum

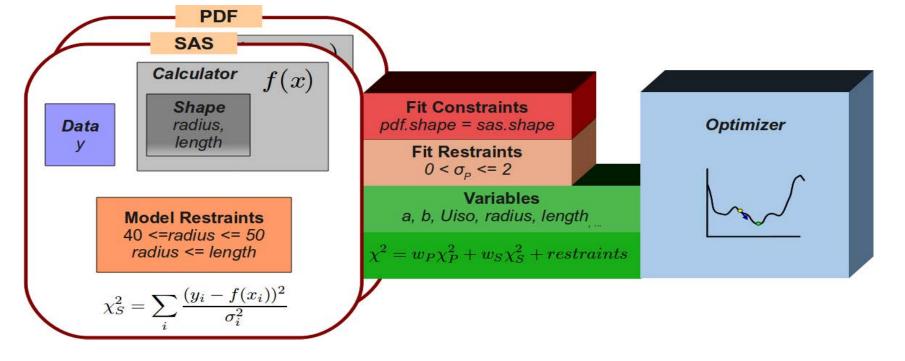
- Rietveld refinement of two datasets or two banks of neutron data is (local search) CM
- Rietveld refinement + rigid body constraints is (local search) CM
- Parametric refinement is (local search) CM
- RMC refinement including diffraction profiles and G(r) is (local search) CM
- RMC + similarity constraints on C60 is (global search) CM

We seek more robustness and more flexibility

Life After PDFgui:

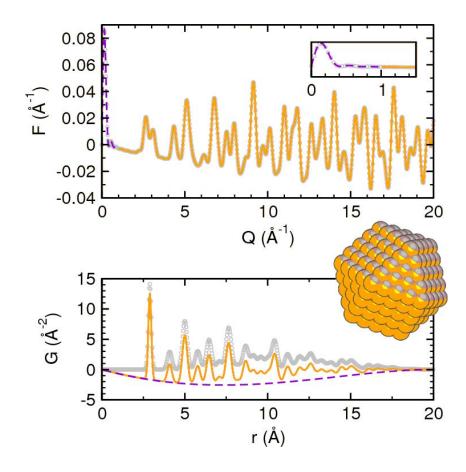
SrFit and SrReal

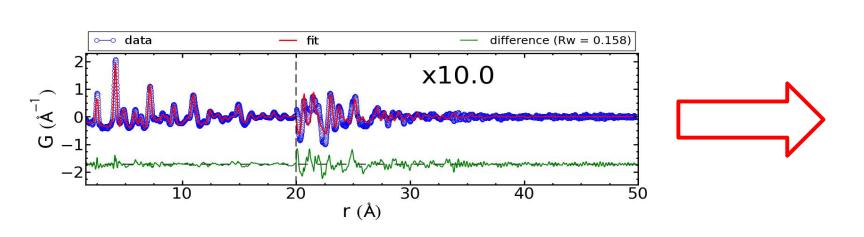
Modular and Extensible

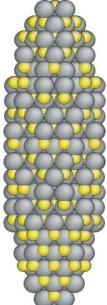


Complex Modeling – SrFit – Modular!

- Python framework for Complex Modeling
 Build a cost function from available forward calculators and data
- Each "page" a separate cost function
- Pages tied together with common variables and a unified cost function

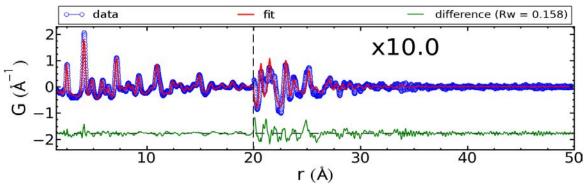

- Interfaces with existing software
 - DANSE diffraction for PDF
 - DANSE SANS for SAS
- Developed by Chris Farrow and Pavol Juhas


Bottom line: including SAS data yields a different correlation function: R(r) vs. G(r)

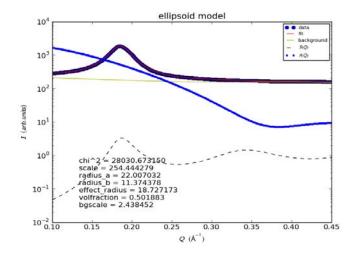


- SAS usually not measured
- "shape transform" captured in diffraction peaks
- Without SAS, average density subtracted out
- With SAS: the background of the G(r) function is obtained

PDF


Modeled as spheroidal nanocrystals with approximate stacking fault model, homogeneous strain effects

Model refines with ~3.5:1 aspect ratio
Approximately 25% stacking fault density
Shape parameters correlated with peak width (thermal) parameters
Model does not capture inhomogeneous strain in the first two peaks


PDF + SAXS Complex

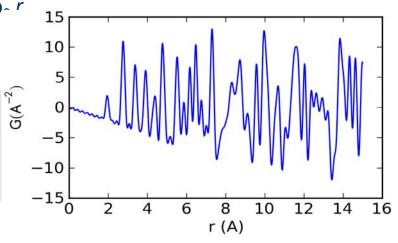
.PDF and SAS shape parameters tied together, combined residual

TABLE I. Structural and shape parameters from CdS nanoparticles determined by PDF and SAXS using a spheroidal model. Results for the wurtzite phase are shown below (Cd at (1/3, 2/3, 0), S at (1/3, 2/3, z)).

	SAXS	PDF	Complex
$R_w(PDF)$	a the second	0.146	0.155
$R_w(SAXS)$	0.0148	-	0.0150
a (Å)	2	4.134	4.134
c (Å)	2	6.753	6.761
S Z-frac.		0.441	0.418
$\operatorname{Cd} U_{iso}$ (Å ²)	2	0.0936	0.0098
$S U_{iso}$ (Å ²)	-	0.0158	0.0166
wurtzite maction		0.000	0.409
equatorial radius (.	Å) 11.36	10.17	11.37
polar radius (Å)	20.77	32.43	21,80

SrFit - ExtensiblePDFCalculator

- PDF calculation in real-space
 - suitable for periodic systems
 - one structure per calculator → mixed-phase PDFs obtained by combining several PDFCalculator objects
- other results: radial distribution function, partial PDFs, F(Q)
- class ScatteringFactorTable


olumbia University

IN THE CITY OF NEW YORK

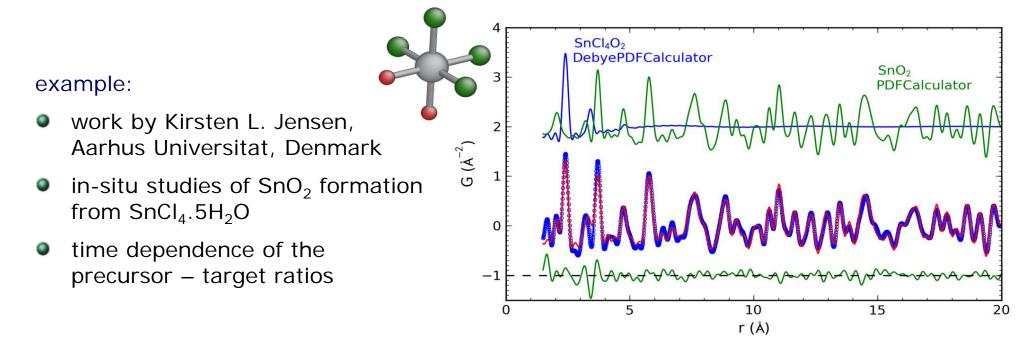
- lookup of xray, netron or electron scattering factors
- support for custom scattering factors
- class PeakProfile the profile function for a pair contribution
- class PeakWidthModel calculates profile width for a given atom pair
- class PDFEnvelope one or more r-dependent scaling envelopes
- class PDFBaseline the baseline function, by default $-4\pi\rho_r$

example:

```
>>> from diffpy.Structure import Structure
>>> from diffpy.srreal.pdfcalculator import PDFCalculator
>>> sto = Structure(filename='SrTi03.cif')
>>> pdfc = PDFCalculator(rmax=15, qmax=25)
>>> r, g = pdfc(sto)
>>> import pylab
>>> pylab.plot(r, g)
```

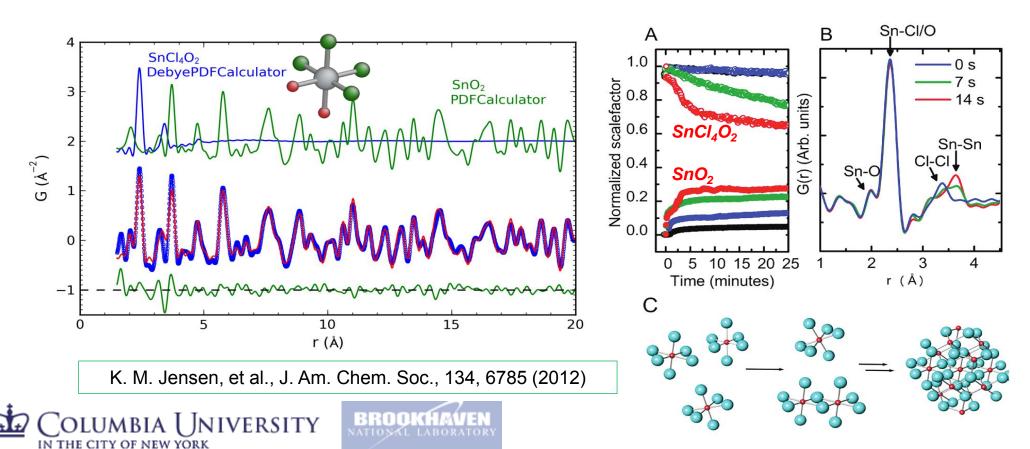

DebyePDFCalculator

• PDF calculation in Q-space – F(Q) calculated by Debye scattering equation and Fourier transformed to G(r)

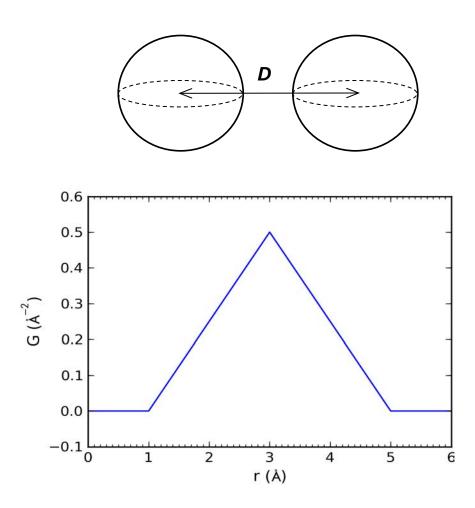

$$F(Q) = \frac{1}{N\langle f(Q) \rangle^2} \sum_{i,j} f_i(Q) f_j(Q) \frac{\sin Qr_{ij}}{r_{ij}} \exp\left[-\frac{1}{2}\sigma_{ij}^2 Q^2\right] \qquad \qquad G(r) = \frac{2}{\pi} \int_{Q_{\min}}^{Q_{\max}} F(Q) \sin Qr \, \mathrm{d}Q$$

• suitable for molecules or nano-clusters

olumbia [Jniversity


N THE CITY OF NEW YORK

• PDF baseline simulated by Q_{min} cutoff in the calculated S(Q)



PDF analysis of in situ SnO₂ formation

- in-situ studies of SnO₂ formation during hydrothermal synthesis,
- PDF measured every 7 seconds at an synchrotron x-ray source
- measured PDFs were fitted as a two-phase mixture of SnCl₄.2H₂O molecules and SnO₂ crystallites
- time dependence of the precursor-target ratios and the crystallite size

SrFit – Extensible!

COLUMBIA UNIVERSITY

PDF from two spherical shells can be calculated analytically

$$G(r) = \frac{1}{S_1 S_2 r} \iint_{S_1 S_2} \delta(r - r_{12}) \, \mathrm{d}S_1 \mathrm{d}S_2$$

triangular profile centered at spheres' distance D

- cluster of spherical shells →
 PDF calculation requires triangular profile function
- non-standard PDF profile requires
 - definition of a new profile function
 - telling PDFCalculator to use the new profile

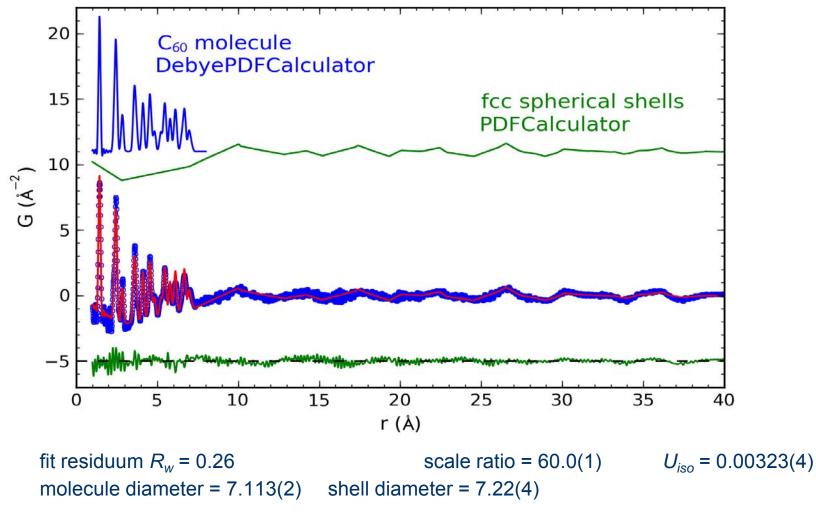
Custom PDF peak profile

profile defined in C++ #include <cmath>

```
#include <diffpy/srreal/PeakProfile.hpp>
using diffpy::srreal::PeakProfile;
using diffpy::srreal::PeakProfilePtr;
class SphericalShellsProfile : public PeakProfile {
public:
   PeakProfilePtr create() const {
        return PeakProfilePtr(new SphericalShellsProfile());
   PeakProfilePtr clone() const {
        return PeakProfilePtr(new Spherical ShellsProfile(*this));
   const std::string& type() const {
        static std::string tp = "spherical shells-cpp";
        return tp;
    double yvalue(double x, double fwhm) const
       if (fabs(x) > fwhm) return 0.0;
        double rv = (fwhm - fabs(x)) / (1.0 * fwhm * fwhm):
        return rv:
   }
   double xboundlo(double fwhm) const
                                         { return - fwhm: }
    double xboundhi (double fwhm) const
                                          { return +fwhm; }
};
```

bool reg_SawToothProfile = SphericalShellsProfile().registerThisType();

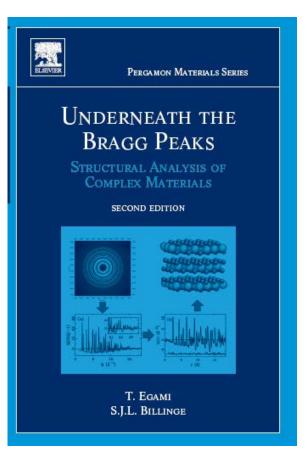
profile used in Python


```
>>> from diffpy. srreal. pdfcalculator import PeakProfile, PDFCalculator
>>> PeakProfile.getRegisteredTypes()
set(['croppedgaussian', 'gaussian'])
>>> import ctypes
>>> ctypes.cdll.LoadLibrary('./sphericalshells-cpp.so')
>>> PeakProfile.getRegisteredTypes()
set(['sphericalshells-cpp', 'croppedgaussian', 'gaussian'])
>>> pdfcalc = PDFCalculator()
>>> pdfcalc.setPeakProfileByType('sphericalshells-cpp')
```

COLUMBIA UNIVERSITY

- new profile functions can be defined either in Python or C++
- for C++ the profile function is compiled as a dynamic link library sphericalshells-cpp.so
- on loading the library adds new profile to the global registry → profile ready for use in Python
- no need to rebuild any other C++ sources related to PDFCalculator
- no need to write any Python wrappers for the new profile function

PDF refinement of fcc C₆₀



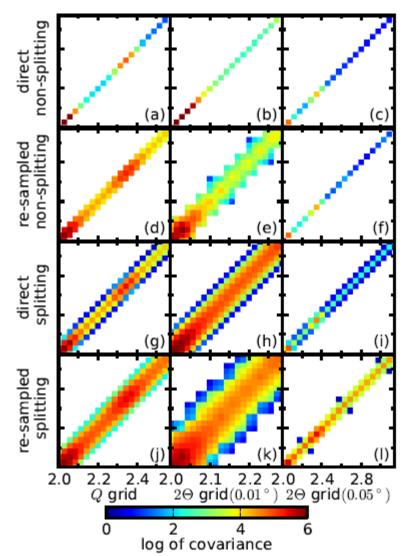
• PDF from fcc C₆₀ can be refined on the full measured range accounting for both intra and inter-molecular correlations

Data reduction to get the PDF

• Traditional Approach, apply all the physical corrections:

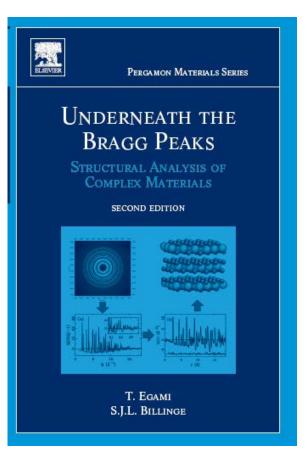
5. Data Collection Analysis				
	5.1	Introduction	160	
	5.2	Data Analysis Overview	163	
		5.2.1 Quantitatively Reliable PDFs Using Ad Hoc Data Corrections	165	
	5.3	Obtaining S(Q) in Practice	169	
		5.3.1 Elastic, Inelastic, Coherent, and Incoherent Scattering	169	
		5.3.2 Real-Time PDFs	170	
		5.3.3 Detector Dark Counts and Dead-time Corrections	171	
		5.3.4 Propagating Random Errors	173	
		5.3.5 Flux Normalization	175	
		5.3.6 Absorption and Multiple-Scattering Corrections	176	
		5.3.7 X-Ray-Specific Corrections	180	
		5.3.8 Time-of-Flight Neutron-Specific Corrections	193	
		5.3.9 Electron-Specific Data Corrections	201	
		5.3.10 Combining Datasets	204	
		5.3.11 Terminating Data	206	
		5.3.12 Fourier Transforming the Data	208	
		5.3.13 Instrument Resolution Function	209	
	5.4	Real-World Data Analysis	210	
		5.4.1 Data Analysis Programs	210	
		5.4.2 Correction of Large Hydrogen Backgrounds in tof		
		Neutron Measurements	211	
		5.4.3 Statistical Uncertainties on PDFs	213	
	Ref	erences	255	
_			259	
b.	b. Extracting Structural Information from the PDF			

• PDFgetX2, GudrunX



An aside: estimating uncertainties from 2D detectors

- Not easy
- Lots of "black art" but not much rigor
- Current workflow:
 - 1. Use the default on Fit2D (pixel splitting)
 - 2. Hope for the best
 - 3. Publish some kind of error bars that you make up
- Advert for Xiaohao Yang's work: we are considering esd estimation on the raw data and statistical correlations on data
- Variance-Covariance matrices for different common integration and interpolation schemes


COLUMBIA UNIVERSITY

Data reduction to get the PDF

• Traditional Approach, apply all the physical corrections:

5.	Da	ta Collection Analysis	159	
	5.1	Introduction	160	
	5.2	Data Analysis Overview	163	
		5.2.1 Quantitatively Reliable PDFs Using Ad Hoc Data Corrections	165	
	5.3	Obtaining S(Q) in Practice	169	
		5.3.1 Elastic, Inelastic, Coherent, and Incoherent Scattering	169	
		5.3.2 Real-Time PDFs	170	
		5.3.3 Detector Dark Counts and Dead-time Corrections	171	
		5.3.4 Propagating Random Errors	173	
		5.3.5 Flux Normalization	175	
		5.3.6 Absorption and Multiple-Scattering Corrections	176	
		5.3.7 X-Ray-Specific Corrections	180	
		5.3.8 Time-of-Flight Neutron-Specific Corrections	193	
		5.3.9 Electron-Specific Data Corrections	201	
		5.3.10 Combining Datasets	204	
		5.3.11 Terminating Data	206	
		5.3.12 Fourier Transforming the Data	208	
		5.3.13 Instrument Resolution Function	209	
	5.4	Real-World Data Analysis	210	
		5.4.1 Data Analysis Programs	210	
		5.4.2 Correction of Large Hydrogen Backgrounds in tof		
		Neutron Measurements	211	
		5.4.3 Statistical Uncertainties on PDFs	213	
	Ref	erences	255	
~	F	de Charles I I de la des des des por	259	
b.	b. Extracting Structural Information from the PDF			

• PDFgetX2, GudrunX

Data Corrections

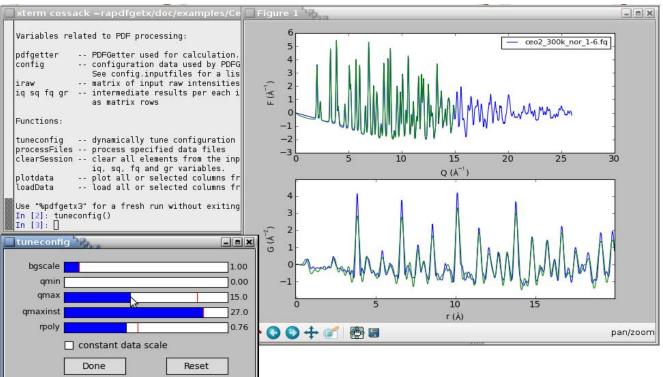
$$\left(\frac{\mathrm{d}\sigma^{\mathrm{s}}}{\mathrm{d}\Omega}\right) = \int \left(\frac{\mathrm{d}^{2}\sigma^{\mathrm{s}}}{\mathrm{d}\Omega\,\mathrm{d}E_{\mathrm{s}}}\right) W(E_{\mathrm{s}})\mathrm{d}E_{\mathrm{s}}$$
$$\left[\left(N\right)^{\mathrm{sc}}\left(V'_{\mathrm{scs}}\right)\left(N\right)^{\mathrm{c}}\right]\left(1-1\right)$$

$$= \left[\left(\frac{N}{M}\right)^{\rm sc} - \left(\frac{V_{\rm c;sca}'}{V_{\rm c;ca}'}\right) \left(\frac{N}{M}\right)^{\rm c} \right] \left(\frac{1}{\rho^{\rm s} V_{\rm s;sca}' D \, \mathrm{d}\Omega \, K \varepsilon_{\rm d}}\right) - m'$$

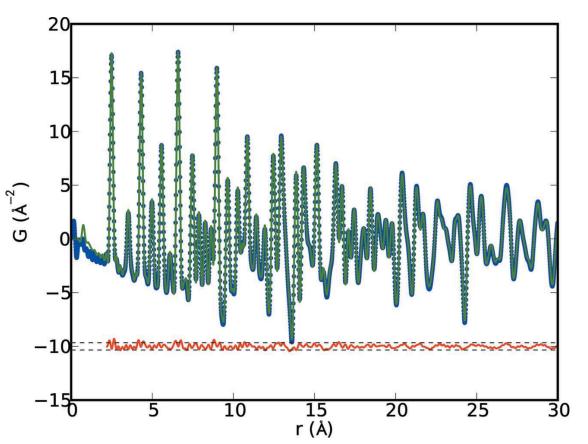
- Underneath the Bragg Peaks, Chapter 5
- PDFgetX2, GudrunX.....
- GSASII

Or treat the data reduction as an inverse problem

F(Q) can be expressed in a general form as a function of the measured powder diffraction intensity:


 $F(Q) = \alpha(Q)I_m(Q) + \beta(Q)$

- Do we know enough about the form of alpha and beta and the asymptotic behavior of F(Q) to solve this in an ad hoc way?
- Answer is yes:
 - Billinge and Farrow, J. Phys. Condensed Matter (in press)
 - Juhas P., Davis T., Farrow C.L. and Billinge S.J.L., PDFgetX3: A rapid and highly automatable program for processing powder diffraction data into total scattering pair distribution functions, *J. Appl. Crystallogr.* 46, 560-566 (2013).


PDFgetX3 – conversion of powder data to PDF

- command-line application for extracting PDFs from X-ray powder data
- improved data-correction procedure \rightarrow few process parameters, simple, easy to use
- automatable and <u>fast</u> hundreds of PDFs processed within few seconds
- interactive parameters tuning with real-time plot updates
- scriptable from system shell or via Python interface included with the program

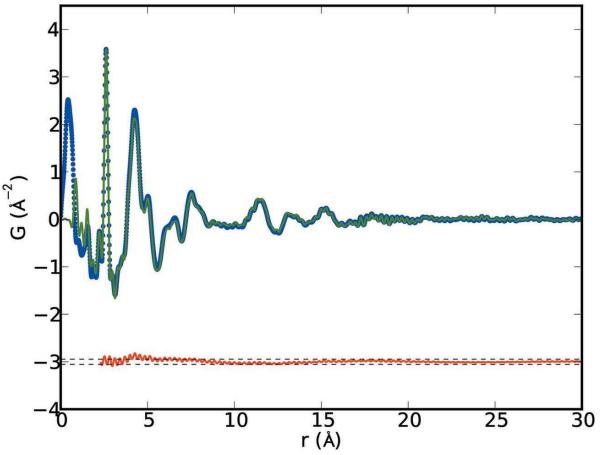
BROOKI

Columbia University

IN THE CITY OF NEW YORK

.

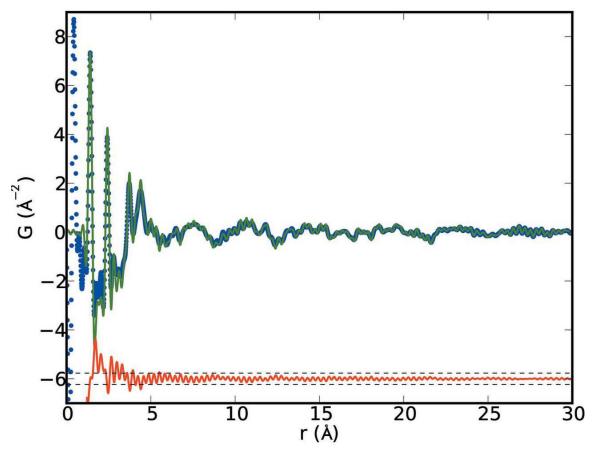
- Green getX3
- Blue getX2
- Red difference
- Nickel



Columbia University

IN THE CITY OF NEW YORK

t de


- Green getX3
- Blue getX2
- Red difference
- BaTiO₃

Columbia University

IN THE CITY OF NEW YORK

- Green getX3
- Blue getX2
- Red difference
- Ultra-small CdSe
 nanoparticles

- Green getX3
- Blue getX2
- Red difference
- Nanostructured carbamazepine (pharmaceutical)

Summary and outlook

- We now have amazing tools for collecting and analyzing data
- However...
- In complex materials modeling in general: we need more rigor
- Especially in Nanostructure modeling: we need more rigor
- Complex modeling is a first step
 - SrFit is our python-based complex modeling framework

In some sense, accuracy is the least of our problems:

actualcy is more the issue

