

Energy, Mining and Environment

Non-ambient Diffraction in the Laboratory Environment

Pamela Whitfield

Accuracy in Powder Diffraction IV, NIST, April 2013

Overview

- Why work in the lab when synchrotron data is better?
 - 'A bird in the hand....' (i.e. access!)

- Commercial stages
 - Some example developments
 - Sample displacement the old irritant...
- DIY setups
 - Considerations and 'mind-set'
 - Low temperature capillary high speed data with mirror optics & PSD
 - High gas pressure a special case and big headache?
 - Iron ore sintering high speed data collection using curved PSD

Commercial vendors...

- Some developments...
 - Tensile test stage

Anton-Paar TS 600

- Dome stages for 2D detectors
- Extremely-low temperature

Oxford Cryosystems Phenix

mri BTS-BASIC

- Close-cycle coolers \rightarrow cryogen-free cold stream Cryo Industries close cycle cooler
- Combined XRD-DSC (Rigaku)

Sample displacement – different approaches

• Z-stepper motor on HTK1200 oven

Triclinic-hexagonal phase transition of Ca₁₀(AsO₄)₆F₂ apatite in HTK1200 equipped with z-stepper motor

500

380

260

140

30

28

30

Temperature (°C)

Has to be properly calibrated

Whitfield *et al*, *J.Appl.Cryst.*, <u>40</u> (2007), p1019

Parallel-beam geometry

No sample displacement peak shifts

Parallel-beam : the down-side

- Lower peak resolution
- Choice of Soller slits a factor....

Comparison of the main quartz reflection from different optics

NBC-CNB

No-one sells what you want? now the fun starts...

- Mind set it's a complete system, not just a stage
- Some engineering restrictions
 - Size
 - Stage weight (vertical goniometers)
 - Access to pass-throughs
 - $\theta \theta$ (don't foul arms!)
 - Door closure

Example where engineering restrictions complicate things:

Bulk (clearance+heat) Heavy – 10kg High pressure line pass-through transducer, thermocouples & heaters

Low temperature capillary work

 System specced and built specifically for rapid low T nonambient phase studies with large capillaries

(before Oxford Cryo Compact was available!)

• Laminar flow along capillary axis minimizes LN2 usage without icing (goniometer heat shield needed)

Heat shield on goniometer head

- Vertical goniometer
 - Limited space for nozzle

- Long transfer line not good (if you can get it inside)
 - Put dewar inside the cabinet?

Look familiar?

Figure 1. Experimental Diagram

Figure 2. Experimental Mess

NH₄NO₃ phase transitions

- Focussing mirror optics, cryoflow with linear PSD
- Snapshots, 8° window, 2 second datasets every 2°C
- Continuous temperature ramp (0.1°C/s)

Proof of concept. Phase transitions of NH₄NO₃

2 0

Something more practical....

- Ability to automate complex ramp-soak programs
- 4 minute datasets shorter than ramp/dwell times
- 48 datasets in ~7 hours

Beyond $CuK\alpha$...

• Engineering for high pressures often dictates use of higher energies for optimal usage..

- 1st mainstream company to venture down this route....?
- Anton-Paar HPC-900
 - 100 bar pressure for H₂, etc
 - Requires $MoK\alpha$
 - Not a simple add-on

NRC-CNRC

DIY under pressure?

- Home-designed and built pressure vessels?
- Space for sample stage and ancillary stuff limited
- The elephant in the cupboard
 - The pressure codes (ASME in North America)
 - Restricts the materials you can use
 - What conditions you can use them under (max stress, temp)
 - Design concepts and validation
 - QC and manufacture

Just one of the ASME pressure codes...

AN NATIONAL STAN

PROCESS

PIPING

DIY thought process... 300bar, 300°C

- 3 years from concept to delivery
- No modifications have to think of everything 1st time!

Cover retention . Strong enough but removable using 12 tapered pins

Corrosionresistant C22 Ni superalloy. Adjustable Ta knife-edge

Heavy-duty! Strong enough at temp with ASME allowables + a bit

Fittings also need to be corrosion-resistant

300bar NRC pressure vessel

- Window is the weak-spot
 - Swagelok-type seal (regulator comfort!)
 - Be window material for transmission
 - Be corrosion protection?
 - Strength? (structural grade SR200)
- Windows 61/4 mm thick Be
 - 2µm Ta coating
- Interior flooded with water/steam
- Interior beampath ca. 15 mm
- Penetration is key.....

Ta-coated window. Notches stop window rotating when tightening

Flooded means flooded..

The exception rather than the rule...

• In this case AgK α (22 keV) needed for increased transmission

 \odot

- Has consequences....
 - Getting hold of a tube
 - 1.5kW versus 3kW (LFF)
 - Require new PSD optimized for higher energies
 - Pd β -filter effects even worse
- Difference between no signal and some signal
 - Increase in accuracy = ∞

Calculated transmission through the GEN1 pressure stage at different energies

NBC-CNB

Can you actually see anything?

- Worst case fully flooded with cold water
- Total beampath
 - 12.5mm Be, 8µm Ta, 15mm water

Anything else easy in comparison...

- Autoclave conditions ~190°C
- 161psi steam + 100psi CO₂

Iron Ore Sintering - In Situ X-ray Diffraction

Introduction – Industrial Context

Iron ore sintering = important stage of the steelmaking process

Ansto

NBC-CNB

CSIRO

> SFCA is the 'glue' phase for sinter

SFCA = Silico-Ferrite of Calcium and Aluminium SFCA = $M_{14}O_{20}$, SFCA-I = $M_{20}O_{28}$, M = Fe, Ca, Si, Al

Nathan A.S. Webster et al., Metall. Mat. Trans. B, 2012, 43, 1344-1357

Iron Ore Sinter Studies Laboratory Based *in situ* Data Collection

- Beamtime hard to get
 - Waiting time ~ 6 months
- Once phases known from synchrotron experiments – use lab instrumentation
- INEL CPS120
 - Incident beam, multilayer mirror for high intensity
- CoKα

Strip heater

CSIRO

Iron Ore Sinter Studies Laboratory Based *in situ* Data Collection

- Heating rate
 - 20°C min⁻¹, 25 → 600°C
 - 10°C min⁻¹, 600 →1350°C
- Data collection time
 - 30 sec for 120° 2 θ
- Resolution not as good as synchrotron but most information still visible
- Problem
 - Industry not so interested if conditions not close to real processing conditions

Gnsto

Actual Industrial Heating Rates? Attempt to Emulate in Laboratory

Ansto

CSIRO

1350

1200

-1050

900

750

600

450

- 300

- 150

- 25

45

l'emperature

- Heating rate
 - 200°C min⁻¹, 25 →1350°C
- Data collection time
 - 6 sec for $120^{\circ} 2\theta$
- Major and some minor phases still apparent

Conclusions

- Lab studies still have a role to play
 - Easy access and the freedom to 'play'
- Think holistically!
 - In-situ stages don't work in isolation
 - Source, optics and detector can be changed/tweaked
 - Integration with diffractometer systems desirable but not vital

- \bullet Think beyond CuK $\!\alpha$
- High gas pressure is a real pain (or the regulations are)
 - "abandon hope all ye who pass here!"

Acknowledgements

- Ian Madsen
 - Iron ore sintering study

- Cryo Industries of America
 - Customizing one of their cryo systems for my needs...
- Jim Ross (NRC-DFS) and All-Weld
 - High pressure gas cell

© Randy Glasbergen www.glasbergen.com.

dog math

"If I have 3 bones and Mr. Jones takes away 2, how many fingers will he have left?"

